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Abstract—The paper is focused on development of 

a mathematical model of valves of a hydraulic system. Laboratory 

three tank model (Amira DTS200) was investigated and 

characteristics of its valves were measured. Consequently, the 

process of creating a mathematical model of the valves is described 

in detail. The three tank system is a classical modeling task but this 

paper focuses on nonlinearities which are present in real system and 

other differences between ideal mathematical model and real-time 

system. Especially hysteresis represents a big difference between 

ideal mathematical model and real-time system. Even thought all 

valves the system is equipped with are of the same type, big 

differences were observed between their characteristics. The 

approach to modeling of the system is not restricted to the particular 

system but can be used for many real-time hydraulic systems. 

 

Keywords—Control valve, Gray box, Hysteresis, Identification, 

Modeling.  

I. INTRODUCTION 

LMOST all current control algorithms are based on a 

model of a controlled plant [1]. Some information about 

controlled plant is necessary for design of a controller with 

satisfactory performance. A plant model can be also used to 

investigate properties and behavior of the modeled plant 

without a risk of damage of violating technological constraints 

of the real plant. There are two basic approaches of obtaining 

plant model: the black box approach and the first principles 

modeling. 

The black box approach [2], [3] is based on analysis of 

input and output signals of the plant. Usage the same 

identification algorithm for wide set of different controlled 

plants is the main advantages of this approach. The knowledge 

of physical principle of controlled plant and solution of set of 

mathematical equation is not required. Main drawback of a 

black box model persists in fact that it is generally valid only 

for signals it was calculated from. 

The first principle modeling provides general models valid 

for wider range of plant inputs and states. The model is 

created by analyzing the modeled plant and combining 
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physical laws [4]. But there are usually a lot of unknown 

constants and relations when performing analysis of a plant.  

The paper uses combination of both methods. Basic 

relations are derived using mathematical physical analysis. 

Values of model parameters are identified on the basis of real-

time measurements. The goal of the work was to obtain a 

mathematical model of the valves of DTS200 Three-Tank 

System [5] and to design the models in MATLAB-Simulink 

environment. The DTS200 laboratory equipment was 

developed by Amira Gmbh, Duisburg, Germany and serves as 

a real-time model of different industrial systems concerning 

liquid transport.  

The models of valves serve as a part in process of creating a 

model of whole DTS200 system. The major reason for 

creating the model of this laboratory equipment are big time 

constants of the plant and thus time consuming experiments. A 

model, which represents the plant well, can considerably 

reduce testing time of different control approaches. Then only 

promising control strategies are applied to the real plant and 

verified. 

A tank system with valves occurs often in industrial practice 

and was investigated by many researchers [6], [7]. Flow of 

liquid through pipes is studied in [8]. 

The paper is organized as follows. Section 2 presents the 

modeled system – Amira DTS200. Derivation of initial ideal 

using first principles modeling is carried out in Section 3. 

Section 4 and 5 presents characteristics and calibration water 

level sensors and pumps respectively. Section 6 consists or 

results of measurements of valves. 

II. THE DTS200 SYSTEM  

The photo of main part of Amira DTS200 system is shown 

in Fig. 1.  

  
Fig. 1. Amira DTS200 – three tank system 
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The system consists of three interconnected cylindrical 

tanks, two pumps, six valves, pipes, water reservoir in the 

bottom, measurement of liquid levels and other elements.  

Both pumps pump water from the bottom reservoir to the top 

of the left and right tanks Valve positions are controlled and 

measured by electrical signals, which allow precision setting 

of their position. 

A simplified scheme of the system is shown in Fig. 2. The 

pump P1 controls the inflow to tank T1 while the pump P2 

controls the liquid inflow to tank T2. There is no pump 

connected to the middle tank Ts. The characteristic of the flow 

between tank T1 and tank Ts can be affected by valve V1, 

flow between tanks Ts and T2 can be affected by the valve V2 

and the outflow of the tank T2 can be affected by valve V3. 

