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Abstract— Vibrations of elastic plate strips supported at two
opposite edges and free at the other edges are studied. It is assume(‘//
that the thickness of the strip is piece wise constant whereas stable /
part-through cracks are located at the re-entrant corners of steps.
Making use of the basic concepts of the fracture mechanics a method
for determination of eigenfrequencies of stepped plates with cracks —
is developed. The influence of a crack on the behavior of the strip is
modeled as a change of the local flexibility or as a distributed line N
spring. Numerical results are presented for strips with cracks and b
without any crack subjected to the tension applied at an edge of the
strip.
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I. INTRODUCTION

Due to the growing interest for the use of non-destructive a1 az’an ]
testing technique and vibration monitoring of structures and
machines there exists a growing need for the vibration analysis (a) Dimensions of the strip

of structural elements with flaws and cracks. 7
The matter that the presence of surface flaws or intrinsic /
cracks in a machine element is a source of local flexibility
which in turn influences the dynamic behavior of the whole
system was recognized long ago. The idea of an equivalent
elastic spring, a local compliance, was used first to quantify the
relation between the applied load and the strain concentration ho
in the vicinity of the crack tip by Irwin [1]. hy g

Later Rice and Levy [2] computed the local flexibility in
the case of a combined loading consisting of the bending and ¢ S 3
tension. 0 a ag  an !

Dimarogonas and Paipetis [3], Dimarogonas [4], Chondros
et al. [5], [6] combined this spring model in the case of (b) Piece wise constant thickness
a vibrating beam with the methods of the elastic fracture
mechanics. As a result the frequency spectral method was
developed. This idea was exploited by Rizsl. [7], Kukla

[8], Chondroset al. [6] for the analysis of cracked beams. It : .
was extended by Lellegt al. [9], [10], [11] for axisymmetrical authors of [18] presented theoretical and experimental results

L > concerning an axially loaded beam weakened with cracks.
vibrations of cylindrical shells. in th i f brati £ st d plate stri
The effect of cracks on the free vibration of uniform beams ' "¢ Present paperiree vibrations ot Stepped plate strips

with arbitrary number of cracks was studied by Lin, Chanﬁ‘,re studied in the case of presence of cracks.
Wu [12] making use of the transfer matrix method. Liang,
Choy, Hu [13], [14] developed a method of detection of cracks
in beams making use of measurements of natural frequencied.et us consider natural vibrations of a plate strip subjected
This idea was exploited also by Nandwana and Maiti [15]. to the in-plane tensio®v (Fig. 1). Let the dimensions of the
De Rosa [16] investigated the influence of cracks on the fretip in z andy direction bel and b, respectively. The plate
vibrations of stepped beams with flexible ends. It was assumaniler consideration is clamped at the edge- 0, the other
that following forces were applied at the steps. Prestressadpes are free.
beams with fixed ends were studied by Masetd. [17]. The The thicknessh of the plate us assumed to be piece wise

hn

Fig. 1. Plate strip

Il. FORMULATION OF THE PROBLEM
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constant. Thus for x € (aj,a41) wherej = 0,...,n. The latter will
h(z,y) = h; (1) be considered as the equation of motion for the segment
for x € (aj,a;41), wherej = 0,...,n. The quantitiesa, (a5,0501); J = 0,....m. It can be solved accounting for
_ . appropriate boundary conditions. In the case of a free edge
andh; (j = 0,...,n) are given constants whereag = 0, . o
u ) of a strip the boundary conditions are
n+1l — t-
It is assumed that at cross sections=a; (j = 1,...,n) *w 0 Pw 0 Ko
where the thickness has jumps cracks of constant dgpdhne ox2 7 0x3

located. These flaws or cracks are treated as stable surfagfvever, in the case of the clamped edge one has
cracks.

