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Abstract — Usually numerical modeling and simulation of 

multicomponent piezoelectric actuators lead to the large number of 

recurred calculations with different geometrical parameters of the 

actuator. The exchanges in the modal shape sequence are a general 

case problem concerning to all mechanical structures. This problem is 

also important for optimization, since calculations are tied both to 

eigenfrequencies and eigenforms. If the eigenfrequency is chosen 

incorrectly, the piezoactuator will not function, so it is very important 

to numerically determine eigenforms.  

In this paper are overlooked piezoelectric actuators concept and 

urgency, proposed model of a laser shutter and piezoelectric laser 

gate, analysis of geometrical parameters optimization is done. What 

is more, influence of geometrical parameters and advantage of the 

domination coefficients are presented, calculations, results and 

conclusions are given. 

 

Keywords— Domination coefficients, eigenfrequencies, 

geometry optimization, laser shutter, piezoelectric actuators. 

I. INTRODUCTION 

iezoelectric actuators are widely used in high precision 

mechanical systems such as positioning devices, 

manipulating systems, control equipment and etc. 

Piezoelectric actuators have advanced features such as high 

resolution, short response time, compact size, and good 

controllability [1, 2, 3].  

The performance of these devices strongly depends on the 

features of the actuator, which is the main part of the 

piezomechanical system. The synthesis of needful oscillation 

fields of the actuator can be obtained optimizing the 

geometrical parameters, the vector of poliarization and the 

topology of excitation zones of the actuator. The piezoelectric 

effect and the hysteresis effect play an important role in the 

dynamical behavior of these actuators. So it is very important 

to know what modal shape will be excited when modelling 

piezoelectric actuators [4]. 

Vibration amplitudes of the bulk piezoceramic element 

usually are at range of nanometers, so very often 

piezoceramics is combined with amplifier mechanism to 

enlarge stroke of the actuator. However some problems appear 

applying amplifier mechanisms, i.e. difference between wave 

propagation speed of piezoceramics and amplifier, accuracy 

issues of gluing and mounting and etc.  

In general many design principles of piezoelectric actuators 

are proposed. Summarizing the following types of 

piezoelectric actuators can be specified: traveling wave, 

standing wave, hybrid transducer, and multi-mode vibrations 

actuators.  

Piezoelectric actuator of multimode vibrations type is 

presented and analyzed in this paper [5], [6], [7]. 

Summarizing the analysis of the theoretical research it 

can be stated that due to special qualities of piezoceramics the 

field of application for piezoceramic actuators is very wide. At 

the time much attention is being paid to the piezoceramics 

produced in industry, so new possibilities for creating fast and 

precise vibration devices of small dimensions appear. 

Although the range of theoretical research is very wide, the 

change in eigenform sequence observed while solving 

optimization problems remains insufficiently researched being 

at the same time an important issue. 

II. PROBLEM DEFINITION 

Exchanges in the modal shape sequence could be 

determined analyzing various constructions of piezoelectric 

actuators. For example, let’s consider longitudinal – flexural 

oscillations of the beam actuator. Using this type of actuator, 

changes of the modal shape sequence could be found 

analytically [8]. 

Using the technical oscillation theory of the beam the 

longitudinal oscillations are found by solving the second order 

differential equation [9], [10]: 
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Longitudinal oscillations of the beam can be expressed as 

follows [2], [4]: 
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E - the Jung modulus; k - the mode number of the longitudinal 

oscillations; l - the length of the beam; ρ mass density. 

