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Abstract – The problem on the normal impact of an
elastic rod with a rounded end upon an elastic Timoshenko
arbitrary cross section thin-walled beam of open section is
considered. The process of impact is accompanied by the
dynamic flexure and torsion of the beam, resulting in the
propagation of plane flexural-warping and torsional-shear
waves of strong discontinuity along the beam axis. Behind
the wave fronts upto the boundaries of the contact region,
the solution is constructed in terms of one-term ray expan-
sions. During the impact the rod moves under the action
of the contact force which is determined due to the Hertz’s
theory, while the contact region moves under the attraction
of the contact force, as well as the twisting and bending-
torsional moments and transverse forces, which are applied
to the lateral surfaces of the contact region. The procedure
proposed allows one to obtain rather simple relation-
ship for estimating the maximal magnitude of the contact
force, which can be very useful in engineering applications.

Keywords – Normal impact, ray method, thin-walled
beam of open section, transient waves.

1 Introduction
It seems likely that Crook [1] pioneered the application of
the wave approach in the theory of impact when consid-
ering the longitudinal impact of an elastic sphere against
the end of a thin elastic bar. As this takes place, the de-
formation of the bar’s material in the contact region was
considered through the use of the Hertz’s contact theory;
but in the vicinity of the contact region, it was taken into
account using one-term ray expansions constructed behind
the longitudinal wave front. The problem was reduced to
the solution of the nonlinear integro-differential equation
in the contact force, whose numerical integration allowed
the author to determine the time dependence of the contact
force and the dynamic stress in the bar.

The same approach was used by Rossikhin and Shi-
tikova [2,3] for investigating the transverse impact of an
elastic bar and sphere upon an Uflyand-Mindlin plate [4,5].
The material local bearing dependence of the force has
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been defined on a basis of quasi-static analysis; however,
in this problem, a major portion of energy transformed into
energy of the nonstationary transverse shear wave, behind
the front of which, upto the boundary of the contact region,
the values to be found were constructed in terms of one-
term or multiple-term ray expansions. The ray expansions
employed allowed to consider reflected waves as well, if
these latter had had time to return at the point of the impact
prior to the completion of the colliding process. The condi-
tions of matching of the desired values in the contact region
and its vicinity, which were to be fulfilled on the boundary
of the contact region, permitted to obtain the closed system
of equations for determining all characteristics of the shock
interaction.

The problem of the response of rods, beams, plates
and shells to low velocity impact with the emphasis on the
wave theories of shock interaction has been reviewed by
Rossikhin and Shitikova in [6]. These theories are based on
the fact that at the moment of impact transient waves (sur-
faces of strong discontinuity) are generated within the con-
tact domain, which further propagate along the thin bodies
and thereby influence the process of the shock interaction.
The desired functions behind the strong discontinuity sur-
faces are found in terms of one-term, two-term or multiple-
term ray expansions, the coefficients of which are deter-
mined with an accuracy of arbitrary functions from a set
of equations describing the dynamic behavior of the thin
body. On the contact domain boundary, the ray expansions
for the desired functions go over into the truncated power
series with respect to time and are matched further with the
desired functions within the contact region that are repre-
sented by the truncated power series with respect to time
with uncertain coefficients. As a result of such a proce-
dure, it has been possible to determine all characteristics
of shock interaction and, among these, to find the time de-
pendence of the contact force and the displacements of the
contact region.

The procedure proposed in [3] for investigating the
transverse impact upon a plate has been generalized to the
case of the shock interaction of an elastic Timoshenko thin-
walled beam of open section with an elastic sphere [7]. It
has been revealed that the impact upon a thin-walled beam
has its own special features. First, the transverse deforma-
tion in the contact region of colliding bodies may be so
large that can result in the origination of longitudinal shock
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waves. Second, the deflection of the beam in the place of
contact may be so large that one is led to consider the pro-
jection of the membrane contractive (tensile) forces onto
the normal to the beam’s median surface in the place of
contact.

In the present paper, this approach is generalized for
the analysis of the thin-walled open section beam response
to the impact by a thin long elastic rod with a rounded end.

2 The Engineering Theories of Thin-
Walled Rods of Open Section

Thin-walled beams of open section are extensively used as
structural components in different structures in civil, me-
chanical and aeronautical engineering fields. These struc-
tures have to resist dynamic loads such as wind, traffic and
earthquake loadings, so that the understanding of the dy-
namic behavior of the structures becomes increasingly im-
portant. Ship hulls are also can be modelled as thin-walled
girders during investigation of hydroelastic response of
large container ships in waves.

The classical engineering theory of thin-walled uni-
form open cross-section straight beams as well as horizon-
tally curved ones was developed by Vlasov [8] in the early
60-s without due account for rotational inertia and trans-
verse shear deformations [9]. The Vlasov theory is the gen-
eralization of the Bernoulli-Navier law to the thin-walled
open section beams by including the sectorial warping of
the section into account by the law of sectorial ares, pro-
viding that the first derivative of the torsion angle with re-
spect to the longitudinal axis serves as a measure of the
warping of the section. Thus, this theory results in the four
differential equations of free vibrations of a thin-walled
beam with an open inflexible section contour of arbitrary
shape. For the case of a straight beam, the first second-
order equation determines, independently of the other three
and together with the initial and boundary conditions, the
longitudinal vibrations of the beam. The remaining three
fourth-order differential equations form a symmetrical sys-
tem which, together with the initial and boundary condi-
tions determines the transverse flexural-torsional vibrations
of the beam (see page 388 in [8]). In the case of a curved
beam, all four equations are coupled. However, as it will
be shown later on, Vlasov’s equations are inappropriate for
use in the problems dealing with the transient wave propa-
gation.

Many researchers have tried to modify the Vlasov the-
ory for dynamic analysis of elastic isotropic thin-walled
beams with uniform cross-section by including into con-
sideration the rotary inertia and/or transverse shear defor-
mations [10]–[25].