The system also provides the capability of simulating leakage 

from individual tanks by opening the valves V4, V5 and V6.  
 

 
Fig. 2. Scheme of three tank system Amira DTS200 

 

Pumps are controlled by analogue signal in range from -

10V to 10V. Heights of water level are measured by pressure 

sensors. Each valve is operated by two digital signals which 

control motor of particular valve. First signal orders to start 

closing of the valve while the second signal is used for 

opening of the valve. If none of the signals is activated the 

valve remains in its current position. Each valve also provides 

three output signals: analogue voltage signal correspond to the 

current position of the valve and two informative logical 

signals which states that the valve is fully opened or fully 

closed respectively. 

The overall number of inputs to the modeled plant DTS200 

is 14: 

• 2 analogues signals controlling the pumps, 

• 12 digital signals (2 for each of the 6 valves) for opening 

/ closing of the valves. 

The plant provides 21 measurable outputs which can be 

used as a control feedback or for measurements of plant 

characteristics: 

• 3 analogue signals representing level heights in the three 

tanks, 

• 6 analogues signals representing position of the valves, 

• 12 logical signals (2 for each of the 6 valves) stating that 

corresponding valve is fully opened / closed. 

III. INITIAL IDEAL MODEL  

This chapter is focused to derivation of mathematical model 

of a valve. This derivation is based on ideal properties of 

individual components.  

 The ideal flow of a liquid through a pipe can be derived 

from Bernoulli and continuity equations for ideal liquid: 

21

22 v

V

hg v
q S g h

q S v


  

 
 

 (1) 

where ∆h is a difference between liquid levels on both sides of 

the pipe (e.g. difference between levels of tanks that are 

interconnected by the pipe), g is the standard gravity, v is the 

liquid velocity and SV is the flow space of the pipe. The flow 

space SV is controlled by the valve position p. 

max 0 1V VS p S v     (2) 

where SVmax is the maximal flow area of the valve.  

Since the flow through a valve depends only on the level 

difference, the valve position and constants representing pipes 

and cylindrical tanks, the change of water level in tank T1 can 

be written as follows: 

 1
1 1 1 4 1signs s

dh
k h h h h k h

dt
      (3) 

The area of all three tanks is the same and is symbolized by 

ST. The k is a parameter representing valve position 

max 2
1,2,...,6V

i i

T

S g
k p i

S
   (4) 

and q represents inflow as change of water level in time: 

1,2i
i

T

q
q i

S


   (5) 

 Similar equations can be derived for the other two tanks. 

The model obtained by using ideal properties and behaviour of 

plant parts if further referred as “ideal model”. This model of 

whole three tank system is successfully used in many control 

system studies as a demonstration example [9], [10], [11]. 

IV. CHARACTERISTICS OF THE VALVES 

As stated in Section 2, each of plant’s 6 valves is driven by 

two dedicated logical signals. These signals are used for 

starting valve’s motor in closing or opening direction 

respectively. If none signal is activated the valve remains in its 

current position. Activation of both signals at in a particular 

time represents an invalid state and valve motor is stopped. 

 Each valve provides three output signals. The current valve 

position is determined by analogue signal. Higher values of 

signal represent closed valve and lower values represent 

opened valve. The other two signals are logical and state that 

valve is opened or closed respectively.  

 P1  P2 

Ts T2 T1 

V2 
V3 V1 

leakage (V4) leakage (V5) leakage (V6) 

h1 
hs h2 
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A.  Valve limits and speed 

Process of opening all valves at once from fully closed state 

to fully opened state is presented in Fig. 3. 

 

 
Fig. 3. Closing all valves in full range 

  

This process represents moving of valve position in full 

range of its hard constraints. The vertical lines in left part of 

Fig. 3 represent changes the “opened” signals of individual 

valves. Before these signals drop down the valves are said to 

be opened. The vertical lines in the right part of Fig. 3 

represent the changes of “closed”. From these lines onward, 

the valves are said to be closed. 

