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Abstract— Vibrations of elastic plate strips supported at two
opposite edges and free at the other edges are studied. It is assumed
that the thickness of the strip is piece wise constant whereas stable
part-through cracks are located at the re-entrant corners of steps.
Making use of the basic concepts of the fracture mechanics a method
for determination of eigenfrequencies of stepped plates with cracks
is developed. The influence of a crack on the behavior of the strip is
modeled as a change of the local flexibility or as a distributed line
spring. Numerical results are presented for strips with cracks and
without any crack subjected to the tension applied at an edge of the
strip.
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I. I NTRODUCTION

Due to the growing interest for the use of non-destructive
testing technique and vibration monitoring of structures and
machines there exists a growing need for the vibration analysis
of structural elements with flaws and cracks.

The matter that the presence of surface flaws or intrinsic
cracks in a machine element is a source of local flexibility
which in turn influences the dynamic behavior of the whole
system was recognized long ago. The idea of an equivalent
elastic spring, a local compliance, was used first to quantify the
relation between the applied load and the strain concentration
in the vicinity of the crack tip by Irwin [1].

Later Rice and Levy [2] computed the local flexibility in
the case of a combined loading consisting of the bending and
tension.

Dimarogonas and Paipetis [3], Dimarogonas [4], Chondros
et al. [5], [6] combined this spring model in the case of
a vibrating beam with the methods of the elastic fracture
mechanics. As a result the frequency spectral method was
developed. This idea was exploited by Rizoset al. [7], Kukla
[8], Chondroset al. [6] for the analysis of cracked beams. It
was extended by Lellepet al. [9], [10], [11] for axisymmetrical
vibrations of cylindrical shells.

The effect of cracks on the free vibration of uniform beams
with arbitrary number of cracks was studied by Lin, Chang,
Wu [12] making use of the transfer matrix method. Liang,
Choy, Hu [13], [14] developed a method of detection of cracks
in beams making use of measurements of natural frequencies.
This idea was exploited also by Nandwana and Maiti [15].

De Rosa [16] investigated the influence of cracks on the free
vibrations of stepped beams with flexible ends. It was assumed
that following forces were applied at the steps. Prestressed
beams with fixed ends were studied by Masoudet al. [17]. The
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Fig. 1. Plate strip

authors of [18] presented theoretical and experimental results
concerning an axially loaded beam weakened with cracks.

In the present paper free vibrations of stepped plate strips
are studied in the case of presence of cracks.

II. FORMULATION OF THE PROBLEM

Let us consider natural vibrations of a plate strip subjected
to the in-plane tensionN (Fig. 1). Let the dimensions of the
strip in x and y direction bel and b, respectively. The plate
under consideration is clamped at the edgex = 0, the other
edges are free.

The thicknessh of the plate us assumed to be piece wise
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constant. Thus
h(x, y) = hj (1)

for x ∈ (aj , aj+1), where j = 0, . . . , n. The quantitiesaj
and hj (j = 0, . . . , n) are given constants whereasa0 = 0,
an+1 = l.

It is assumed that at cross sectionsx = aj (j = 1, . . . , n)
where the thickness has jumps cracks of constant depthcj are
located. These flaws or cracks are treated as stable surface
cracks.

In the present study like in Rizoset al. [7], Chrondoset al.
[6], Dimarogonas [4] the problem of crack propagation in the
body during vibrations is disregarded.

The material of plates is considered as a linear elastic
material. Both, homogeneous elastic plates and these made
of non-homogeneous composite materials are studied.

The aim of the paper is to elucidate the sensitivity of
natural frequencies on the crack parameters and geometrical
parameters of the plate.