It is well known that Timoshenko [26] in order to gen-
eralize the Bernoulli-Euler beam model has introduced two
distinct functions, namely: the deflection of the centroid

of the cross-section and the rotation of the normal to the
cross-section through the centroid, i.e., he considered the
transverse shear angle to be the independent variable. This
starting point was the basis for the derivation of a set of two
hyperbolic differential equations describing the dynamic
behavior of a beam, resulting in the fact that two transient
waves propagate in the Timoshenko beam with finite ve-
locities: the longitudinal wave with the velocity equal to
GL =

√
E/ρ, and the wave of transverse shear with the

velocity equal to GT =
√
Kµ/ρ, where E and µ are the

elastic moduli, ρ is the density, and K is the shear coef-
ficient which is weakly dependent on the geometry of the
beam [27].

Many of the up-to-date technical articles involve the
derivation of the equations which, from the authors view-
point, should describe the dynamic behavior of thin-walled
beams of the Timoshenko type [16]–[25]. Moreover, prac-
tically in each such paper it is written that such equations
are novel, and no analogs were available previously in sci-
entific literature [17], [20], [22]–[24].

All papers in the field can be divided into three groups.
The papers, wherein the governing set of equations is both
hyperbolic and correct from the viewpoint of the physi-
cally admissible magnitudes of the velocities of the tran-
sient waves resulting from these equations, fall into the
first category, i.e., the velocity of the longitudinal wave is
GL =

√
E/ρ, while the velocities of the three transverse

shear waves, in the general case of arbitrary cross sections
of thin-walled beams with open profile, depend essentially
of the geometry of the open section beam [13], [15], [17].
There are seven independent unknowns in the displacement
field in the general case if only primary warping is included
into consideration [13], or with additional three generalized
displacements describing the variation of the secondary
warping due to non-uniform bending and torsion [17], or
with additional three variables describing a “complete ho-
mogeneous deformation of the microstructure” [15]. As
this takes place, different authors obtain different magni-
tudes for the velocities of transverse shear waves.

The second category involves the articles presenting
hyperbolic but incorrect equations from the above men-
tioned viewpoint, i.e., resulting in incorrect magnitudes of
the transient waves. This concerns, first of all, the velocity
of the longitudinal waves which should not deviate from
GL =

√
E/ρ, nevertheless, there are some examples [11]

where such a situation takes place. Secondly, in some pa-
pers one can find equations looking like hyperbolic ones
[14], [18], [24], [25] but from which it is impossible to
obtain the velocity, at least, of one transient wave at all.
In such papers, usually six generalized displacements are
independent (for monosymmetric cross sections they are
four, and two in the case of bisymmetric profiles) while
warping is assumed to be dependent on the derivative of the
torsional rotation with respect to the beam axial coordinate
[24], [25] or is neglected in the analysis [14], [18]. In other

2

INTERNATIONAL JOURNAL OF MECHANICS

Issue 1, Volume 4, 2010 10



words, there is a hybrid of two approaches: Timoshenko’s
beam theory [26] and Vlasov’s thin-walled beam theory
[8], some times resulting to a set of equations wherein some
of them are hyperbolic, while others are not. Thirdly, not
all inertia terms are included into consideration.

The papers providing the governing system of equa-
tions which are not hyperbolic belong to the third group
[20], [21], [22]. In such papers, the waves of transverse
shear belong to the diffusion waves possessing infinitely
large velocities, and therefore, from our point of view, the
dynamic equations presented in [20], [21], and [22] cannot
be named as the Timoshenko type equations.

Checking for the category, within which this or that
paper falls in, is carried out rather easily if one uses the
following reasoning.

Suppose that the given governing set of equations is
the hyperbolic one. Then as a result of non-stationary exci-
tations on a beam, transient waves in the form of surfaces
of strong or weak discontinuity are generated in this beam.
We shall interpret the wave surface as a limiting layer with
the thickness h, inside of which the desired field Z changes
monotonically and continuously from the magnitude Z+

to the magnitude Z−. Now we can differentiate the set
of equations n times with respect to time t, then rewrite
it inside the layer, and change all time-derivatives by the
derivatives with respect to the axial coordinate z using the
one-dimensional condition of compatibility (see Appendix
A)

(−1)nZ,(n) = Gn
∂nZ

∂zn
(1)

+
n−1∑
m=0

(−1)m+1 n!
m!(n−m)!

δn−mZ,(m)

δtn−m
,

where G is the normal velocity of the limiting layer, δ/δt
is the Thomas δ -derivative [28], and Z,(k) = ∂kZ/∂tk.

Integrating the resulting equations n times with respect
to z, where n is the order of the highest z-derivative, writ-
ing the net equations at z = −h/2 and z = h/2, and tak-
ing their difference, we are led at h → 0 to the relation-
ships which involve the discontinuities in the desired field
[Z] = Z+ − Z− and which are used for determining the
velocities of the transient waves, i.e., the magnitude of G,
what allows one to clarify the type of the given equations.

If the values entering in the governing equations could
not experience the discontinuity during transition through
the wave surface, generalized displacements as an exam-
ple, then in this case the governing set of equations should
be differentiated one time with respect to time in order to
substitute the generalized displacements by their velocities.
Thus, after the procedure described above, the governing
equations will involve not the discontinuities in the desired
values Z but the discontinuities in their time-derivatives,
i.e., [Ż] = (∂Z/∂t)+ − (∂Z/∂t)−.

Using the procedure described above, it can be shown

that the correct hyperbolic set of equations taking shear de-
formation due to bending and coupled bending torsion was
suggested by Aggarwal and Cranch [12], but their theory is
strictly applied only to a channel-section beam.

It seems likely that for a straight elastic thin-walled
beam with a generic open section this problem was pio-
neered in 1974 by Korbut and Lazarev [13], who general-
ized the Vlasov theory by adopting the assumptions pro-
posed in 1949 by Gol’denveizer [29] that the angles of
in-plane rotation do not coincide with the first derivatives
of the lateral displacement components and, analogously,
warping does not coincide with the first derivative of the
torsional rotation. It should be emphasized that it was
precisely Gol’denveizer [29] who pioneered in combining
Timoshenko’s beam theory [26] and Vlasov thin-walled
beam theory [8] (note that the first edition of Vlasov’s
book was published in Moscow in 1940) and who sug-
gested to characterize the displacements of the thin-walled
beam’s cross-section by seven generalized displacements.
It is interesting to note that the approach proposed by
Gol’denveizer [29] for solving static problems (which has
being widely used by Russian researchers and engineers
since 1949) was re-discovered approximately 50 years later
by Back and Will [30], who have inserted it in finite ele-
ment codes.