 It can be observed that the initial and final positions of the 

valve as well as the positions corresponding to changes of 

“opened” and “closed” signal differ. But all the valves are 

moving at almost the same speed vvalve.  

0.175valvev MU s   (6) 

Valve positions corresponding to hard constraints and 

validity of “opened” and “closed” state are summarized in 

Table I.   

 

Table I 

Valve positions for important states 

Valve 

no. 

full 

closed 

[MU] 

“closed” signal 

change  

[MU] 

“opened” 

signal change 

[MU] 

full open 

[MU] 

1 0.5199 0.4066 -0.6065 -0.6945 

2 0.4550 0.3880 -0.5719 -0.7493 

3 0.5462 0.3996 -0.5423 -0.6501 

4 0.4926 0.3594 -0.5751 -0.7151 

5 0.4868 0.3296 -0.5157 -0.6718 

6 0.5242 0.4416 -0.5698 -0.6525 

 

B.  Valve flow parameter for outflow valves 

Valve flow parameters ki as appear in (3) were computed 

from measurements of draining through individual valves 

which are connected to outflow pipes (V3, V4, V5 and V6). The 

draining of a tank to the reservoir situated below the tanks is 

described by differential equation based on (3): 

 
 

dh t
k h t

dt
   (7) 

Integrating in an appropriate time range leads to the 

equation of time course of water level: 

     
2

2 0 0
4

k
h t t k h t h      (8) 

where h(0) is initial water level. An example of draining is 

presented in Fig. 4. At the beginning of the experiment, the 

tank was full and all valves were closed, then valve V4 was 

partially opened, its position was recorded and time course of 

water level height was measured. 

 
Fig. 4. Draining of tank T1 through valve V4 

 

It is obvious that parabola depicted in Fig. 4 would continue 

below zero contrary to (8). A term corresponding to the 

vertical length of outflow pipe h0 was added to the model. The 

vertical length h0 is depicted in Fig. 5. 

 
Fig. 5. Vertical length of outflow pipe (h0) 
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 Due to mechanical configuration of the plant, the value of 

h0 for outflow valves V3, V4, V5, and V6 cannot be measured 

directly. But it can be identified from draining course (Fig. 4). 

To encapsulate h0 into model, equations (7) and (8) were 

superseded: 

 
 

     

0

2
2

00 0
4

dh t
k h t h

dt

k
h t t k h h t h

  

     

 (9) 

 A second order polynomial (parabola) was fitted to an 

appropriate interval of draining data in least mean squares 

sense. The MATLAB function polyfit was used for this task. 

Parabola fitting is presented in Fig. 6. 

 
Fig. 6. Parabola fitting to the draining course 

  

Values of k and h0 can be easily obtained from polynomial 

coefficient according to (9). Valve can be closed to different 

positions at the beginning of draining experiment and relation 

between valve position and value of k can be achieved. 

 
Fig. 7. Relation between valve position and k4 

This relation for one set of experiment on valve V4 is 

presented in Fig. 7 where circles represent individual 

experiments. The characteristic is not strictly linear. It 

contains saturation of fully closed and fully opened valve. 

Transitions to saturation states are smooth. 

Experiments with the same configuration were performed 

for all outflow valves. The results obtained from measurement 

of valve V6 are presented in Fig. 8. The upper graph depicts 

the course of k6 and values of corresponding h0 are shown in 

the lower graph.  

 
Fig. 8. Relation between valve position and k6 and h06 

 

The values of h06 for the four rightmost experiments (i.e. 

valve position greater than 0.2 MU) are irrelevant because the 

valve was closed and no outflow was observed. The remaining 

experiments resulted in almost the same values of h06 which 

was expected as the values of h0 are physical values of the 

Amira DTS200 model.  