Flexural oscillations of the beam are found by solving the 

second order differential equation [9], [10]: 

0
2

2

2

2

2

2

=
∂

∂
+









∂

∂

∂

∂

t
S

x
EI

x

lenlen ξ
ρ

ξ  (3) 

Flexural oscillations of the beam are described by the 

expression [9], [10]: 
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h - the height of the beam; n – the mode number of the 

flexural oscillations; 
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If certain values of k and n are defined, then h/l ratio of 

the beam could be calculated. From the equations (2) and (4) 

following equation could be obtained: 
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As an example: 
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But h/l ratio could be changed, for example, increasing or 

reducing the height of the beam. In this case k value remains 

the same, but n value changes. This means that the sequence 

of modal shapes changes when the geometrical parameters of 

the beam vary. For example, when the length and height ratio 

is 0.6<l/h<2.4 we have an ordinary modal shape sequence and 

in other case second and third modal shape of two dimensional 

actuator changes (Fig. 1). 
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Fig. 1 Dependence of the dominating coefficient m12 on the length 

and height ratio l/h of two-dimensional piezoelectric actuator 

 

Usually, for numerical analysis of piezoactuators software 

such as ANSYS is used. By the algorithm of eigenvalue 

problem eigenfrequencies for systems are sorted in the 

ascending order; thereby the sequences of eigenforms change. 

This rule for sorting frequencies is disadvantageous when 

numerical analysis of multidimensional piezoactuators needs 

to be automated. This problem is also important for 

optimization, since calculations are tied both to 

eigenfrequencies and eigenforms. If the eigenfrequency is 

chosen incorrectly, the piezoactuator will not function, so it is 

very important to numerically determine eigenforms and place 

them inside the eigenform matrix of the construction model 

[11], [19]. 

To solve this problem the following algorithm is proposed: 

find the sum of the amplitude squares of piezoactuator 

oscillations in all directions of the degrees of freedom for a 

point, i.e., the full system energy in all directions [9], [11], 

[12]: 

( )∑
=

=
r

i

n
ik

n
k AS

1

2
.                                                                     (7) 

where n – the eigenfrequency for a system, k – the number of 

degrees of freedom in a node, 
n
ikA – the value of the eigenform 

vector for the i
th

 element.  

Then the ratio is calculated: 
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where 
n
jm – the oscillation domination coefficient corresponds 

to the nth eigenform. The index j of domination coefficients 

indicate, in which direction the energy under investigation is 

the largest. j can assume such values: 1 corresponds to the x 

coordinate, 2 – y, and 3 – z, etc. Having calculated domination 

coefficients in all directions of degrees of freedom and having 

compared them to each other, we can determine the dominant 

oscillation type. The domination coefficients calculated 

according to formula (8) are normalized, so their limits vary 

from 0 to 1. It is very convenient for analyzing the influence 

of various parameters on domination coefficients. 

To clearly determine the eigenform and its place in the 

eigenform matrix of the construction model, it is not enough to 

calculate only the oscillation domination coefficients. 

Domination coefficients only help to differentiate eigenforms 

by dominating oscillations, for example, radial, tangential, 

axial, etc. 

Because of this an additional criterion is introduced into the 

process of determining eigenform, individual for each 

eigenform, i.e., the number of nodal points or nodal lines for 

the form. That depends on the dimensionality of the 

eigenform. During calculations the number of nodal points of 

beam-like and two-dimensional piezoactuators is determined 

by the number of sign changes in oscillation amplitude for the 

full length of the piezoactuator in the directions of coordinate 

axes (Fig. 3). 

 

 

Fig. 2 The scheme for determining integrating parameters 

Summarizing the algorithm for determining eigenforms of 

piezoactuator oscillations, we can note that it is composed of 

two integral stages: calculating domination coefficients 

(Fig. 2) and determining the number of nodal points or lines of 

the eigenform (Fig. 3).  
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This algorithm is not tightly bound to multidimensional 

piezoactuators, so it can be successfully applied in analysing 

oscillations of any constructions. When solving dynamics 

problems of piezoactuators for high precision microrobots 

where repeated calculations with higher eigenfrequencies are 

involved, it is proposed to modify the general algorithm 

introducing the stage of determining eigenforms with the help 

of domination coefficients [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Modal shape identification of the piezo actuators: a) beam, 

b) plate, c) cylinder. 

Based on the analysed algorithm, calculation of cylinder shape 

piezo actuator was carried out.  

 

 

Fig. 4 Finite elements model of cylinder piezo actuator. 

Also dominating  coefficients and their dependence from the 

geometrical parameters of the cylinder were calculated. Finite 

elements model of the analyzed cylinder actuator is presented 

in Fig. 4. 