The set of seven second-order differential equations
with due account for rotational inertia and transverse shear
deformations derived in [13] using the Reissner’s varia-
tional principle really describes the dynamic behavior of
a straight beam of the Timoshenko type and has the follow-
ing form:
the equations of motion

ρIxḂx −Mx,z +Qyω = 0,

ρIyḂy −My,z −Qxω = 0, (2)

ρIωΨ̇− B,z −Qxy = 0,

ρF v̇z −N,z = 0,

ρF v̇x + ρayF Φ̇−Qxω,z = 0,

ρF v̇y − ρaxF Φ̇−Qyω,z = 0, (3)

ρIpΦ̇ + ρayF v̇x − ρaxF v̇y − (Qxy +H),z = 0;

the generalized Hook’s law

Ṁx = EIxBx,z , Ṁy = EIyBy,z, (4)

Ḃ = EIωΨ,z , Ṅ = EFvz,z,

µ(vx,z − By) = kyQ̇xω + kxyQ̇yω + kyωQ̇xy,

µ(vy,z + Bx) = kxyQ̇xω + kxQ̇yω + kxωQ̇xy,

µ(Φ,z −Ψ) = kyωQ̇xω + kxωQ̇yω + kωQ̇xy,

Ḣ = µIkΦ,z , (5)

where ρ is the beam’s material density, F is the cross-
section area, ω is the sectorial coordinate, Ix and Iy are
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centroidal moments of inertia, Iω is the sectorial moment
of inertia, Ip is the polar moment of inertia about the flexure
center A, Ik is the moment of inertia due to pure torsion,
ax and ay are the coordinates of the flexural center, E and
µ are the Young’s and shear moduli, respectively, Bx = β̇x,
By = β̇y , Φ = ϕ̇, βx, βy and ϕ are the angles of rotation
of the cross section about x-, y- and z-axes, respectively,
Ψ = ψ̇, ψ is the warping function, vx, vy , vz are the ve-
locities of displacements of the flexural center, u, v, and w,
along the central principal axes x and y and the longitudinal
z-axis, respectively, Mx and My are the bending moments,
B is the bimoment,N is the longitudinal (membrane) force,
Qxω and Qyω are the transverse forces, H is the moment
of pure torsion, Qxy is the bending-torsional moment from
the axial shear forces acting at a tangent to the contour of
the cross section about the flexural center, overdots denote
the time derivatives, and the index z after a point defines
the derivative with respect to the z-coordinate.

In (2)-(5), kx, ky , kω , kxω , kyω, and kxy are the cross-
sectional geometrical characteristics which take shears into
consideration:

kx =
1
I2
x

∫
F

S2
x

δ2s
dF,

ky =
1
I2
y

∫
F

S2
y

δ2s
dF,

kω =
1
I2
ω

∫
F

S2
ω

δ2s
dF,

kxω =
1

IxIω

∫
F

SxSω
δ2s

dF, (6)

kyω =
1

IyIω

∫
F

SySω
δ2s

dF,

kxy =
1

IxIy

∫
F

SxSy
δ2s

dF,

where Sx, Sy , and Sω are the axial and sectorial static mo-
ments of the intercepted part of the cross section, and δs is
the width of the web of the beam.

Note that 25 years later the shear coefficients (6) were
re-derived by means of the Reissner principle in [21].

2.1 Velocities of the transient waves propa-
gating in the thin-walled beam of open
section due to the Korbut–Lazarev the-
ory and its generalizations

To show that the set of equations (2)-(5) governs three tran-
sient shear waves which propagate with the fnite velocities
depending on the geometrical characteristics of the thin-
walled beam (6), we can use the approach suggested above.
If we write (2)-(5) inside the layer and apply the condition
of compatibility (1) at n = 1, as a result, we find [7]

−ρIxG[Bx] − [Mx] = 0,

−ρIyG[By] − [My] = 0, (7)

−ρIωG[Ψ] − [B] = 0,

−ρFG[vz] − [N ] = 0,

−ρFG[vx] − ρFGay[Φ]− [Qxω] = 0,

−ρFG[vy] + ρFGax[Φ]− [Qyω] = 0, (8)

−ρIpG[Φ] − ρFGay[vx] + ρFGax[vy],

− [Qxy]− [H] = 0,

−G[Mx] = EIx[Bx],

−G[My] = EIy[By], (9)

−G[B] = EIω[Ψ],

−G[N ] = EF [vz],

µ[vx] = −Gky[Qxω]−Gkxy[Qyω]−Gkyω[Qxy],

µ[vy] = −Gkxy[Qxω]−Gkx[Qyω]−Gkxω[Qxy],

µ[Φ] = −Gkyω[Qxω]−Gkxω[Qyω]−Gkω[Qxy],

−G[H] = µIk[Φ]. (10)

Eliminating the values [Mx], [My], [B] and [N ] from
(7) and (9), we obtain the velocity of the longitudinal-
flexural-warping wave

G4 =
√
Eρ−1 , (11)

on which [Bx] 6= 0, [By] 6= 0, [Ψ] 6= 0, and [vz] 6= 0, while
[vx] = [vy] = [Φ] = 0.