C.  Valve flow parameter for interconnection valves 

Similar approach to obtaining values of k as presented in 

previous subsection can be used also for valves V1 and V2 

which interconnects tanks T1 and Ts, and Ts and T2, 

respectively. Flow from the full tank T1 to the empty tank Ts 

was used to measure valve constant k1. The other valves were 

closed during the experiment. According to (3), the flow can 

be described by two differential equations: 

 
       

 
       

1

1 1 1

1 1 1

sign

sign

s s

s

s s

dh t
k h t h t h t h t

dt

dh t
k h t h t h t h t

dt

      

     

 (10) 

 Since the value of h1 is always higher or equal to hs, the 

term inside absolute values is always nonnegative. As the 

water flow just from T1 to Ts and the geometry of both tanks is 

the same, according to mass conservation law the sum of h1 

and hs remain the same during the experiment. Then the 

course of draining T1 and filling Ts can be described by two 

independent differential equations. 
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 Solving these equations lead to time course described by 

second order polynomial. 
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 An example of courses and corresponding parabolas are 

depicted in Fig. 9. 

 
Fig. 9. Parabola fitting to the flow course through V1  

 

Relation between position of valve V1 in MU and k1 is 

shown in Fig. 10. 

 
Fig. 10. Relation between valve position and k1 

 

 A similar approach as presented for valve V1 was used to 

measure characteristics of valve V2. Resulting course of k2 is 

depicted in Fig. 11. 

 
Fig. 11. Relation between valve position and k2 

 

D.   Valve hysteresis 

The experiments presented in previous subsections were 

preformed for opening of a valve only. At the beginning, the 

valve was fully closed and subsequently was partially opened 

to a given position. In this section a problem of closing of a 

valve is studied. Performed experiments are similar except 

initial part. The experiment starts with full tank and closed 

valve too, but then the valve was fully opened and then 

partially closed to the desired position. Therefore the same 

valve position (value of analogue signal from a valve) was 

reached but from opposite direction. 

 

 
Fig. 12. Hysteresis of valve V2 
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presented in Fig. 12. The figure shows that hysteresis plays a 

big role in the experiments. The value of position itself does 

not give sufficient information about current value of 

parameter k2. For example, if the position is 0 MU the value of 

k2 can be anywhere in range 0.03 to 0.13. Especially in case of 

using the valve as an actuator the hysteresis should be taken 

into account. Otherwise control process can easily become 

unstable.  

Consequently, extensive set of experiments was performed 

to measure hysteresis characteristics. The resulting courses of 

valve parameters are shown of following figures. 

Three sets of experiments for opening and another three sets 

for closing of valve V1 were performed. Results shown in Fig. 

13 provided consistent data and the hysteresis was lower 

comparing to Fig. 12.  

 
Fig. 13. Characteristics of valve V1 

 

 Four sets of experiments for closing of the valve performed 

in various time concerning valve V2 are depicted in Fig. 14. 

Individual experiments correspond to stars in the figure. Three 

set of experiment are presented for closing of the valve where 

individual experiments are represented by circles. 

 
Fig. 14. Characteristics of valve V2 

Similar experiments were performed also for outflow valves 

V3, V4 V5, and V6. Corresponding figures contain courses of 

parameter k as well as values of h0 obtained from individual 

experiments. 

Four sets of experiments and corresponding characteristics 

of valve V3 is shown in Fig. 15. 

 
Fig. 15. Characteristics of valve V3 

 

Twelve sets of experiments and corresponding 

characteristics of valve V4 is shown in Fig. 16. 

 
Fig. 16. Characteristics of valve V4 
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Five sets of experiments and corresponding characteristics 

of valve V5 is shown in Fig. 17. 

 
Fig. 17. Characteristics of valve V5 

 

Five sets of experiments and corresponding characteristics 

of valve V6 is shown in Fig. 18. 

 
Fig. 18. Characteristics of valve V6 

 

The hysteresis of valves V1, V3 and V4 is significantly 

smaller than the hysteresis of valves V5, V6 and especially 

valve V2. Experiments performed on valves V3 and V6 resulted 

in more consistent values of h0 when comparing with 

experiments performed on V4 and V5. 