In the present study like in Rizcat al. [7], Chrondoset al. ow =0, W=0. (8)
[6], Dimarogonas [4] the problem of crack propagation in the Ox
body during vibrations is disregarded. Let at the initial moment

The material of plates is considered as a linear elastic oW
material. Both, homogeneous elastic plates and these made ot =0, W=p(z) ©)

of non-homogeneous composite materials are studied.
The aim of the paper is to elucidate the sensitivity of
natural frequencies on the crack parameters and geometrical |1V. SOLUTION OF THE EQUATION OF MOTION

parameters of the plate. It is reasonable to look for the general solution of (6) in the
Il1. BASIC EQUATIONS form

wherep is a given function.

In the present case of the plate it is reasonable to assume Wz, t) = w;(@)T(t) (10)
that the stress-strain state of the plate depends on thettimgr - ¢ (aj,a;+1) wherej =0,...,n.
and coordinate: only, provided the stresses mean generalized Differentiating (10) with respect to variables, ¢t and
stresses (bending moments and membrane forces). Howeygbstituting in (6) one easily obtains
due to the tensiodV applied at the edge of the plate in-plane v ” . o
forces have to be taken into account. If, moreover, the inertia of Djw;" T — Nw; T = phjw;T — Ijw;T (11)
the rotation is not neglected as well the equilibrium equatiogs, ,. (

aj,aj+1) wherej = 0,...,n. Here prims denote
of a plate element can be presented as (Reddy [19]) '

the differentiation with respect to the coordinatend dots —
6M with respect to time.

=Q @) Separating variables in (10) yields
6Qm 0?wW 0*wW oW
9z -N 92 ph a2 I 9201 Djw!” + (Ijw® — N)w! — phjw?w; =0 (12)
for z € (aj,a;41), wherej =0,...,n. for j=0,...,n and

In (2) W = W(z,t) stands for the transverse deflection
corresponding to the point with coordinateat the middle
plane of the plate whereal/, is the bending moment andwherew stands for the frequency of natural vibrations. Ev-
Q. - the shear force. Herein idently, the solution of (13) which satisfied according to (9)
ph? - initial conditionsT'(0) = d, 7'(0) = 0 has the form

12 T = dcoswt (14)
where p stands for the density of the material. According to
this theory the membrane force in the direction of the axis
N, = N in the present case.

Eliminating the shear forc&, from (2) one easily obtains

9> M, 0*wW 0*wW oW

T+w?T =0 (13)

I; =

whered is a constant.

The equation (12) is a linear fourth order ordinary equation
with respect to the variable);. The characteristic equation
corresponding to (12) is

922 +N D2 = ph] 12 - Ij O220t2 (4) DjT? —+ (ij2 — N)T? — phj(,UQ = 0. (15)
for z € (a;,a;41) wherej =0,...,n. Form (15) one easily obtains the roots
It is well known that (Reddy [19] Soedel [20])
O*WwW o —ij2+N (ij2 —N)2 p_hj
M, = _DJ'W (5) r; ==+ 2D, + 1D? + D, (16)
whereD; = ER3/12(1 —1?); j =0,...,n | - :
’ ) trod th tat
Substituting (5) in (4) yields niroducing the no a|02n i
oW 0w W o'W (rj)1=—A; 17)
Diger =N =Phiga ~ligage  © (r7)2 = 1
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one can present the general solution of (12) as If the element is loaded by the axial tensidh then the
wi(@) = Ay sin e + As; cos A + stress intensity coefficient )
+As;sinh pjz + Agjcosh iz (18) Ky =onvmcEy (E) . (26)
which holds good forz € (aj,a;11), j = 0,...,n. Here Where N
Ay, ..., Ayg; stand for unknown constants of integration. ON =73 (27)

These will be determined from boundary conditions and
guirements on the continuity of displacements and generali
stresses.

However, it appears that the quantity’ can not be con- Kr =Kp + Ky. (28)
tinuous atz = a; according to the model of distributed lineNote that (28) holds good under the condition that (24)—(27)
springs developed by Rice and Levy [2]; Dimarogonas [4iefer to the common mode of fracture (see Anderson [21] and
Chondroset al. [5]. Broek [24]).