Eliminating the values [Qxω], [Qyω], [Qxy], and [H]
from (8) and (10 ), we arrive at the system of three linear
homogeneous equations:

3∑
j=1

aij [vj ] = 0 (i, j = 1, 2, 3) , (12)

where [v1] = [vx], [v2] = [vy], [v3] = [Φ],

a11 = ρFG2(ky + aykyω)− µ,
a12 = ρFG2(kxy − axkyω),

a13 = ρFG2(ayky − axkxy) + kyω(ρIpG2 − µIk),

a21 = ρFG2(kxy + aykxω),

a22 = ρFG2(kx − axkxω)− µ,
a23 = ρFG2(aykxy − axkx) + kxω(ρIpG2 − µIk),

a31 = ρFG2(kyω + aykω),

a32 = ρFG2(kxω − axkω),

a33 = ρFG2(aykyω − axkxω)

+ kω(ρIpG2 − µIk)− µ.

Setting determinant of the set of equations (12) equal
to zero

|aij | = 0 , (13)
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we are led to the cubic equation governing the velocities
G1, G2, and G3 of three twisting-shear waves, on which
only the values [vx], [vy] and [Φ] are nonzero such that

[vx] = γ[Φ], [vy] = δ[Φ] , (14)

where

γ =
a23a12 − a13a22

a11a22 − a12a21
, δ =

a13a21 − a23a11

a11a22 − a12a21
.

For the bisymmetrical beam, the values ax, ay , kxy ,
kxω , and kyω vanish. In this case, the set of (13) becomes
the three independent equations defining the velocities of
two shear waves [7]

G1 =
√

µ

ρFky
, G2 =

√
µ

ρFkx
, (15)

and one twisting wave

G3 =

√
µ(1 + kωIk)

ρIpkω
, (16)

on which [vx], [vy], and [Φ] are nonzero, respectively.
It is strange to the authors of this paper that the Korbut

and Lazarev theory [13] appeared in 1974 is absolutely un-
aware to the international mechanics community, in spite of
the fact that it was published in the Soviet academic jour-
nal which is available in English due to translation made by
Springer.

The Korbut–Lazarev theory [13], which provides the
physically admissible velocities of propagation of transient
waves, was generalized in [7] taking the extension of the
thin-walled beam’s middle surface into account.

Nine years later after the appearance of [13], Muller
[15] suggested the theory (which generalized the Korbut–
Lazarev approach [13]), wherein the additional deforma-
tions of two lateral contractions and the so-called effect
of distortion shear were taken into consideration. This
allowed the author to receive correctly the velocity of
the longitudinal-flexural-warping wave (11), three veloci-
ties of the transverse shear waves due to coupled flexural
translational-torsional motions, which strongly depend of
the geometry of the beam’s cross section as in the case of
(13) defined by the Korbut-Lazarev theory [13], and the
wave of pure shear due to lateral distortion deformation,
which propagates with the velocity GT =

√
µ/ρ.

One more example of the correct generalization of the
Timoshenko beam model to an open section thin-walled
beam is the approach proposed in [16] and [17] in the
early 90-s. Once again it is the generalization of the
Korbut-Lazarev theory [13], since three additional defor-
mations describing the secondary warping due to non-
uniform bending and torsion are taken into account. The
hyperbolic set of ten equations presented in [16] allows
one to obtain the velocity of longitudinal-flexural-warping

wave (11), and three velocities of the transverse shear
waves due to coupled flexural translational-torsional mo-
tions similar to (13). As this takes place, the found shear
constants (see relationships (45) in [17]) coincide com-
pletely with those of (6).

The presence of three [7], [13], [17], or four [15] trans-
verse shear waves, which propagate with different veloci-
ties dependent strongly on geometric characteristics of the
thin-walled beam, severely limits the application of such
theories in solving engineering problems. As for the ex-
perimental verification of the existence of the three shear
waves in thin-walled beams of open section, then it appears
to be hampered by the fact that the velocities of these waves
depend on the choice of the beam’s cross section.

2.2 Velocities of the transient waves propa-
gating in the thin-walled beam of open
section due to the Vlasov theory and its
modifications

Note that only inclusion into consideration of three factors,
namely: shear deformations, rotary inertia, and warping
deformations as the independent field - could lead to the
correct system of hyperbolic equations of the Timoshenko
type for describing the dynamic behaviour of thin bodies.
Ignoring one of the factors or its incomplete account imme-
diately results in an incorrect set of governing equations.

Let us consider, as an example, the dynamic equations
suggested by Vlasov (see (1.8) in page 388 in [8]) to de-
scribe the behaviour of thin-walled straight beams of open
profile:

EF
∂2ζ

∂z2
− ρF ∂

2ζ

∂t2
= 0, (17)

EIy
∂4ξ

∂z4
− ρIy

∂4ξ

∂z2∂t2
+ ρF

∂2ξ

∂t2
+ ayρF

∂2θ

∂t2
= 0,

EIx
∂4η

∂z4
− ρIx

∂4η

∂z2∂t2
+ ρF

∂2η

∂t2
− axρF

∂2θ

∂t2
= 0,

EIω
∂4θ

∂z4
− µIk

∂2θ

∂z2
− ρIω

∂4θ

∂z2∂t2
+ ρIp

∂2θ

∂t2

+ayρF
∂2ξ

∂t2
− axρF

∂2η

∂t2
= 0,

which was obtained with due account for the rotary iner-
tia but neglecting the shear deformations, where z is the
beam’s longitudinal axis.

If we differentiate all equations in (17) one time with
respect to time, and then apply to them the suggested above
procedure, as a result we obtain

(ρG2 − E)[ζ̇] = 0,

(ρG2 − E)[ξ̇] = 0,

(ρG2 − E)[η̇] = 0, (18)

(ρG2 − E)[θ̇] = 0.
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Reference to (18) shows that on the transient longitu-
dinal wave of strong discontinuity propagating with the ve-
locity GL =

√
E/ρ, not only the velocity of longitudinal

displacement ζ experiences discontinuity but the velocities
of transverse displacements ξ and η as well, what is char-
acteristic for the transient transverse shear wave of strong
discontinuity. Therefore, the set of equations (17) could
not be considered as a correct hyperbolic set of equations.
In other words, the values connected with the phenomenon
of shear propagate with the velocity GL, what falls into
contradiction with the physical sense, and thus the Vlasov
theory is applicable only for the static problems.

