INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Innovative Design of Laminated Bamboo
Furniture Using Finite Element Method

V. Laemlaksakul

Abstract— Development of the numerical evaluation method of
the strength and the durability for the furniture was attempted using
for an example the chair in order to utilize it for a quality control, a
new products design. The objective of this research is to assess
strength of laminated bamboo chair under static and dynamic
loading and perform drop test analysis described in ISO 7173
(Furniture — Chairs and stools — Determination of strength and
durability). The developed models establish procedure to perform
virtual testing on laminated bamboo chair to reduce product design
and testing time. The simulations are set up using a non-linear
dynamic finite element (FE) software which is equipped with both
implicit and explicit solvers. This virtual testing result focused on
the improve design and development of laminated bamboo chair
through virtual testing.

Keywords— Simulation, Finite element, Modeling, Laminated
bamboo chair, Strength, Durability.

I. INTRODUCTION

RODUCT innovation is a key factor of enterprise

innovation, and creative design is the core of product
innovation. The application of new materials is mainly
dependent on the properties of the specific materials. In
furniture, engineered wood products, bamboo can easily be
production.

Bamboo is another natural constructional material and
there are over 1500 different botanical species of bamboo in
the world. In general, it is believed that the mechanical
properties of bamboo are likely to be at least similar, if not
superior, to those of structural timber. Furthermore, as
bamboo grows very fast and usually takes 3-8 years to harvest
[1, 2], depending on the species and the plantation, there is a
growing global interest in developing bamboo as a substitute
of structural timber in furniture production. However, a major
constraint to the development of structural bamboo as a
modern furniture material is the lack of design standards.
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The advancement in computer technologies has created a
tremendous impact on several of industries, from automotive,
military and aerospace industries to electrical and electronic
and household industries. CAE (Computer Aided
Engineering) is one of the computer technologies utilized by
many OEMs (Original Equipment Manufacturer) during the
design and development of products [3]. Today, application of
CAE is commonly used to perform virtual analyses including
structure, impact, drop test, thermal and computational fluid
dynamic. Strength design of furniture can be accomplished by
utilizing solid modeling and structural analysis software. All
parts of the product can be modeled parametrically and
required changes can readily be optimized via advantages that
are provided by the solid modeling. Likewise, strength
calculations of the designed product could be made by means
of the computer aided structural analysis software. A
simplified analysis method is desirable for furniture engineers
to perform daily quick design calculations to estimate
structural sizes without the need of assistance from expensive
structural simulation software. Strength and durability design
of chair to satisfy furniture performance test standards such as
design loads.

Finite element methods (FEM) have been commonly
utilized in structural analysis of the furniture systems. A
theoretical study using advanced finite element analysis of
one element per member was reported by Chan to assess the
load carrying capacities of bamboo scaffoldings [4, 5].
Gustafsson structurally analyzed a simple chair by utilizing
the FEM [6] and determined stresses at various nodes with
the finite element method by modeling the chair [7]. FEM
gives reasonable estimates of the overall strength
performances of the sofa frames [8].

The purpose of this research is to assess strength of chair
from laminated bamboo namely Dendrocalamus asper Backer
(or Pai Tong) in Thailand under static and dynamic loading
and perform drop test analysis. In this study, FEM is
performed to investigate the characteristics of laminated
bamboo chairs by revolution in culture bamboo armchair. The
strategy of designer was to create several innovative concepts
[9]. The computer model is constructed from the drawing by
used human factor illustrated in Figure 1 [10].
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Fig.1. Design models of laminated bamboo chair

II. MATERIALS AND METHOD Table 1. Mechanical properties of bamboo
A. CAE Procedure : Properties Value3
The simulation models are set up using finite element Bensn},/ 800 kg/m
. . oung’s Modulus 13.68 GPa

softwere. Firstly, triangular shell elements are used to mesh Yield Strength 100 MPa
the surfaces of laminated bamboo chair. Then, 4-node Poisson Ratio 0.35
tetrahedron elements are generated based on these shell Strength Coefficient 438 MPa
elements. Due to symmetry, only half of the chair geometry is
considered. Mesh model of bamboo chair design #1, #2 and
#3 consists of 9664, 8371 and 11041 tetrahedron (tetra) o

elements, respectively. Upon finishing model setup, the
simulations or all case studies listed in Table 1 are performed
using a non-linear dynamic finite element analysis (FEA) 0
software which is equipped with both implicit and explicit
solvers. The simulations are performed using a computer with
3.0 GHz processor and 1.3 GHz memory. 290

B. Bamboo Mechanical Properties

An elasto-plastic material with an aribitrary stress versus
strain curve is chosen to model behavior of bamboo in each
simulation [11]. The mechanical properties of bamboo are
listed in Table 3. The Krupskowsky law listed in Equation 1

o

an

is adopted to model the hardening behavior of bamboo during R R R LR AR R RAREE AAREE RARRE

tensile test. The stress-strain relationship illustrated in Figure = e L L nE

2 is used in all simulation. The bonding between laminated

i Fig.2. True stress-strain curve
layers is assumed to be perfect.