Analysis of modal shapes sequence of the cylinder 

piezoelectric actuator must be done depending on cylinder 

wall thickness and internal radius ratio (Fig. 5) because two 

different sets of cylinder modal shapes are defined.  

When the ratio of the wall thickness and radius is 

0.25 < h/Rvid < 0.5, transition from thin layered cylinder 

modal shapes to thick layered cylinder modal shapes happen. 

           

 

Fig. 5 First modal shape of cylinder piezoelectric actuator: a) 

0.5 < h/Rvid  (2,66 kHz), b) h/Rvid < 0.25 (2,87 kHz). 

This process independs from cylinder boundary conditions. 

When cylinder geometrical parameters meet aforementioned 

ratio the sequence of modal shapes is unstable and it changes 

when any of parameters changes (Fig. 6). Dominating 

coefficient indexes 1, 3 corresponds radial and axial directions 

respectively. 

 

Fig. 6 Dependence of the dominating coefficient m13 of cylinder 

piezoelectric actuator for the third natural frequency on: 

a) length; b) internal radius. Wall thickness of the cylinder 

actuator is 0.0025m. 

During numerical analysis it was determined that increasing of 

the length of the cylinder, increase the amplitudes of 

dominating oscillations, but hasn’t influence to modal shape 

sequence changes. Internal radius of the cylinder actuator 

defines the ratio of the wall thickness and radius, so its 

influence to the modal shape sequence reveal when ratio reach 

already mentioned values. 
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III. THE LASER GATE DESIGN 

The model of a piezoelectric laser gate is composed of 

two glued piezoceramic plates of rectangular shape, marked 

with number 1 (see Fig. 7) – made of Pz-26 [13] piezoceramic 

material; the polarization vector is directed along the width of 

the plate. At their end the mass from steel is glued, marked 

with number 2. The detailed properties of these materials are 

provided in Table 1. 

Fig. 7. The scheme of a laser gate: P – the vector of polarisation, b 

and a – width of the fixed and free ends of the plate, respectively, h– 

height, L1 and L2 – lengths of the piezoceramic plate (1) and mass 

(2), respectively 

 

TABLE I 
THE PROPERTIES OF THE MATERIAL USED FOR MODELLING 

 

The electrode throughout the whole area of the glued 

piezoceramic plates is grounded. The upper and lower surfaces 

of the plate are overed in electrodes that are connected to the 

100 V voltage, see Fig. 8. Such electrode placement is used 

for exciting the first flexional form in the piezoactuator. 

 

Fig. 8. The scheme of electrode placement 

Geometric parameters of a laser gate have to be chosen in 

such a way that the eigenfrequency of the first flexional form 

be as high as possible, since this way its rapidity is guaranteed. 

Also, during analysis the oscillation amplitude A has to 

remain unchanged or change unsignificantly. The resulting 

construction would satisfy system‘s technical characteristics 

and be rational from a technological standpoint. 

 

IV. THE LASER SHUTTER DESIGN 

The model of a laser shutter is composed of rectangular 

shape piezoceramic plate, marked with number 1 (see Fig. 9) – 

made of CTS-23 [13] piezoceramic material; the polarization 

vector is directed along the length of the plate and two partial 

cylinders at both sides, made from titanium, marked with 

number 2. The detailed properties of these materials are 

provided in Table 2. 

 

Fig. 9. The scheme of a laser shutter: P – the vector of 

polarisation,  

A – outer radius, B – inner radius, C – difference between 

A and B radius, D – partial cylinder (2) upper beam width,  E 

– partial cylinder (2) lower beam width, F –  rectangular (1) 

length, H –  rectangular (1) height. 

The electrodes are connected to the both sides of 

grounded piezoceramic plate. The electrodes are connected to 

the 500 V voltage, see Fig. 10. Such electrode placement is 

used for exciting the first flexional form in the piezoactuator. 