Note that for a rod of a massive cross-section the ac-
count only for the rotary inertia was made for the first time
by Lord Rayleigh in his Theory of Sound in the form of a
mixed derivative of the displacement with respect to time
and coordinate.

If we exclude from (17) the terms responsible for the
rotary inertia, i.e., ρIy ∂4ξ

∂z2∂t2 , ρIx ∂4η
∂z2∂t2 , and ρIω ∂4θ

∂z2∂t2 ,
then we obtain the equations describing the dynamic be-
haviour of the Bernoulli-Euler beams. In such beams, the
velocity of the propagation of the transient transverse shear
wave of strong discontinuity is equal to infinity.

The second example is not mere expressive. Let us
consider the set of equations suggested by Meshcherjakov
[11] for describing the straight thin-walled beam of open
bisymmetric profile

EIy
∂4βy
∂z4

− ρIy
∂4βy
∂z2∂t2

+ ρF
∂2βy
∂t2

+ 2(1 + ν)
Sxx
Iy

ρF
∂4βy
∂z2∂t2

= 0,

EIx
∂4βx
∂z4

− ρIx
∂4βx
∂z2∂t2

+ ρF
∂2βx
∂t2

+ 2(1 + ν)
Syy
Ix

ρF
∂4βx
∂z2∂t2

= 0, (19)

EIω
∂4ψ

∂z4
− ρIω

∂4βx
∂z2∂t2

− ρIk
∂2ψ

∂z2

+ ρIp

[
∂2ψ

∂t2
+ 2(1 + ν)

Sωω
Iω

∂4ψ

∂z2∂t2

]
= 0,

where Sxx, Syy, and Sωω are shear coefficients [11], and ν
is the Poisson’s ratio.

If we differentiate all equations from (19) one time
with respect to time t and then apply to them the procedure
described above, as a result we obtain

Iy

{
E − ρG2

[
1− 2(1 + ν)

Sxx
I2
y

F

]}
[β̇y] = 0,

Ix

{
E − ρG2

[
1− 2(1 + ν)

Syy
I2
x

F

]}
[β̇x] = 0,(20)

Iω

{
E − ρG2

[
1− 2(1 + ν)

Sωω
I2
ω

Ip

]}
[ψ̇] = 0.

Reference to (20) shows that absolutely absurd veloci-
ties of three transient longitudinal waves of strong discon-

tinuity

G1 =

√
Eρ−1

[
1− 2(1 + ν)

Sxx
I2
y

F

]−1

,

G2 =

√
Eρ−1

[
1− 2(1 + ν)

Syy
I2
x

F

]−1

, (21)

G3 =

√
Eρ−1

[
1− 2(1 + ν)

Sωω
I2
ω

Ip

]−1

are obtained.
If the author of [11] considered sequentially the ro-

tary inertia, as it was done by S.P. Timoshenko in Vibration
Problems in Engineering [26], then the additional terms

−2(1 + ν)
Sxx
Iy

ρF ρE−1 ∂
4βy
∂t4

,

−2(1 + ν)
Syy
Ix

ρF ρE−1 ∂
4βx
∂t4

, (22)

−2(1 + ν)
Sωω
Iω

ρIp ρE
−1 ∂

4ψ

∂t4
,

will enter in (19), which could remedy all velocities of tran-
sient longitudinal waves, since the procedure suggested by
the authors of the given paper transforms the additional
terms (22) to the form

−2(1 + ν)
Sxx
Iy

ρF ρE−1 G4[β̇y],

−2(1 + ν)
Syy
Ix

ρF ρE−1 G4[β̇x], (23)

−2(1 + ν)
Sωω
Iω

ρIp ρE
−1 G4[ψ̇].

Relationships (23) will be added, respectively, in (20),
and will transform them, in their turn, to the form

(E − ρG2)
[
1 + 2(1 + ν)

Sxx
I2
y

EFρG2

]
[β̇y] = 0,

(E − ρG2)
[
1 + 2(1 + ν)

Syy
I2
x

EFρG2

]
[β̇x] = 0, (24)

(E − ρG2)
[
1 + 2(1 + ν)

Sωω
I2
ω

EIpρG
2

]
[ψ̇] = 0,

whence it follows that the velocity of the longitudinal wave
of strong discontinuity is equal to GL =

√
E/ρ, what

matches to the reality.
Moreover, a reader could find such papers in the field

which are apparently false. Thus, the following set of equa-
tions is presented in [24] (it is written below in the notation
adopted in this paper for convenience):

EFw′′ − ρFẅ = 0,

kxµF (u′′ − β′y)− ρF ü− ρayFϕ̈ = 0,

kyµF (v′′ + β′x)− ρF v̈ + ρaxFϕ̈ = 0,
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EIxβ
′′
x − kyµF (v′ + βx)− ρIxβ̈x = 0, (25)

EIyβ
′′
y + kxµF (u′ − βy)− ρIyβ̈y = 0,

EIωϕ
′′′′ − µIkϕ′′ − ρIωϕ̈′′ + ρayFü

−ρaxF v̈ + ρIpϕ̈ = 0,

where primes denote derivatives with respect to the coor-
dinate z, and kx and ky are the shear correction factors in
principal planes [24].

The author of [24] has declared that the system of
equations (25) is responsible for describing the transverse
shear deformations and rotary inertia in a thin-walled beam
of open profile, that is to describe the dynamic response of
a Timoshenko-like beam.

But this set of equations is not even correct one, and
thus it could not describe the dynamic behaviour of the
thin-walled Timoshenko-like beam. Really, applying the
procedure proposed above, we can rewrite (25) in terms of
discontinuities

EF [vz]− ρG2F [vz] = 0,

kxµF [vx]− ρG2F [vx]− ρG2ayF [Φ] = 0,

kyµF [vy]− ρG2F [vy] + ρG2axF [Φ] = 0,

EIx[Bx]− ρG2Ix[Bx] = 0, (26)

EIy[By]− ρG2Iy[By] = 0,

EIω[Φ]− ρG2Iω[Φ] = 0.

From (26) it follows that when [vz] 6= 0, [Bx] 6= 0,
and [By] 6= 0, i.e., on the longitudinal wave, the velocity
G is equal to the velocity of the longitudinal wave

√
E/ρ.