III. B ASIC EQUATIONS

In the present case of the plate it is reasonable to assume
that the stress-strain state of the plate depends on the timet
and coordinatex only, provided the stresses mean generalized
stresses (bending moments and membrane forces). However,
due to the tensionN applied at the edge of the plate in-plane
forces have to be taken into account. If, moreover, the inertia of
the rotation is not neglected as well the equilibrium equations
of a plate element can be presented as (Reddy [19])

∂Mx

∂x
= Qx

∂Qx

∂x
= −N

∂2W

∂x2
+ ρhj

∂2W

∂t2
− Ij

∂4W

∂x2∂t2

(2)

for x ∈ (aj , aj+1), wherej = 0, . . . , n.
In (2) W = W (x, t) stands for the transverse deflection

corresponding to the point with coordinatex at the middle
plane of the plate whereasMx is the bending moment and
Qx - the shear force. Herein

Ij =
ρh3

j

12
(3)

whereρ stands for the density of the material. According to
this theory the membrane force in the direction of the axisx
Nx = N in the present case.

Eliminating the shear forceQx from (2) one easily obtains

∂2Mx

∂x2
+N

∂2W

∂x2
= ρhj

∂2W

∂t2
− Ij

∂4W

∂x2∂t2
(4)

for x ∈ (aj , aj+1) wherej = 0, . . . , n.
It is well known that (Reddy [19], Soedel [20])

Mx = −Dj

∂2W

∂x2
(5)

whereDj = Eh3
j/12(1− ν2); j = 0, . . . , n.

Substituting (5) in (4) yields

Dj

∂4W

∂x4
−N

∂2W

∂x2
= ρhj

∂2W

∂t2
− Ij

∂4W

∂x2∂t2
(6)

for x ∈ (aj , aj+1) where j = 0, . . . , n. The latter will
be considered as the equation of motion for the segment
(aj , aj+1); j = 0, . . . , n. It can be solved accounting for
appropriate boundary conditions. In the case of a free edge
of a strip the boundary conditions are

∂2W

∂x2
= 0,

∂3W

∂x3
= 0. (7)

However, in the case of the clamped edge one has

∂W

∂x
= 0, W = 0. (8)

Let at the initial moment

∂W

∂t
= 0, W = ϕ(x) (9)

whereϕ is a given function.

IV. SOLUTION OF THE EQUATION OF MOTION

It is reasonable to look for the general solution of (6) in the
form

W (x, t) = wj(x)T (t) (10)

for x ∈ (aj , aj+1) wherej = 0, . . . , n.
Differentiating (10) with respect to variablesx, t and

substituting in (6) one easily obtains

Djw
IV
j T −Nw′′

j T = ρhjwj T̈ − Ijw
′′

j T̈ (11)

for x ∈ (aj , aj+1) where j = 0, . . . , n. Here prims denote
the differentiation with respect to the coordinatex and dots –
with respect to timet.

Separating variables in (10) yields

Djw
IV
j + (Ijω

2 −N)w′′

j − ρhjω
2wj = 0 (12)

for j = 0, . . . , n and

T̈ + ω2T = 0 (13)

whereω stands for the frequency of natural vibrations. Ev-
idently, the solution of (13) which satisfied according to (9)
initial conditionsT (0) = d, Ṫ (0) = 0 has the form

T = d cosωt (14)

whered is a constant.
The equation (12) is a linear fourth order ordinary equation

with respect to the variablewj . The characteristic equation
corresponding to (12) is

Djr
4
j + (Ijω

2 −N)r2j − ρhjω
2 = 0. (15)

Form (15) one easily obtains the roots

rj = ±

√

√

√

√

−Ijω2 +N

2Dj

±

√

(Ijω2 −N)2

4D2
j

+
ρhj

Dj

. (16)

Introducing the notation

(r2j )1 = −λ2
j

(r2j )2 = µ2
j

(17)
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one can present the general solution of (12) as

wj(x) = A1j sinλjx+A2j cosλjx+

+A3j sinhµjx+A4j coshµjx (18)

which holds good forx ∈ (aj , aj+1), j = 0, . . . , n. Here
A1j , . . . , A4j stand for unknown constants of integration.
These will be determined from boundary conditions and re-
quirements on the continuity of displacements and generalized
stresses.

However, it appears that the quantityW ′ can not be con-
tinuous atx = aj according to the model of distributed line
springs developed by Rice and Levy [2]; Dimarogonas [4],
Chondroset al. [5].

V. L OCAL COMPLIANCE OF THE PLATE STRIP

Let us consider the influence of the crack located at the
cross sectionx = a on the stress-strain state of the sheet in
the vicinity of the crack. For the conciseness sake we shall
study the case whenn = 1 and thus in the adjacent segments
to the crack the thickness equals toh0 and h1, respectively.
Let h = min(h0, h1).