Since the shape of curves corresponding to opening and 

closing of the valve is similar, an average difference between 

them in direction of position axis can be computed. This value 

can be used as measure of hysteresis. Values of hysteresis, h0 

as well as maximal value of k for each valve is presented in 

Table II. 

 

Table II 

Valve characteristics 

Valve 

no. 

hysteresis 

[MU] 
maximal k h0 [mm] 

1 0.0219 0.2180 - 

2 0.1783 0.2237 - 

3 0.0310 0.2601 126.6 

4 0.0426 0.2976 127.9 

5 0.1307 0.2735 121.2 

6 0.0800 0.2688 97.1 

 

E. Modeling of valve characteristics 

The course of relation between valve position in MU and k 

is similar to step responses of dynamical system and therefore 

it was modeled in similar way. Other types of approximation 

functions, like sigmoids, were also tested, but did not achieve 

better results. A model based on transfer of 4
th

 order aperiodic 

system produced satisfactory results. Thus relation between 

position and k was as follows: 

3 2 2 3

0 max 3

0

0

1 3 6 6
: 1

6

: 0

b

a
b b a ba a

pos pos k k e
a

b pos pos

pos pos k

   
   

 

 

 

 (13) 

where pos is valve position in MU and parameters a and pos0 

were obtained by nonlinear regression.  

Values of parameters kmax for each valve as well as pos0 and 

a both for opening and closing are summed in Table III. 

 

Table III 

Valve characteristics 

Valve 

no. 
kmax 

opening closing 

pos0 a pos0 a 

1 0.2180 0.2673 0.0818 0.2892 0.0825 

2 0.2237 0.1522 0.0802 0.3305 0.0807 

3 0.2601 0.2689 0.0813 0.2999 0.0841 

4 0.2976 0.2317 0.0880 0.2743 0.0930 

5 0.2735 0.1716 0.0705 0.3024 0.0764 

6 0.2688 0.2397 0.0811 0.3197 0.0856 

 

 The value of kmax is affected not only by valve itself but also 

by connection pipes. Therefore values of kmax are lower for 

interconnection valves V1 and V2 comparing to outflow valves 

V3, V4, V5, and V6. 
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 Values of pos0 correspond to position of the curve in the 

valve position axis (x-axis). Therefore greater difference 

between pos0 for opening and for closing was achieved for 

valves with greater hysteresis. 

 Values of parameter a correspond to the slope of the curves. 

Higher values represent steeper slope while lower values 

represent softer slope. 

The regression for valve V2 is presented in Fig. 19.  

 
Fig. 19. Model of parameter k for valve V2  

 

Behavior of system inside hysteresis area was studied as 

well. This task was time consuming because a performed set 

of experiments took more than 45 hours. Experiments were 

performed on valve V2 to study behavior inside hysteresis area. 

This valve was selected because its hysteresis is the greatest. 

Experiment results are depicted in Fig. 20. The valve was 

partially opened to a given position and then slightly moved 

towards closed position. This resulted in 7 parts, each 

corresponding to an initial opened position. Each of these 

parts contains 18 measurements for different closing.  

 
Fig. 20. Behavior inside hysteresis area (towards closed position) 

 

It can be stated that the parameter k does not change its 

value till it reaches a border of hysteresis area, i.e. the curve of 

either opening or closing of the valve. 

V. CONCLUSION 

The paper presented a development of the model of valves 

of a hydraulic system. The Amira DTS200 three tank system 

was considered but used techniques can be easily generalized 

to wide set of hydraulic systems. The real system contains 

several nonlinearities which incorporate complexity to the 

system. Total number of experiments concerning valves 

reached 433 taking altogether more than 113 hours. 

 Resulting model includes all major nonlinearities and can 

be integrated into a Simulink model of whole three tank 

system.  
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