Furthermore, on the longitudinal wave, the discontinuity
[Φ] is also distinct from zero, while the value [Φ] should be
nonzero only on the transverse wave. Moreover, the veloc-
ity of the transverse shear wave could not be obtained from
the second and third equations of (26) at all.

The contradiction obtained points to the fact that (25)
is the incorrect system of equations, and nobody, including
the author of [24], knows what phenomenon is described
by these equations.

3 The Response of a Thin-Walled
Beam of Open Section to the Nor-
mal Impact of a Rod

Based on the aforesaid it can be deduced that the Korbut-
Lazarev theory [13] is the most acceptable for engineer-
ing applications from the physical viewpoint, since it gives
the physically admissible velocities of propagation of tran-
sient waves. Below we shall use this theory for analyzing
the impact response of a thin-walled straight beam of open
profile. This boundary-value problem has been chosen for
consideration in the given paper by no means accidentally.

The matter is fact that during the past two decades
foreign object impact damage to structures has received

a great deal of attention, since thin-walled structures are
known to be susceptible to damage resulting from acciden-
tal impact by foreign objects. Impact on aircraft structures
or civil engineering structures, for instance, from dropped
tools, hail, and debris thrown up from the runway, poses a
problem of great concern to designers. Since the impact re-
sponse is not purely a function of materials properties and
depends also on the dynamic structural behavior of a target,
it is important to have a basic understanding of the struc-
tural response and how it is affected by different parameters
[6]. From this point of view, analytical models are useful as
they allow systematic parametric investigation and provide
a foundation for prediction of impact damage.

It should be noted that except paper [7], these authors
have found in literature only one paper by Taiwanese re-
searchers Lin et al. [31] suggesting a numerical approach to
determining the transient response of nonrectangular bars
subjected to transverse elastic impact. To our great sur-
prise, this paper is free from any formulas, although it is
devoted to ‘transverse impact response’ of straight thin-
walled beams with channel and tee profiles. The results
obtained in [31] via finite element method (but it is im-
possible to understand what theory was adopted during so-
lution, as well as what numerical algorithms were imple-
mented) were compared graphically via numerous figures
with experimental data obtained by the same authors them-
selves. As this takes place, only longitudinal waves were
taken into account. But numerous data on impact analysis
of structures [6] shows that during transverse impact the
transverse forces and, thus, the shear waves predominate in
the wave phenomena. That is why, despite the fact that the
authors of the cited paper [31] declared the good agreement
between their numerical and experimental investigations, it
is hard to believe in such perfect matching.

Thus, let us consider the normal impact of an elastic
thin rod of circular cross section upon a lateral surface of a
thin-walled elastic beam of open section (Fig. 1), the dy-
namic behavior of which is described by system (2)–(5).
At the moment of impact, the velocity of the impacting rod
is equal to V0, and the longitudinal shock wave begins to

propagate along the rod with the velocity G0 =
√
E0ρ

−1
0 ,

where E0 is its elastic modulus, and ρ0 is its density. Be-
hind the wave front the stress σ− and velocity v− fields can
be represented using the ray series [32]

σ− = −
∞∑
k=0

1
k!

[
∂kσ

∂tk

](
t− n

G0

)k
, (27)

v− = V0 −
∞∑
k=0

1
k!

[
∂kυ

∂tk

](
t− n

G0

)k
, (28)

where n is the coordinate directed along the rod’s axis with
the origin in the place of contact (Fig. 1).

Considering that the discontinuities in the elastic rod
remain constant during the process of the wave propagation
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Figure 1: Scheme of shock interaction

and utilizing the condition of compatibility, we have[
∂k+1u

∂n∂tk

]
= −G−1

0

[
∂k+1u

∂tk+1

]
= −G−1

0

[
∂kv

∂tk

]
, (29)

where u is the displacement.
With due account of (29) the Hook’s law on the wave

surface can be rewritten as[
∂kσ

∂tk

]
= −ρ0G0

[
∂kv

∂tk

]
. (30)

Substituting (30) in (27) yields

σ− = ρ0G0

∞∑
k=0

1
k!

[
∂kv

∂tk

](
t− n

G0

)k
. (31)

Comparison of relationships (31) and (28) gives

σ− = ρG0

(
V0 − v−

)
. (32)

When n = 0, expression (32) takes the form

σcont = ρG0 (V0 − vν) , (33)

where σcont = σ− |n=0 is the contact stress, and vν =
v− |n=0 is the normal velocity of the beam’s points within
the contact domain.

Formula (33) allows one to find the contact force

P = πr20ρ0G0 (V0 − vν) , (34)

where r0 is the radius of the rod’s cross section.
However, the contact force can be determined not only

via (34), but using the Hertz’s law as well

P = kα
3/2, (35)

where α is the value governing the local bearing of the tar-
get’s material during the process of its contact interaction
with the impactor.

If we suppose that the end of the rod is rounded
with the radius of R, while the lateral surface of the
thin-walled beam is flat in the place of contact, then
k = 4

√
R
/

3π (k1 + k2), k1 =
(
1− ν2

0

)/
πE0, k2 =(

1− ν2
)/
πE, where ν0 is the Poisson’s ratio of the im-

pactor.
Eliminating the force P from (34) and (35), we are led

to the equation for determining the value α (t)

vν +
k

πr20ρ0G0
α

3/2 = V0. (36)

In order to express the velocity vν in terms of α, let
us analyze the wave processes occurring in the thin-walled
beam of open section. At the moment of impact, three
plane shock shear waves propagating with the velocities
G1, G2, and G3, which are found from (13) in the gen-
eral case or from (15) and (16) in the case of bisymmetrical
cross-section, are generated in the beam, as well as the lon-
gitudinal wave of acceleration.

