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Instability Induced by Dry Friction
Domenico Guida, Fabio Nilvetti, and Carmine Maria Pappalardo

Abstract—A theoretical analysis of the dynamic behavior of
mechanical systems characterized by coupled e-lements subjected
to friction force from the sliding surface is proposed. With refer-
ence to systems with one degree of freedom, and approximating
the friction force as a piecewise linear function, i.e. straight line
segments with a suitable slope, the positioning errors in the
stop phase are studied. Dimensionless analytical relations used to
predict the size of positioning errors and dimensionless diagrams
are provided. Furthermore the influence of the dry friction on the
dynamics of a system with two degrees of freedom is proposed.
The model system consists of a body of mass m1, constrained by
means of a spring and a damper to a driving support, moving
relatively to its counterpart of mass m2. In the conditions stability
of the position of equilibrium vibrations due the static friction
and the support’s velocity have been pointed out.

Index Terms—Self Excited Vibrations, Dry Friction, Friction
Instability, Limit Cycle, Stick-Slip.

I. INTRODUCTION

THE dynamic behavior of many tribomechanical systems
is influenced by the interfacial friction processes between

the moving components: in particular, self-excited vibrations
or positioning errors in the stop phase of the controlled body
can arise in certain operating conditions.

In this connection it is well known that stick-slip phenomena
can arise in the moving parts of relative motion machines,
particularly in dry or limit friction conditions.

This phenomenon consists of typical vibrations, character-
ized by a phase of uniform motion (stick) followed by a phase
of non-uniform motion (slip), which can be caused when there
is a considerable difference between the static and the kinetic
friction coefficients and, more generally, when a non-linear
friction-velocity characteristic occurs [16] and [17].

The negative effects deriving from this are principally severe
wear of the mechanical components and undesirable fatigue
and noise which can thus compromise system operation.

In previous papers [18], [19], [20] tribomechanical systems
with one degree of freedom were modeled in a simplified
manner with reference to a slide-spring-damper system.

The friction-speed force characteristic was approximated
using appropriate piecewise linear functions, i.e. straight line
segments with a suitable slope, and a discontinuity at a null
value of the relative speed. The use of analytical methods in
analyzing stick-slip instability conditions made it possible to
build straightforward stability maps that allow predictions to
be made on the occurrence of self-excited vibrations, once the

D. Guida is with the Department of mechanical Engineering, University of
Salerno, Fisciano, SA, 84084 ITALY (e-mail: guida@unisa.it).

F. Nilvetti is with the Department of mechanical Engineering, University
of Salerno, Fisciano, SA, 84084 ITALY (e-mail: fnilvetti@unisa.it).

C. M. Pappalardo is with the Department of mechanical Engineer-
ing, University of Salerno, Fisciano, SA, 84084 ITALY (e-mail: cpap-
palardo@unisa.it).

system parameters have been assigned, and to optimize the
choice of parameters in the design phase.

One way of preventing the occurrence of stick-slip self-
excited vibrations is to introduce viscous dampers so as to
vary the slopes of the sections approximating the friction-
speed characteristic. However, this solution can give rise to
an equally undesirable effect as it may entail slide positioning
errors in the stop phase.

This problem is of particular importance in robot members,
in automatic regulation systems, in hydraulic systems and
in the slides of machine tools where ”jumps” may occur,
sometimes measuring a few millimeters. Such jumps may
cause the piece being machined to take up a position different
from the programmed one, thus compromising the accuracy
and precision of the machine process. This situation assumes
even more serious proportions in numeric control machine
tools. Hence we can see that a correct analysis of the dynamic
behavior of a tribomechanical system cannot be limited to
studying slide stability in relative motion conditions, but must
necessarily be extended to include the system stop phase.

The present paper build on a previous study [21] and
summarizes the main results obtained [20], which allow the
occurrence of stick-slip vibrations to be prevented.

The paper then goes on to determine the slide positioning
error in the drive mechanism stop phase, approximating the
friction characteristic with a piecewise linear function with a
discontinuity at the relative speed null value, and assuming
that the static friction is greater than the kinetic friction when
assessed in incipient motion conditions.