In the present case this requirement is fulfillédh, and K

V. LOCAL COMPLIANCE OF THE PLATE STRIP . :
regard to the first mode of the fracture. It was shown in the

Let us consider the influence of the crack located at trpﬁsevious studies (Lellep, Roots [11]; Lellep, Puman, Tungel,

cross sectionr = a on the stress-strain state of the sheet iRpots [9]; Lellep, Sakkov [25]) that in the case of loading by
the vicinity of the crack. For the conciseness sake we shgle moment

study the case when = 1 and thus in the adjacent segments Ko E'h%b (29)

to the crack the thickness equals/ig and iy, respectively. M 727 f(s)

Let h = min(ho, hn). _ _ where E' = E for plane stress state arfd = E/(1 — v2) in
According to the distributed line spring method the slopfhe case plane deformation state

of the deflection has a jump Heres = ¢/h and the compliance

re- . i . . )
z?é'dthe case of a combined loading the stress intensity coeffi-
cle

at the cross sectiom = a. The angle®© can be treated as
a generalized displacement corresponding to the generaliz#gereas R
stressM,. Thus f(s) :/ sF2(s)ds. (31)
0 =CM,(a) (20) 0
The function F; was taken in the studies by Dimarogonas
90 [4]; Rizos, Aspragathos, Dimarogonas [7] as

21
OMy(a) @) Fyr = 1.93 - 3.07s + 14.53s% — 25.115% 4+ 25.85*.  (32)

whereC'is the local compliance due to the crack. It is knownccording to the handbook by Tada, Paris, Irwin [23] the
in the linear elastic fracture mechanics that (see Anderson [2djnction Fy can be approximated as

Broberg [22])

or
C:

o U 22) Fy =1.122 — 0.23s + 10.55s% — 21.71s> + 30.38s%. (33)
B OM,(a) VI. DETERMINATION OF NATURAL FREQUENCIES
where Ur is the extra strain energy caused by the crack.In the case when the plate has a unique step the deflected
Combining (20)—(22) one obtains shape of the plate can be presented according to (18) as
C = 0*Ur 23) w(x) = Ay sin Agx + Az cos Aoz + Az sinh oz + A4 cosh oz
OM2(a)’ (34)

According to the concept of the distributed line spring> = foF « € [0,a] and

K, where K stands for the stress intensity coefficient. It isy(z) = By sin A\;x+ By cos Ay 2+ Bz sinh yy 2+ By cosh iy

known in the fracture mechanics that (see Anderson [21]) (35)

B c for z € [a,l].

Ky = omvmceFy (ﬁ) (24) Arbitrary constants4;, B; (i = 1,...,4) have to meet
In (24) ¢ is the crack depth and boundary requirements and intermediate conditions &ata.
60 The latter can be presented as (Lellep, Roots [11])
oy = Nel), (25)
bh? _
ded the el ol H _ ) w(a —0) =w(a+0)

provided the element involving the cross section= a is oy R
loaded by the bending moment, only. Here the function 5 ui/(a 0) = wg(a//+ 0) = pw'(a+0) (36)
Fy is to be approximated on the basis of experimental data hyw"(a — 0) = hyw"(a +0)
[23]. hiw" (a — 0) = k3w (a + 0)
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where according to (28), (29) The boundary conditions (7) can be expressed as
Eh3 CA T T 0 |
P Ak 37) A 0
Bl —/\% sin All
It is worthwhile to mention that the third and the fourth By % —A2cos A\l =0 (43)
equality in (36) express the continuity of the bending moment Bs ©? sinh 111
and the shear force, respectively, when passing the step-at B, p? cosh 1
a. It is known from the solid mechanics that these quantities ) . ) )
must be continuous (Soedel [20]). an T .
Boundary conditions (8) at = 0 admit to eliminate from Ay 0
(34) the unknown constants A 0
By « —/\? sin A1 -0 (44)
By ANcoshl |
Ay = — Ay, B3 w3 sinh pql
Ay — —Alﬁ. (38) By i w? cosh i1l
Ho The system (39)—(44) is a linear homogeneous system of