 

 
Fig. 10. The scheme of electrode placement 

 

Geometric parameters of a laser shutter have to be chosen 

in such a way that the eigenfrequency of the first flexional 

form be as high as possible, since this way its rapidity is 

guaranteed. Also, during analysis the oscillation amplitude A 

has to remain unchanged or change unsignificantly.  

 

 

Material property Piezoceramics Pz-26 (1) Titanium (2) 

Jung modulus N/m2 8.5 x 1010 204x109 

Puason coefficient 0.39 0.3 

Density kg/m3 7600 7800 

Dielectric 

permittivity,        
x10-9F/m 

ε11= 15.937;  

ε33= 15.937 

 

Piezoelectric matrix 

C/m2 

e13=-3.09; 

e33= 16.0; 

e52= 11.64 

 

Elasticity matrix, 

x1010 N/m2 

c11= 14.68; c12= 8.108; 

c13= 8.105; c33= 13.17; 

c44=3.29; c66=3.14 
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TABLE II 

THE PROPERTIES OF THE MATERIAL USED FOR MODELLING 

 

 

The resulting construction would satisfy system‘s 

technical characteristics and be rational from a technological 

standpoint. 

V. FEM MODELING OF THE ACTUATOR 

Finite element method (FEM) was used to perform 

numerical modeling of the actuator. It was used to carry out 

modal frequency and harmonic response analysis and to 

calculate trajectories of contact point (Fig. 6) movements. 

Basic dynamic equation of the piezoelectric actuator are 

derived from the principle of minimum potential energy by 

means of variational functionals and can be written as follows 

[14], [15], [16] 
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where [M], [K], [T], [S], [C] are matrices of mass, stiffness, 

electro elasticity, capacity, damping respectively; {u}, {φ}, {F}, 
{Q} are vectors of nodes displacements, potentials, structural 

mechanical forces and charge.  

Here: 
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Driving force of the piezoelectric actuator is obtained from 

piezoceramical element. Finite element discretization of this 

element usually consists of a few layers of finite elements. 

Therefore nodes coupled with electrode layers have known 

potential values in advance and nodal potential of the 

remaining elements are calculated during the analysis. 

Dynamic equation of piezoelectric actuator in this case can be 

expressed as follows [16], [17], [18] 
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here 
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where {ϕ1}{ϕ2 } are accordingly vectors of nodal potentials 

known in advance and calculated during numerical simulation.  

Eigenfrequencies and modal shapes of the actuator are 

derived from the modal solution of the piezoelectric system 

[16[, [17] 

[ ] [ ]( ) { }0det 2* =− MK ω .                         (19) 

where [K*] is modified stiffness matrix and it depends on 

nodal potential values of the piezoelements.  

Harmonic response analysis of piezoelectric actuator is 

carried out applying sinusoidal varying voltage on electrodes 

of the piezoelements. Structural mechanical loads are not 

used. Equivalent mechanical forces are obtained because of 

inverse piezoe-fect and can be calculated as follows [16], 

[17]   

}]{[}{ 1ϕTF −=    (20) 

here 

)sin(}{}{ 1 tU kωφ =                                                          (21) 

where {U} is vector of voltage amplitudes, applied on the 

nodes coupled with electrodes. The vector of mechanical 

forces can be calculated as follows 

tUTTSTF k

T

eq ωsin}]){[][]][([}{ 12

1

222 −= −
           (22) 

Results of structural displacements of the piezoelectric 

actuator obtained from harmonic response analysis are used 

for determining the trajectory of contact point movement. 

VI. CALCULATIONS AND REZULTS 

The purpose of this experiment was to determine the 

dominating coefficients ability to be used in piezo laser shutter 

and piezo laser gate design. 
Geometric parameters of a laser gate have to be chosen in 

such a way that the eigenfrequency of the first bending form 

be as high as possible, ensuring short response time. Also, 

during analysis the oscillation amplitude A has to remain 

unchanged or change unsignificantly. The resulting 

construction would satisfy system‘s technical characteristics 

and be rational from a technological standpoint.  