Substitution of the variable in the motion equation then
gives a first order differential equation governing system
evolution in the phase plane. Once the system’s characteristic
parameters are known, the proposed analysis makes it possible
to obtain results of immediate utility through dimensionless
analytical relations and in the form of operative diagrams.
Finally, in the paper is described dry friction influence upon
the dynamic behavior of a two degrees of freedom composed
of a body of mass m1, constrained by means of a spring
and a damper to a driving support, moving relatively to its
counterpart of mass m2.

II. SYSTEM DYNAMIC BEHAVIOR

The determination of the positioning error that the slide
in Figure 1 may present in the drive mechanism stop phase
assumes meaning, as will be shown in the following sections,
only when the system is stable in terms of stick-slip vibrations.

Analysis of stick-slip instability is thus a preliminary step
and has been tackled in previous papers [18], [19] and [20].
It is nevertheless here considered necessary to take up the
same basic approach and provide application results that
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make it possible to exclude self-excited vibrations, once the
characteristic parameters of the system in question are known.

A. Stick-Slip Instability

Analysis of the dynamic behavior of the system in Figure 1
was performed assuming that the force F contain the viscous
damping force Fσ as well as the friction force Fa between
the slide and the sliding surface, considering that the drive
mechanism speed is constant. Assuming that the friction force
can be approximated with a piecewise linear function (Fig. 2)
and putting:

 Driving support 

m 

v 

F

Slide 

Way X

k 

Fig. 1. The physical system

x̄ = X (t)− vt; ω2
n = k

m ; x = x̄
vωn;

σ = σ̄σc; σc = 2
√
km; τ = ωnt;

f1 (ẋ+ 1) = 1
mωnv

F ; p1 = −v
∗

v ; p2 = v∗−v
v∗

p∗ = p1
p2

; (·) = d
dτ ;

(1)

the force F can be represented in the dimensionless form
shown in Figure 3 , and assumes the form:

f1 (ẋ+ 1) =

=



f1c + 2µ1(1 + ẋ), −1 < ẋ ≤ p∗

f1c + 2µ2(1 + ẋ)+
+2(µ1 − µ2)(1 + p∗), ẋ ≥ p∗

f1s, ẋ = −1+

f ′1s, ẋ = −1−

f ′1c + 2µ1 (1 + ẋ) , −(2 + p∗) ≤ ẋ < −1

f ′1c + 2µ2(1 + ẋ)+
+2(µ1 − µ2)(1 + p∗), ẋ ≤ −(2 + p∗)

(2)

where, with the relations in figures 2 and 3 :

f1s = fas − 2σ ε = fs − fc = Fas−Fac
mωnv∗

f ′1s = −fas − 2σ 2µ1 = tanα1 + 2σ
f1c = fac − 2σ 2µ2 = tanα2 + 2σ
f ′1c = −fac − 2σ µ3 = µ1

Fas = (mωnv) fas µ4 = µ2

Fac = (mωnv) fac

(3)

Assuming a system of coordinates fixed O-X in the slide plane

 
 

-v*
α2α1 

Fas

Fac

X

Fσ

Fa  

v*

Fig. 2. Friction characteristic and viscous damping force vs. relative sliding
velocity

and taking into account positions (1) and (2), the following
dimensionless motion equation can be obtained:

ẍ + f1 (ẋ + 1) + x = 0 (4)

Substituting the variable x = p(ẋ) in (3) gives a first order
differential equation that must satisfy the evolution of the
system in the phase plane. Analytical integration of the above
differential equation can now take place, imposing conditions
of phase trajectory continuity at the angular points of the
friction characteristic and considering that the relative speed
of the slide compared to the plane is null in the stick phase. It
is thus possible to identify the set of parameters that determine
the system’s critical stability conditions [19] and [20].

This analysis made it possible to identify the parametric
space regions corresponding to self-excited, friction-caused
vibrations (Fig. 4), i.e. to build stability maps (Figs. 5) that
enable predictions to be made on the occurrence of stick-slip
vibrations once system parameters have been as-signed. The
domain below every surface (curves of Figure 4) identifies
the values of ε , µ1 and µ2 (ε , µ2; p∗ = cost) that cause
undesirable self-excited stick-slip oscillations.