According to the distributed line spring method the slope
of the deflection has a jump

Θ = w′(a+ 0)− w′(a− 0) (19)

at the cross sectionx = a. The angleΘ can be treated as
a generalized displacement corresponding to the generalized
stressMx. Thus

Θ = CMx(a) (20)

or
C =

∂Θ

∂Mx(a)
(21)

whereC is the local compliance due to the crack. It is known
in the linear elastic fracture mechanics that (see Anderson [21],
Broberg [22])

Θ =
∂UT

∂Mx(a)
(22)

where UT is the extra strain energy caused by the crack.
Combining (20)–(22) one obtains

C =
∂2UT

∂M2
x(a)

. (23)

According to the concept of the distributed line spring1/C =
K, whereK stands for the stress intensity coefficient. It is
known in the fracture mechanics that (see Anderson [21])

KM = σM

√
πcFM

( c

h

)

. (24)

In (24) c is the crack depth and

σM =
6Mx(a)

bh2
, (25)

provided the element involving the cross sectionx = a is
loaded by the bending momentMx only. Here the function
FM is to be approximated on the basis of experimental data
[23].

If the element is loaded by the axial tensionN then the
stress intensity coefficient

KN = σN

√
πcFN

( c

h

)

. (26)

where
σN =

N

bh
. (27)

In the case of a combined loading the stress intensity coeffi-
cient

KT = KM +KN . (28)

Note that (28) holds good under the condition that (24)–(27)
refer to the common mode of fracture (see Anderson [21] and
Broek [24]).

In the present case this requirement is fulfilled,KM andKN

regard to the first mode of the fracture. It was shown in the
previous studies (Lellep, Roots [11]; Lellep, Puman, Tungel,
Roots [9]; Lellep, Sakkov [25]) that in the case of loading by
the moment

KM =
E′h2b

72πf(s)
(29)

whereE′ = E for plane stress state andE′ = E/(1− ν2) in
the case plane deformation state.

Heres = c/h and the compliance

C =
72π

E′h2b

∫ s

0

sF 2
M (s)ds (30)

whereas

f(s) =

∫ s

0

sF 2
M (s)ds. (31)

The functionFM was taken in the studies by Dimarogonas
[4]; Rizos, Aspragathos, Dimarogonas [7] as

FM = 1.93− 3.07s+ 14.53s2 − 25.11s3 + 25.8s4. (32)

According to the handbook by Tada, Paris, Irwin [23] the
functionFN can be approximated as

FN = 1.122− 0.23s+ 10.55s2 − 21.71s3 + 30.38s4. (33)

VI. D ETERMINATION OF NATURAL FREQUENCIES

In the case when the plate has a unique step the deflected
shape of the plate can be presented according to (18) as

w(x) = A1 sinλ0x+A2 cosλ0x+A3 sinhµ0x+A4 coshµ0x
(34)

for x ∈ [0, a] and

w(x) = B1 sinλ1x+B2 cosλ1x+B3 sinhµ1x+B4 coshµ1x
(35)

for x ∈ [a, l].
Arbitrary constantsAi, Bi (i = 1, . . . , 4) have to meet

boundary requirements and intermediate conditions atx = a.
The latter can be presented as (Lellep, Roots [11])

w(a− 0) = w(a + 0)

w′(a− 0) = w′(a+ 0)− pw′′(a+ 0)

h3
0w

′′(a− 0) = h3
1w

′′(a+ 0)

h3
0w

′′′(a− 0) = h3
1w

′′′(a+ 0)

(36)
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where according to (28), (29)

p =
Eh3

12(1− ν2)KT

. (37)

It is worthwhile to mention that the third and the fourth
equality in (36) express the continuity of the bending moment
and the shear force, respectively, when passing the step atx =
a. It is known from the solid mechanics that these quantities
must be continuous (Soedel [20]).