Ger=K (€9 + ¢,)" (1)
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C. Static Loading Simulation

The static loading simulation is conducted using the
implicit solver. The model setup for static loading simulation
is illustrated in Figures 3-5. The pad is placed at the center of
each laminated bamboo chair. The clearance between pad and
laminated bamboo chair is set as 0.5 mm. The applied pad
force for static test is 2000 N as described in ISO 7173 for
Test Level #5. Due to symmetry, applied pad force is set
to1000 N in the static loading simulation. The trajectory of
applied pad force is illustrated in Figure 6. The static loading

event takes 0.25 seconds.
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D. Dynamic Loading Simulation

The dynamic loading simulation is conducted using the
explicit solver. The model setup for dynamic loading
simulation is similar to setup described in static loading
simulation. The applied pad force for dynamic test is 950 N
as described in ISO 7173. Due to symmetry, applied pad force
is set at 475 N for one cycle of loading condition. The
trajectory of applied pad force in dynamic loading simulation
is illustrated in Figure 7. The dynamic event takes 0.5

seconds
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Fig.4. Side view of FEA models in static analysis
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Fig.5. Top view of FEA models in static analysis
500
1200 7 o
450 /-
1000 o 4 400 -
350
s ] Z 300 /
g Y
3 600 g 20 / \
S \ & 200
2 \
400 1 150
100 1
200 \ 50
0 L 4 + 0
o 001 002 0.03 0.04 0 0.1 02 03 04 05 06
Time (s x 10)

Time (s)

Fig.7. Applied pad force for dynamic loadin
Fig.6. Applied pad force for static loading g PPIECP n 8

Issue 3, Volume 2, 2008 277



INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

F. Impact Simulation computed as below:

The impact simulation is conducted using the explicit Initial velocity,V:\/Zgh:\/2*9810*300:2426 mm/s (2)
solver. The model setup for impact simulation is illustrated in
Figures 8-10. The impacter is placed at the center of each where g and h is the gravity pulling force and height,
laminated bamboo chair and 300 mm above the chair. respectively
Element mass was added to adjust the total weight of
impacter to 25 kg in simulation. The initial velocity of
impacter prior to hitting the laminated bamboo chair is
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Fig.10. Top view

III. RESULTS AND DISCUSSION

A. Static Simulation

Static simulation lasted for approximately 10 minutes. The
results obtained from static simulation are illustrated in
Figures 11-13. As show in Figure 11, the location of
maximum von Mises stress is circled. In Design #1, the stress
concentrated near the joint after the pad load is removed.
Stress concentrated near the center of seat for Design #2,
while Design #3 undergoes much stress concentration near
base of back support of chair. In overall, Design #3 is
subjected to higher maximum von Mises stress compared with
Design #1 and #2. The distribution of total and Z-
displacement illustrated in Figures 12 and 13 indicates

Issue 3, Volume 2, 2008

Design #3 undergoes higher deflection after removal of static
load. However, the amount of deflection is fairly small.

The predicted maximum Z-deflection and von Mises stress
from each test are listed in Table 2.

Table 2. Data recorded after removal of pad load

Design ~ Max. Z- Deflection Max. von Mises Stress
(mm) (MPa)
1 -0.0355 0.516
-0.0127 0.233
3 0.1860 1.330
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Fig.11. Distribution of maximum von Mises stress (in MPa) in static analysis
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Fig.12. Distribution of total displacement (in mm) in static analysis
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B. Dynamic Simulation

The cyclic dynamic loading reveals higher stress
concentration near joints at the back of Design #1 laminated
bamboo chair, as illustrated in Figure 14. In the case of
Design #2 and Design #3, stress concentration occurs near
the joints at the front of laminated bamboo chair. The
simulations also indicate Design #2 laminated bamboo chair
undergoes higher stresses during cyclic dynamic loading if
compared with Design #1 and #3. This is probably due to
flexible design compared to more rigid Design #1 and #3.
The maximum von Misses stress recorded is listed in Table 3.