The intermediate conditions (36) with boundary requiredlgebraic equations. It has a non-trivial solution only in the
ments (8) atr = | lead to the system of six equations whict¢ase, if its determinank equals to zero. The equatidh = 0
will be presented in the matrix form. The continuity of thés solved up to the end numerically.
deflection leads to the equation
VII. NUMERICAL RESULTS

T ) N Numerical results are obtained for the strip which is sym-
Aq sin A\ga — =2 sinh ppa

o metrical with respect to the central cross sectibg € ho,
As €os Aga - cosh pupa l—as = a1). The length of the strip is take?l and the origin
By ~ —sinia =0. (39) of coordinates is shifted at the center of the plate strips. Thus
By — cos Aia I means the semi length of the strips.
B —sinhya The results of calculations are presented in Fig. 2-8. In
By —coshya calculations the plate with dimensiohs- 0.5 m, kg = 0.02 m

was considered. The material parameterspare7860 kg/m?,

According to the second relation in (36) one has
E =2.1-10"" N/m?, v =0.3.

ya Ao(cos Aga — cosh ppa) In following the notation

Ao — Ao sin A\ga — pg sinh poa a hy

B, A1(pA1sin Ay — cos A\ av) _ o= T ¥ = -

By x A1(sin Ao + pAj cos M) = 0. (40) _ 0

Bs — 1 (cosh g o + ppg sinh py o) IS Use_d- o _

By —p1 (sinh gy o + ppy cosh py ) In Fig. 2 the frequency of natural vibrations is shown versus

a wherea is the location of the crack. Different curves in Fig.
The continuity requirements imposed on the bending momentorrespond to different values of the crack depth.
and the shear force, respectively, lead to the equations The curves depicted in Fig. 2 are associated with the case
when no tension is applied to the plate, e\g= 0. It can be

- 1T . . 1
A —hgg\o(;\o sin Aga + to sinh poa) seen from Fig. 2 that when the crack depth increases then the
Ay —hy (Ao Cosg)‘ga."‘ H cosh pioa) natural frequency decreases, as might be expected.
By % h?{)‘% sin A1a -0 The natural frequency versusand~ in the case of a plate
B> h13/\12C9S Ara of piece wise constant thickness is presented in Fig. 3, 4. Here
B —hipysinh pa N = 0 whereas Fig. 3 and 4 are associated with- 0.5 and
By —hipi coshjna = 0.5, respectivel
- T a1) Yo Tesp Y- . .
and Similarly to the case of a plate of constant thickness it
reveals from Fig. 3 and 4 that the natural frequency is maximal
Ay T —h3Xo(A3 cos Xga + p3 cosh pga) | for the intact plate in comparison to that for a cracked sheet. It
A, h3 (A3 sin Aoa — pd sinh uga) is interesting to note that when increasing the ratio of thickness
B R3X3 cos A\ra 0 in the case of fixed position of the step then the natural
By x —h3X3sin \a - frequencyw increases until a certf_;lin value and in the course of
Bs —h3u3 cosh pya subsquent increase ofthe quantltyu slowl_y decr_eases.(Flg.
By —h3u sinh pia | 3). For instance, it = 0, the point of maximum is achieved

(42) for~y=0.5and ifc = 0.6h; theny =0.7.
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If the ratio of thicknessy is fixed then there exists alsolength is depicted in Fig. 5. Her¥ = 10° andh; = 0.5ho.
a maximum ofw with respect to the step locatiaon. If, for Comparing the results presented in Fig. 3 and Fig. 5 one
instance,N = 0, v = 0.5 (Fig. 4) then the maximum points can see that the corresponding curves are relatively close each
are o = 0.65 (for uncracked plates = 0), o = 0.7 (for other.
s =0.4) anda = 0.85 (for s = 0.9). Similar results are presented in Fig. 6 and 7%= 5-10°.
Calculations carried out showed that the natural frequen€ire curves depicted in Fig. 6 correspond to the ease0.5/
depends quite weakly on the edge tenshoif N < N, where and these shown in Fig. 7 are associated with the fixed value
N, is a critical value of the edge tension. The dependence@fthe ratio of thicknesses; = 0.5h.
the frequencyw on the ratio of thickness and on the crack Comparing Figures 6 and 7 with Fig. 3 and 4, respectively,
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one can see that in the case of larger edge tension valuegvbgreas the units in the horizontal axis are taken in millions.
the natural frequency are smaller than those corresponding tdt can be seen from Fig. 8 that in this scale the natural
the plate without edge tension. Naturally, it is assumed hefitequencyw does depend on the crack length and on the edge
that the strips with the same geometrical parameters and wighsion. The larger is the edge load the smaller is the natural
the same crack parameters are compared. It can be seen fi@guency of the plate.
Fig. 6, 7 as well, that the increase of the crack length entailsin Fig. 9 and Fig. 11 the natural frequency is shown as a
reduced values of the natural frequency. function of the ratio of thickness; and hy.