 

β1 β2

f1s

f1c

p*

f ′1c

f 
′

-(2+p*) 

x

2μ1 = Tan β1 

2μ2 = Tan β2 

-1

Fig. 3. Dimensionless friction-velocity characteristic

B. Analysis of positioning errors in the stop phase

In the drive mechanism stop phase, the dynamic behavior
of the system is analyzed under the assumption of a system
of coordinates O-X fixed in the guide plane and assuming a
friction characteristic of the type shown in Figures 2 and 3.
The slide motion equation is:
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Fig. 4. Stability map for p* = -0.1 and p* = -0.9

mẍ+ F (ẋ) + k (x− vt) = 0 (5)

which with the positions:

x =
x̄

v∗
ωn; f =

1

mωnv∗
F (6)

can be rewritten in the following dimensionless form:

ẍ+ f (ẋ− p1) + x = 0 (7)

The meaning of parameters p1 and p2 can be deduced
by analyzing the dimensionless friction-velocity characteristic
illustrated in Figure 4 and is defined by the following relation
(8):

f(ẋ− p1) =

=



fc + 2µ1(ẋ− p1), p1 < ẋ ≤ p2

fc + 2(µ1 − µ2)+
+2µ2(ẋ− p1), ẋ ≥ p2

fs, ẋ = p+
1

f ′s, ẋ = p−1

f ′c + 2µ1(ẋ− p1), −(2− p2) ≤ ẋ < −p1

f ′c + 2(µ1 − µ2)+
+2µ2(ẋ− p1), ẋ ≤ −(2− p2)

(8)

where:

fc = fac + 2p1σ
fs = fas + 2p1σ
f ′c = −fac + 2p1σ
f ′s = −fas + 2p1σ

(9)

With reference to two friction forces characterized by differ-
ent slopes µ2 (Fig. 7) the point E defined by the intersection of
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Fig. 5. Limit stability curves for: p*= -0.1 (a), p*= -0.2 (b), p* = -0.3 (c),
p* = -0.4 (d), p* = -0.5 (e), p* = -0.6 (f), p* = -0.7 (g), p* = -0.8 (h)
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fs 

fc 

p2
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f ′s

-(2-p2) 

x
p1

Fig. 6. Dimensionless friction-velocity characteristic

the curve x = −f(ẋ− p1) where the abscissa axis represents
the slide’s stationary equilibrium position when the system
mechanism is moved at a constant speed. Because of the
assumptions made, this equilibrium position is asymptotically
stable.

In the stop phase the system can display two different dy-
namic behaviors which are qualitatively illustrated in Figures
7 and 8. A friction characteristic such as the one in Figure 7
does not entail position errors in the stop phase. For null drive
mechanism speeds, point E is always an equilibrium.

Whereas positioning errors in the drive mechanism stop
phase occur when the friction characteristic is of the type
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shown in Figure 8. In this case, point E no longer represents
the slide’s equilibrium position and so the system evolves in
accordance with a phase trajectory of the type shown in Figure
8 where the resulting positioning error is also indicated.

In general terms, the system can evolve according to three
different trajectories, which are illustrated in Figure 9: a curve
of type ”a” is found when the point of equilibrium is such that
the phase trajectory does not intersect the straight line x = 1.
More specifically, this situation arises when, for a given slope
µ1, point E is located to the right of point E∗, which is the
intersection with the x axis of the particular phase trajectory
that is tangential to the straight line x = 1.

Trajectories of types ”b” and ”c” are en countered when,
for the same µ1 slope value, point E lies to the left of point
E∗, and the slope µ2 is greater than 1 or between 0 and 1
respectively. Indicating with x(t∗) the position of the slide at
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E
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Fig. 7. Equilibrium point in the phase plain
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Fig. 8. Positioning error in the drive mechanism stop phase

the moment the drive mechanism stops, we may find that:

x (t∗ + ∆t)− x (t∗) = 0
or
x (t∗ + ∆t)− x (t∗) ≥ 0

(10)

Defining the slide positioning error in the dimensional and
dimensionless form respectively with:

∆S̄ = x (t∗ + ∆t)− x (t∗) (11)

and

∆S = ∆S̄ωn/v
∗ (12)

for ∆S = 0 to be true it is sufficient that the following
relation holds:

F (ẋ)ẋ=v < Fs (13)

which in dimensionless term is:

f (ẋ)ẋ=0 < fs for x = 0 (14)

In fact (Fig. 7) in system stop conditions, the discontinuity
of the curve x = −f(ẋ) overlaps the abscissa axis of the
phases plane. In this case all the points corresponding to
the discontinuity are system equilibrium positions. In drive
mechanism stop conditions, if Equation (14) is not true, the
representation of the possible system dynamic evolutions in
the phases plane is of the type shown in Figure 9. The error
∆S is determined by solving the following motion equation.