Material property Piezoceramics CTS-23 (1) Titanium (2) 

Jung modulus N/m2 8.2764 x 1010 118x109 

Puason coefficient 0.33 0.32 

Density kg/m3 7600 4500 

Dielectric 

permittivity,        

x103F/m 

ε11= 1.2; ε22= 1.2;  ε33= 1.1  

Piezoelectric matrix  

x10-3C/m2 

e13= -13.6; e23=  -13.6;  

e33=  27.1; e42= 37.0;  

e51=  37.0 
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a) a=b 

 

b) a=b/2 

 

c) a=b/3 

Fig. 11. FEM models of piezoelectric laser gate 

Based on the analysed algorithm, calculation of piezoelectric 

laser gate was carried out. Finite elements model and first 

bending forms of the analyzed piezoelectric laser gate is 

presented in Fig. 11 and Fig. 13. 

The largest domination coefficients are in the z direction 

and that means that flexional oscillations dominate. Having 

compared the influence of geometric parameters on 

domination coefficients and oscillation amplitude (Fig. 12 a 

and b), we can claim that with the help of domination 

coefficients it is possible to determine the point where the 

vibration amplitude is the largest. 
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Fig.12. The influence of geometric parameters on: domination 

coefficients (a) and oscillation amplitude (b) 

 

 

 

a) a=b 

 

b) a=b/2 

 

c) a=b/3 

Fig. 13. First bending form of piezoelectric bimorph 

transducers in case when: a) a=b, b) a=b/2, c) a=b/3. 

Geometric parameters of a laser shutter have to be chosen in 

such a way that the eigenfrequency of the first flexional form 

be as high as possible, since this way its rapidity is guaranteed. 

Also, during analysis the oscillation amplitude A has to remain 

unchanged or change unsignificantly. 

During analysis the dimensions of partial cylinders ends of 

the plate have been changed. Finite elements models of the 

analyzed pjezo laser shutters are presented in Fig. 14.  

 

        a) B/C=30/0, D=5              b) B/C=32/2, D=4   

 

c) B/C=34/4, D=3 

Fig. 14 The Pjezo laser shutter FEM models 
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For each case considered an eigenvalue problem have been 

solved and harmonic analysis performed; the amplitudes for 

the contact point, and the system eigenfrequencies have been 

calculated for each construction considered. 

Domination coefficients have been also calculated using 

formula (8). A more detailed analysis is provided below.  

 
TABLE II 

THE DOMINATION COEFFICIENTS 

B/C Sτ Sφ Sz 

30/0 0,698541 0,301458 0,000001 

32/2 0,725792 0,274203 0,000006 

34/4 0,573052 0,426939 0,000008 

 

 Fig. 15 present dominating coefficient dependence 

from the internal radius B and the external radius A. Based on 

it, geometrical parameters of the piezo laser shutter could be 

found with the needful oscillation type and frequencie (Fig. 

16). 
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Fig.15 The influence of geometric parameters on domination 

coefficients. 

The largest domination coefficients are in the y direction, 

and that means that flexional oscillations dominate (Fig. 15). 

Having compared the influence of geometric parameters on 

domination coefficients and eigenfrequencies, we can claim 

that with the help of domination coefficients we can determine 

the point where laser shutter ends is closed. 
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Fig.16. The influence of geometric parameters on eigenfrequencies. 

 

Having compared the influence of geometric parameters on 

domination coefficients and eigenfrequencies, we can claim 

that with the help of domination coefficients we can determine 

the point where laser shutter ends is closed (Fig. 17). 

 

 
           a) B/C=30/0, D=5                     b) B/C=32/2, D=4   

 
c) B/C=34/4, D=3 

Fig. 17. The Pjezo Laser shutter first flexional form, when  the 

dimensions of partial cylinders ends of the plate have been 

changed. 

 

VII. CONCLUSIONS 

There isn’t standard program developed for the 

piezoelectric system design. Identification of modal shapes 

sequence is necessary step in order to automate numerical 

experiments of the multicomponent piezo actuators. 

An algorithm of modal shape identification has been 

proposed that could be applied to all mechanical structures. 

This algorithm can be used as an additional stage in FEM 

software.  
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