The influence of the edge loadiny on the natural fre- In Fig. 9a/l = 0.3 whereas in Fig. 1L/l = 0.7. In both
guencyw is presented in Fig. 8. Here = 0.5 andy = 0.5 cases the tensiolV = 0.
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v = hi/ho. The relationship between the natural frequency

The natural frequency versus = o/l is depicted in Fig. anq ocation of the step/! is shown in Fig. 13 for the case
10 and Fig. 12 in the casés /hg = 0.3 and hy/hy = 0.7, hy /ho = 0.7. Here the tensioN = 5 - 10°.

respectively. It can be seen from Fig. 9 — 12 that the highest
curves correspond to plate strips without defects. VIIl. CONLUDING REMARKS

Comparing the results presented in Fig. 3, Fig. 9 and Fig.Free vibrations of elastic plate strips of piece wise constant
11 one can see that when the step tends to the edge of tthiekness have been studied accounting for flaws and cracks.
strips then the peaks of curves tend to the center of the striphe cracks are considered as stationary surface cracks which
However, the peaks of corresponding curves in Fig. 4, Figre located at the corners of steps and which have not
10, Fig. 12 are less sensitive with respect to the paramepenetrated the plate thickness.
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Combing the methods of the theory of elastic plates and [af] S. Masoud, M. A. Jarrah, and M. Al-Maamory, “Effect of crack depth
the linear elastic fracture mechanics an approximate technique ©n the natural frequency of a prestressed fixedfixed bedonrhal of

for d . . f | f . f ol . . Sound and Mibration, vol. 214, no. 2, pp. 201-212, 1998.
or determination of natural frequencies of plate strips [§8] J. Lellep and E. Kago, “Vibrations of stepped plate strips with cracks,” in

developed. This technique admits to account for the tension Proc. of the Int. Conf. on Mathematical Models for Engineering Science.
applied at the edge of the plate weakened by part-through WSEAS Press, 2010, pp. 244-249.

. 9] J. N. Reddy,Theory and Analysis of Elastic Plates and Shells. Boca
surface cracks occurring at the re-entrant corners of steps.” ™ R4on: CRC Press. 2007.

Calculations carried out showed that the crack location afad] W. SoedelMbrations of Shells and Plates. New York: Marcel Dekker,

the crack depth have an essential influence in the frequency of 2004 .
f ibrati It tablished ically that wh t 21] T. Anderson,Fracture Mechanics. Boca Raton: CRC Press, 2005.
ree viprations. It was establisned numerically that when ] K. Broberg, Cracks and Fracture. New York: Academic Press, 1999.

crack extends then the natural frequency decreases, provigef H. Tada, P. C. Paris, and G. R. Irwiihe Stress Analysis of Cracks

the other geometrical parameters remain unchanged. It _js Handbook. New York: ASME Press, 2000.
. . k%4 D. Broek, The Practical Use of Fracture Mechanics. Dordrecht: Kluwer,
interesting to remark that the reduce of the frequency ta 1990

place independently of the ratio of thicknesses, of the locatigs] J. Lellep and E. Sakkov, “Buckling of stepped composite columns,’
of the step and of other geometrical parameters. Mechanics of Composite Materials, vol. 42, no. 1, pp. 6372, 2006.
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