Since the contours of the beam’s cross sections remain
rigid during the process of impact, then all sections involv-
ing by the contact domain form a layer which moves as
rigid whole. Let us name it as a contact layer. If we neglect
the inertia forces due to the smallness of this layer, then the
equations describing its motion take the form

2Qxω + P sinβ (s) = 0, (37)

2Qyω + P cosβ (s) = 0, (38)

2 (Qxy +H) + Pe(s) = 0, (39)

where β(s) is the angle between the x−axis and the tan-
gent to the contour at the point M with the s−coordinate,
and e(s) is the length of the perpendicular erected from the
flexural center to the rod’s axis.

The values Qxω , Qyω, and Qxy +H entering in (37)–
(39) are calculated as follows: behind the wave fronts of
three plane shear waves upto the boundary planes of the
contact layer, the ray series can be constructed [32]. If we
restrict ourselves only by the first terms, then it is possi-
ble to find them from (10). Considering (14), we obtain
the following relationships for the values Qxω , Qyω, and
Qxy +H:

2Qxω = −
3∑
i=1

LiΦi, (40)

2Qyω = −
3∑
i=1

MiΦi, (41)

2 (Qxy +H) = −
3∑
i=1

diΦi, (42)

where Li = 2ρFGi(γi + ay), Mi = 2ρFGi(δi − ax), and
di = 2ρFGi(γiay − δiax) + 2ρIpGi. From hereafter the
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sign [...] indicating the discontinuity in the corresponding
value is omitted for the ease of presentation.

Substituting (40)–(42) and (35) in (37)–(39), we have

3∑
i=1

LiΦi = kα
3/2 sinβ, (43)

3∑
i=1

MiΦi = kα
3/2 cosβ, (44)

n∑
i=1

diΦi = kα
3/2e. (45)

Solving (43)–(45), we find

Φi = kα
3/2∆i∆−1, (46)

where

∆ =

∣∣∣∣∣∣
L1 L2 L3

M1 M2 M3

d1 d2 d3

∣∣∣∣∣∣ , ∆1 =

∣∣∣∣∣∣
sinβ L2 L3

cosβ M2 M3

e d2 d3

∣∣∣∣∣∣

∆2 =

∣∣∣∣∣∣
L1 sinβ L3

M1 cosβ M3

d1 e d3

∣∣∣∣∣∣ , ∆3 =

∣∣∣∣∣∣
L1 L2 sinβ
M1 M2 cosβ
d1 d2 e

∣∣∣∣∣∣
Let us rewrite the relationship for vν

vν = α̇− vx sinβ (s) + vy cosβ (s) + e (s) Φ (47)

with due account for (14)

vν = α̇+
3∑
i=1

liΦi, (48)

and then consider (46) in (48)

vν = α̇+ k∆−1α
3/2

3∑
i=1

li∆i , (49)

where li = δi cosβ − γi sinβ + e.
Substituting (49) in (36), we obtain the equation for

defining α
α̇+ κα

3/2 = V0 , (50)

where

κ = k

(
1

πr20ρ0G0
+

1
∆

3∑
i=1

li∆i

)
.

The maximum deformation αmax is reached at α̇ = 0
and, due to (50), is equal to

αmax =
(
V0

κ

)2/3

. (51)

Substitution of (51) in (35) gives us the maximal con-
tact force

Pmax = kV0κ
−1. (52)

3.1 Numerical example

As an example, let us consider the impact of a steel thin
cylindrical rod of radius r0 = 0.5 cm with one rounded
end of R = 1 cm upon steel thin-walled beams of open
profile with different cross-section: I-beam (Fig. 2a), Z-
shape beam (Fig. 2b), and channel beam (Fig. 2c), but
with the equal cross-section area and with the following
dimensions: d = 20 cm, and δs = δ = 2 cm.

The following characteristics of the material have been
adopted: ρ = 7950 kg/m3, E = 210 GPa, µ = E/2.6,
and σ = 0.3. The impact occurs at the distance e = 4 cm
from the flexural center of the thin-walled beam with dif-
ferent initial velocities.

The procedure of determining the geometrical charac-
teristics of the beam cross section with the cross-section
area F = 2dδ = 0.008m2 is described in detail in [7]. The
magnitudes of the shear coefficients calculated by formulas
(6) and the wave speed data obtained according to (13) for
the beams under consideration are presented in Table 1.

Table 1: Geometrical characteristics and wave velocities

geometrical
characteris-

tics and
wave

velocities

the type of the thin-walled beam cross section

I-beam Z-shape beam channel

F , m2 0.008 0.008 0.008

ax, m 0 0 0

ay , m 0 0 -0.0665

Ix, m4 5.33× 10−5 6.16× 10−5 8.33× 10−6

Iy , m4 3.33× 10−6 5.06× 10−6 5.33× 10−5

Ip, m4 5.667× 10−5 6.667× 10−5 9.292× 10−5

Iω , m6 3.33× 10−8 8.33× 10−8 5.833× 10−8

Ik, m4 1.067× 10−6 1.067× 10−6 1.067× 10−6

kx, m−2 265.0 263.0 408.0

ky , m−2 300.0 257.5 300.0

kω , m−4 3.0× 104 4.08× 104 3.184× 104

kxω , m−3 0 0 0

kyω , m−3 0 0 964.25

kxy , m−2 0 196.925 0

G1, m/s 2559.23 1974.24 1873.13

G2, m/s 2057.48 4478.94 2674.24

G3, m/s 2189.14 1666.66 1764.27

G4, m/s 5139.56 5139.56 5139.56

The curves describing the initial velocity of impact V0
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(c)

Figure 2: The scheme of the shock interaction of a thin rod
with a thin-walled beam of open profile: (a) I-beam, (b)
Z-shape beam, and (c) channel beam.

dependence of the contact duration are given in Fig. 3.
Reference to Fig. 3 shows that the duration of contact de-

creases with increase in the initial velocity of impact. As it
takes place, the duration of contact for the I-beam is greater
than that for the Z-shaped beam, but the latter, in its turn,
is greater than that for the channel beam at common mag-
nitudes of the initial velocity of impact.

Figure 3: The initial velocity dependence of the contact
duration.