ẍ+ f(ẋ) + x = 0 (15)

 

-4 -2 0 2 4 

-4 
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4 

( )x = -f x

E* 
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c 

O1 O2

O4 O3

x

x

Fig. 9. Trend of trajectory in the drive mechanism stop phase

As the friction characteristic is a piecewise linear function of
the speed, Equation (15) can be separated into four equations:

ẍ1 + f1 (ẋ1) + x1 = 0 ẋ ≥ 1
ẍ2 + f2 (ẋ2) + x2 = 0 0 < ẋ < 1
ẍ3 + f3 (ẋ3) + x3 = 0 −1 < ẋ < 0
ẍ4 + f4 (ẋ4) + x4 = 0 ẋ ≤ −1

(16)

where xi indicates the relative shifts compared to the
references originating in O1, O2, O3 and O4. The solutions
of Equation (16) are of the type:

xi = Cψ(ui, µi) (17)

where u = ẋi/xi and C are used to indicate constant
integration. The function ψ (ui, µi) is

ψ (ui, µi) = 1√
u2
i
+2µiui+1

·

· exp

[
µi√
1−µ2

i

tan−1 ui+µi√
1−µ2

i

]
|µ1| < 1

(18)

If the phase trajectory is of type (a) or (b) in Figure 9, the
error ∆S is determined by integrating the second of Equation
(16) to obtain respectively:
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∆S = (f(0)− fc) e
−µ1π√
1−µ2

1

∆S ∼= (f(0)− fc) +
−2µ1

ψ
(
− 1

2µ1
, µ1

) (19)

Whereas, if the phase trajectory is of type (c) in Figure 9, in
analogy with the method proposed by the authors in a previous
paper [23], the error ∆S can be determined by imposing the
continuity of the trajectory in points P1, P2 and P3. In this
way, the operative diagrams in Figures 10 and 11 can be built.
The parameter λ = f(0)−fc+2µ2 is given on the abscissa axis
and the quantity ∆Sλ on the ordinates axis. The positioning
error in the drive mechanism stop phase is thus given by the
relation:

∆S = ∆Sλ + λ (20)

Each diagram has been built by fixing the µ1 slope value
of the first section of the friction characteristic and assuming
the slope µ2 as the curve parameter. The diagrams in Figures
10 refer to values of the µ1 parameter in the range [0,−1].
Whereas the diagrams in Figures 11 refer to values of µ1 that
are less than −1.

An analysis of Figures 10 makes it possible to point out
that for µ1 parameter values in the range [0,−1] and values
of the λ parameter less than the corresponding value E1, the
slope of the second section of the friction characteristic does
not affect the positioning error in the stop phase. In general,
as can be seen from Figures 10 and 11, the positioning error
increases as the µ1 parameter diminishes and increases as the
µ2 parameter increases.

III. MATHEMATICAL MODEL

Let X1 and X2, respectively, the displacement of the slides
of mass m1 and m2 in the reference frame system indicated in
Figure 12. The motion equations can be written so as indicated
in the following relations:

m1Ẍ1 + σ1

(
Ẋ1 − v

)
+k1 (X1 − vt) +

+F
(
Ẋ1 − Ẋ2

)
= 0

m2Ẍ2 + σ2Ẋ2 + k2X2−F
(
Ẋ1 − Ẋ2

)
= 0

(21)

The friction characteristic is assumed to be piecewise linear
function as shown in Figure 13. This function is analytically
expressed by the followings relationships:

F
(
Ẋ1 − Ẋ2

)
=


Fc

Fs

F
−Fs

−Fc

|F | < Fs

Ẋ1 − Ẋ2 > 0

Ẋ1 − Ẋ2 = 0+

Ẋ1 − Ẋ2 ≡ 0

Ẋ1 − Ẋ2 = 0−

Ẋ1 − Ẋ2 < 0

(22)

Putting:

Fig. 10. Operative diagrams to predict the size of positioning errors for:
µ1 = −0.1, µ1 = −0.25, µ1 = −0.5, µ1 = −0.75

Fig. 11. Operative diagrams to predict the size of positioning errors for:
µ1 = −1.0, µ1 = −1.5, µ1 = −3.0, µ1 = −5.0
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Fig. 12. System Model
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Fig. 13. Friction Force Characteristic

x1 = X1 − vt τ = ω1t

x2= X2 (·) = d/dτ
σ1

m1ω1
= 2s1

σ2

m2ω2
= 2s2

Fc

m1ω1v
= fc1

Fs

m1ω1v
= fs1

ω2
1 =

k1

m1
ω2

2 =
k2

m2

m1

m2
= r

ω1

ω2
= ζ

β

m1ω1
= 2µ1(

x1
ω1

v

)
= η1 (τ)

(
x2
ω1

v

)
= η2 (τ)

(23)

the equations (23) can be rewritten as follows:

η̈1 + 2s1η̇1 + η1+

+
1

m1ω1v
F {v [(η̇1 − η̇2)] + 1} = 0

η̈2 + 2s2η̇2 +
1

ζ2
η2+

+
r

m1ω1v
F {−v [(η̇1 − η̇2)] + 1} = 0

(24)

By the integration of the (24) it is possible to determine the
dynamic behavior of the system for assigned initial conditions.
The system (24) is a dynamical system with piecewise linear
structure. Such systems, because of the friction force disconti-
nuity, are difficult to be analyzed analytically and numerically.

In this work we have debugged a numerical procedure that take
advantage of the uncoupling of the motion equations in all the
phases space points in which the following relationship isnt
verified:

η̇1−η̇2 = −1 (25)

The system (24) exhibits only one equilibrium position and
such solution results stable asymptotically. More exactly, the
(24) close to the equilibrium position can be written in the
following form:

η̈ +Bη̇ +Kη = 0 (26)

The system stability is verified if the symmetrical matrix K
and the symmetrical part of the matrix B are defined positive
[8]. Since the stability of the equilibrium position is verified
for: (

s1
s2

rζ

)(
s1 +

s2

rζ

)−1

> −µ (27)

where is the gradient of the friction characteristic in the
equilibrium position [7] and the other parameters are indicated
in the relations (23). In the case in matter the (27) is always
verified since there is no gradient of the friction characteristic.
It comes out obvious that for zero support speed, the system
will exhibit infinity of equilibrium position to which will tend,
in an finite time.
In Figure 14 the dynamic behavior of the system is shown.
Such system does not exhibit limit cycles, or rather it does
not show vibrations for any initial conditions set.
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Fig. 14. r = 0.5; ζ = 2; s1 = 0.2; s2 = 0.3; fc1 = 1; fs1 = 7.4
Fig.14[1,1]=Phase trajectories on the plane {η1, η̇1} and {η2, η̇2}
Fig.14[1,2]=Phase trajectories on the plane {η2, (η̇1 − η̇2)}
Fig.14[2,1]=Solution {τ, η1}, {τ, η̇1}
Fig.14[2,2]=Solution {τ, η2}, {τ, η̇2}
Fig.14[3,1]=Solution {τ, η̇1 − η̇2}
Fig.14[3,2]=Solution {η1, η2, (η̇1 − η̇2)}

As it is deduced by the Figure 14, the fixed (for the integration)
initial conditions are such that the phase trajectory run through
the points of the space in which (25) is verified. In such way,
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the system dynamics will be influenced by the static friction
and any limit cycles will be evident. The critical parameters
sets, as it results from the Figure 14 [1,2], are those to which
a phase trajectory that is tangent to

η̇1 − η̇2 = −1.