A comparison of total and Z displacement also reveals
Design #2 exhibits bigger deflection when it’s subjected to
cyclic loading. In Design #1, deflection takes place near the
front and back of seat pad after removal of cyclic load. The
deflection is higher near the arm rest for Design #2. Again,
this characteristic is contributed to the more flexible design.
In Design #3, high deflection takes place near the back
support of chair. The maximum Z deflection is listed in Table
3.

Table 3. Data recorded after removal of pad load

Design Max. Z- Deflection Max. von Mises Stress
(mm) (MPa)
1 0.0047 0.094
2 0.0134 0.460
3 0.0096 0.182

C. Impact Simulation

The impact simulation for Design #1 and #3 lasted for
approximately 6 hours, while Design #2 takes approximately
10 hours. The long simulation time in Design #2 is caused by
a several small tetrahedron elements from its complex
geometry. The results obtained from impact simulation are
illustrated in Figures 17-19. The stress response of laminated
chair during impact simulation is quite similar to cyclic
loading with exception of much higher degree stress
concentration. As illustrated in Figure 18, total displacement
is higher near the arm rest of all chair designs as a result of
higher impact loading causing arm rest to cave inwards. The
impact loading also increase deflection in Z direction. The
maximum deflection in Z direction is listed in Table 4.

Higher impact force is recorded in Design #1 as a result of
rigid structure which provided harder landing surface. The
peak impact force is approximately 21.60 kN. In impact
simulation for Design #2, the peak impact force is 16.10 kN.
The peak impact force is 18.75 kN for Design #3.

Table 4. Data recorded after removal of impacter

Design Max. Z- Deflection =~ Max. von Mises Stress
(mm) (MPa)
1 -0.583 26.50
2 -0.846 23.20
3 0.232 23.90
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IV. CONCLUSION

The application of CAE technology has been proven to
help improving product quality, reducing time and lowering
cost of developing new products. In this study, the CAE
technology is employed to investigate the performance and
durability of laminated bamboo chair designs. The virtual
tests including static, impact and dynamic loading cases are
conducted using multi-physics FEA solver with explicit and
implicit capabilities. The static loading case is conducted
using the implicit algorithm, while both dynamic and impact
loading cases are performed using explicit algorithm. The
virtual test procedure is complied with the International
Standard.

In static simulation, Design #1 undergoes maximum Z-
deflection of -0.0355 mm at the center of seat area. The
maximum von Mises stress is recorded as 0.516 MPa near the
corner of rear legs of laminated bamboo chair. Though
amount of recorded stress is below yield stress, design change
is recommended to remove stress concentration at these
regions to improve strength of chair. Design #2, the
maximum Z-deflection and von Mises stress are -0.0127 mm
and 0.233 MPa, respectively. Both maximum Z-deflection
and von Mises stress takes place at the center of seat area.
Comparison of static loading simulation between Design #l
and #2 reveals the latter performs much better by allowing
lower stress concentration and deflection. For Design #3, the
maximum Z-deflection and von Mises stress are 0.186 mm
and 1.33 MPa, respectively. Higher deflection is observed
near the back support of seat, while stress concentrated near
the arm rest.

The dynamic cyclic loading indicates the maximum Z-
deflection and von Mises stress for Design #1 is 0.0047 mm
and 0.094 MPa, respectively. The stress concentration takes
place near the joints between rear legs and seat area of chair,
while maximum Z-deflection occurs near the front edge of
seat area. For Design #2, the maximum Z-deflection and von
Mises stress are 0.0134 mm and 0.46 MPa, respectively.
Design #2 exhibits larger deflection near the arm rest and
back support of chair due to its flexible design. Furthermore,
design #2 exhibits higher stress concentration near the joints
between front legs and seat area of chair when subjected to
cyclic loading. For Design #3, the maximum Z-deflection and
von Mises stress are 0.0096 mm and 0.182 MPa, respectively.
Fatigue assessment is not yet evaluated due to lack of
experimental data of fatigue parameters.

When subjected to impact condition, the characteristics of
both chairs are quite similar those subjected to dynamic cyclic
loading. The maximum Z-deflection and von Mises stress for
Design #1 are 0.583 mm and 26.5 MPa, respectively. For
Design #2, the maximum Z-deflection and von Mises stress
are 0.846 mm and 23.2 MPa, respectively. Again, Design #2
undergoes higher deflection due to flexible design. In Design
#3, the maximum Z-deflection and von Mises stress are 0.232
mm and 23.9 MPa, respectively.
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Fig.14. Distribution of maximum von Mises stress (in MPa) in dynamic analysis
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Fig.15. Distribution of total displacement (in mm) in dynamic analysis
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