Since the impact occurs with an eccentricity with re-
spect to the flexural center in all considered cases, then the
twisting motions dominate for the sections contacting with
a striker. The inertia of area at the twisting motions is de-
termined by the polar moment of inertia, which magnitudes
for the three types of thin-walled beams are presented in
Table 1. Reference to Table 1 shows that the channel beam
and the I-beam have the largest and the smallest magni-
tudes of the polar moment of inertia, respectively, and the
Z-shaped beam is sandwiched between them. It is obvious
that during the impact of a sphere upon the channel beam
the duration of contact will be the smallest, since this type
of the section possesses the largest inertia under twisting,
but the duration of contact of the striker with the I-beam
will be the largest, since the I-beam has the smallest mo-
ment of inertia. In other words, the greater the magnitude
of polar moment of inertia, the smaller the duration of con-
tact at the same magnitude of the initial velocity of impact.
However, the magnitude of the contact duration may not
exceed the value calculated by the Hertz’s contact theory
for a semi-infinite medium at the same initial velocity of
impact. Such a conclusion is supported by the experimental
investigations reported in [33] and [34] for beams of con-
tinuous cross section. When V0 < 5 m/s, the duration of
contact practically coincides for all three thin-walled sys-
tems, since for small velocities the duration of contact is
governed by the quasistatic process, which is common for
all thin-walled systems under consideration.
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4 Conclusion
The analytical review of the existing dynamic technical the-
ories of thin-walled beams of open profile carried out in the
given papers has shown that all papers in the field can be
divided into three groups.

The papers, wherein the governing set of equations
is both hyperbolic and correct from the viewpoint of the
physically admissible magnitudes of the velocities of the
transient waves resulting from these equations, fall into the
first category, i.e., the velocity of the longitudinal wave is
GL =

√
E/ρ, while the velocities of the three (or four

) transverse shear waves, in the general case of arbitrary
cross sections of thin-walled beams with open profile, de-
pend essentially of the geometry of the open section beam.
Such theories describe the dynamic behavior of thin-walled
beams of the Timoshenko type.

The second category involves the articles presenting
hyperbolic but incorrect equations from the above men-
tioned viewpoint, i.e., resulting in incorrect magnitudes of
the transient waves. In such papers, usually six generalized
displacements are independent while warping is assumed
to be dependent on the derivative of the torsional rotation
with respect to the beam axial coordinate or is neglected
in the analysis. In other words, there is a hybrid of two
approaches: Timoshenko’s beam theory and Vlasov’s thin-
walled beam theory, some times resulting to a set of equa-
tions wherein some of them are hyperbolic, while others
are not.

The papers providing the governing system of equa-
tions which are not hyperbolic fall into the third group. In
such papers, the waves of transverse shear belong to the
diffusion waves possessing infinitely large velocities, and
therefore, from our point of view, the dynamic equations
due to such theories cannot be named as the Timoshenko
type equations.

The simple but effective procedure for checking for
the category, within which this or that paper falls in, has
been proposed and illustrated by several examples. It has
been shown that only the theories of the first group, such
as the Korbut-Lazarev theory, could be used for solving the
problems dealing with transient wave propagation, while
the theories belonging to the second and third group could
be adopted for static problems only.

The problem on the normal impact of an elastic thin
rod with a rounded end upon an elastic Timoshenko ar-
bitrary cross section thin-walled beam of open profile has
been considered as an illustrative example for employing
the Korbut-Lazarev theory for engineering applications.
The process of impact is accompanied by the dynamic flex-
ure and torsion of the beam, resulting in the propagation of
plane flexural-warping and torsional-shear waves of strong
discontinuity along the beam axis. Behind the wave fronts
upto the boundaries of the contact region (the beam part
with the contact spot), the solution is constructed in terms

of one-term ray expansions. During the impact the rod
moves under the action of the contact force which is de-
termined due to the Hertz’s theory, while the contact region
moves under the attraction of the contact force, as well as
the twisting and bending-torsional moments and transverse
forces, which are applied to the lateral surfaces of the con-
tact region.

The procedure proposed allows one to obtain rather
simple relationships for estimating the maximal magnitude
of the contact force and the contact duration, which can be
very useful in engineering applications.

Appendix A
Let us prove the validity of formula (1) by the method of
mathematical induction. At n = 1, the known formula is
obtained, which is the basis for the definition of the Thomas
δ−derivative [28],

G
∂Z

∂z
= −Z,(1) +

δZ

δt
. (A1)

Now we suppose that formula (1) is valid for n − 1,
i.e.,

Gn−1 ∂
n−1Z

∂zn−1
=

n−1∑
m=0

(−1)m
(n− 1)!

m!(n− 1−m)!
δn−1−mZ,(m)

δtn−1−m .

(A2)
To prove the validity of (1), let us multiply (A2) by G,

differentiate over z, and apply formula (A1). As a result
we obtain

Gn
∂nZ

∂zn
=

n−1∑
m=0

(−1)m+1 (n− 1)!
m!(n− 1−m)!

δn−1−mZ,(m+1)

δtn−1−m

+
n−1∑
m=0

(−1)m
(n− 1)!

m!(n− 1−m)!
δn−mZ,(m)

δtn−m
. (A3)

In the first sum of (A3), we substitute m + 1 by m,
in so doing its low limit becomes equal to unit, while the
upper limit is equal to n.

Let us separate out the term at m = n in the newly
obtained sum and the term at m = 0 in the second sum of
(A3), and add together all remained sums. As a result, we
obtain

Gn
∂nZ

∂zn
= (−1)nZ,(n)+

δnZ

δtn
+
n−1∑
m=1

(−1)m
[

(n− 1)!
(n−m)!(m− 1)!

+
(n− 1)!

(n− 1−m)!m!

]
δn−mZ,(m)

δtn−m
,

or
Gn

∂nZ

∂zn
= (−1)nZ,(n) +

δnZ

δtn

+
n−1∑
m=1

(−1)m
n!

m!(n−m)!
δn−mZ,(m)

δtn−m
. (A4)
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If we include the second term standing in the right-
hand side of (A4) into the sum, and express the value
(−1)nZ,(n), then we are led to relationship (1).
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