In Figure 15 the dynamic state evolution is brought as we have
increased only the parameter fs1 value, point B of Figure 3b.
The system, in this case, exhibits a limit cycle which slides
vibrations correspond.
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Fig. 15. r = 0.5; ζ = 2; s1 = 0.2; s2 = 0.3; fc1 = 1; fs1 = 7.8
Fig.15[1,1]= Phase trajectories on the plane {η1, η̇1} and {η2, η̇2}
Fig.15[1,2]=Phase trajectories on the plane {η1, (η̇1 − η̇2)} and {η2, (η̇1 −
η̇2)}
Fig.15[2,1]=Solution {τ, η1}, {τ, η̇1}
Fig.15[2,2]=Solution {τ, η2}, {τ, η̇2}
Fig.15[3,1]=Solution {τ, η̇1 − η̇2}
Fig.15[3,2]=Solution {η1, η2, (η̇1 − η̇2)}

It could be shown that the stick phase, or the period interval
in which there is no relative motion among the slides, increase
when fs1 increase. In Figure 16 we have set s2 = 1.3 (damping
coefficient of the slide of mass m2 greater than that “critical”)
and also in this case the system exhibits vibrations as shown
in the same figure. Only when also the damping coefficient of
the slide of mass m1 is greater than that “critical”, then the
system results “strongly” steady (absence of limit cycles).
In such case the trajectories degenerate in the equilibrium
position without relative speed to be able in any case going to
zero itself. It is opportune we observe that, for fixed rigidity
and damping system values, the parameter fs1 grows when
static friction increase and decreases when support speed
increase.

IV. CONCLUSIONS

The proposed analysis makes it possible to assess the influ-
ence of the friction forces on the dynamic behavior of systems
belonging to the class in question in order to establish their
stability in the presence of self-excited (stick-slip) vibrations
and, therefore, determine any slide positioning errors that may
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Fig. 16. r = 0.5; ζ = 2; s1 = 1.3; s2 = 0.3; fc1 = 1; fs1 = 7.4
Fig. 16[1,1]= Phase trajectories on the plane {η1, η̇1} and {η2, η̇2}
Fig. 16[1,2]=Phase trajectories on the plane
{η1, (η̇1 − η̇2)}and {η2, (η̇1 − η̇2)}
Fig.16[2,1]=Solution {τ, η1}, {τ, η̇1}
Fig.16[2,2]=Solution {τ, η2}, {τ, η̇2}
Fig.16[3,1]=Solution {τ, η̇1 − η̇2}
Fig.16[3,2]=Solution {η1, η2, (η̇1 − η̇2)}

occur in the drive mechanism stop phase.
In some conditions, the viscous damping and the variability
of the friction force to the interface can affect normal system
operation. The slide may stop late with respect to the drive
mechanism and may thus cover more space and come to rest
in a position different from the required and programmed one.
The positioning error was determined by analyzing system
evolution in the phases plane. The results obtained make
it possible to predict slide positioning errors in the drive
mechanism stop phase. An analysis of the diagrams in Figure
5 shows that the system in question is stable in stick-slip
phenomena if the slope of the second section of the friction
characteristic is greater than 1. Whereas, for slopes between
0 and 1 the system may display self-excited vibrations.
Generally speaking, stick-slip instability arises with increases
in the value of the difference E between static and kinetic
friction in conditions of incipient motion and/or as the slope
of the friction characteristic diminishes. On the other hand,
positioning errors of the slide in Figure 1 can occur during the
drive mechanism stop phase for a steep slope of the friction
characteristic and/or low values of the E parameter. It is clear,
therefore, that during design activity it is possible to eliminate
positioning errors in the stop phase by making provision for
viscous dampers with a suitable damping factor value. The
en-suing slope variation of the friction characteristic must
however be such as to avoid stick-slip instability phenomena.
As it is always necessary to ensure a stable behavior in the
presence of stick-slip phenomena but it is not always possible
to avoid positioning errors, it is worthwhile here modifying
the system parameters so as to minimize the positioning error.
The present paper aims to give a conclusive synthesis of an
initial stage of a research programme on ”the dynamics of
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tribomechanical systems”. The subsequent phase will deal with
modeling systems with more than one degree of freedom.
The dry friction influence upon the dynamic behavior of a
two degrees of freedom mechanical system has been analyzed.
From the system proposed results that:

1) The system can exhibit limit cycles for rigidity and
damping values greater than critical one;

2) Vibrations occur if at least one of the parameters s1 or
s2 is lower than one. Such vibrations can extinguish for
finite perturbations of the dynamic state.

Being the parameter fs1 defined as the ratio between the
static friction and the support speed, we can come to the
conclusion that there are no vibrations when support speed
increase and static friction decrease, respectively. Using the
proposed method we will go on, in a next work, debugging
the whole stability map in order to be able to foresee the
vibrations onset, when the system parameters are known.
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