Boundary conditions (8) atx = 0 admit to eliminate from
(34) the unknown constants

A4 = −A2,

A3 = −A1

λ0

µ0

.
(38)

The intermediate conditions (36) with boundary require-
ments (8) atx = l lead to the system of six equations which
will be presented in the matrix form. The continuity of the
deflection leads to the equation

















A1

A2

B1

B2

B3

B4

















⊤

×

















sinλ0a− λ0

µ0

sinhµ0a

cosλ0a− coshµ0a
− sinλ1a
− cosλ1a
− sinhµ1a
− coshµ1a

















= 0. (39)

According to the second relation in (36) one has

















A1

A2

B1

B2

B3

B4

















⊤

×

















λ0(cosλ0a− coshµ0a)
−λ0 sinλ0a− µ0 sinhµ0a
λ1(pλ1 sinλ1α− cosλ1α)
λ1(sinλ1α+ pλ1 cosλ1α)

−µ1(coshµ1α+ pµ1 sinhµ1α)
−µ1(sinhµ1α+ pµ1 coshµ1α)

















= 0. (40)

The continuity requirements imposed on the bending moment
and the shear force, respectively, lead to the equations

















A1

A2

B1

B2

B3

B4

















⊤

×

















−h3
0λ0(λ0 sinλ0a+ µ0 sinhµ0a)

−h3
0(λ

2
0 cosλ0a+ µ2

0 coshµ0a)
h3
1λ

2
1 sinλ1a

h3
1λ

2
1 cosλ1a

−h3
1µ

2
1 sinhµ1a

−h3
1µ

2
1 coshµ1a

















= 0

(41)
and
















A1

A2

B1

B2

B3

B4

















⊤

×

















−h3
0λ0(λ

2
0 cosλ0a+ µ2

0 coshµ0a)
h3
0(λ

3
0 sinλ0a− µ3

0 sinhµ0a)
h3
1λ

3
1 cosλ1a

−h3
1λ

3
1 sinλ1a

−h3
1µ

3
1 coshµ1a

−h3
1µ

3
1 sinhµ1a

















= 0.

(42)

The boundary conditions (7) can be expressed as
















A1

A2

B1

B2

B3

B4

















⊤

×

















0
0

−λ2
1 sinλ1l

−λ2
1 cosλ1l

µ2 sinhµ1l
µ2 coshµ1l

















= 0 (43)

and
















A1

A2

B1

B2

B3

B4

















⊤

×

















0
0

−λ3
1 sinλ1l

λ3
1 cosλ1l

µ3 sinhµ1l
µ3 coshµ1l

















= 0. (44)

The system (39)–(44) is a linear homogeneous system of
algebraic equations. It has a non-trivial solution only in the
case, if its determinant∆ equals to zero. The equation∆ = 0
is solved up to the end numerically.

VII. N UMERICAL RESULTS

Numerical results are obtained for the strip which is sym-
metrical with respect to the central cross section (h0 = h2,
l−a2 = a1). The length of the strip is taken2l and the origin
of coordinates is shifted at the center of the plate strips. Thus
l means the semi length of the strips.

The results of calculations are presented in Fig. 2–8. In
calculations the plate with dimensionsl = 0.5 m, h0 = 0.02 m
was considered. The material parameters areρ = 7860 kg/m3,
E = 2.1 · 1011 N/m2, ν = 0.3.

In following the notation

α =
a

l
, γ =

h1

h0

is used.
In Fig. 2 the frequency of natural vibrations is shown versus

a wherea is the location of the crack. Different curves in Fig.
2 correspond to different values of the crack depth.

The curves depicted in Fig. 2 are associated with the case
when no tension is applied to the plate, e.g.N = 0. It can be
seen from Fig. 2 that when the crack depth increases then the
natural frequency decreases, as might be expected.

The natural frequency versusα andγ in the case of a plate
of piece wise constant thickness is presented in Fig. 3, 4. Here
N = 0 whereas Fig. 3 and 4 are associated withα = 0.5 and
γ = 0.5, respectively.

Similarly to the case of a plate of constant thickness it
reveals from Fig. 3 and 4 that the natural frequency is maximal
for the intact plate in comparison to that for a cracked sheet. It
is interesting to note that when increasing the ratio of thickness
in the case of fixed position of the step then the natural
frequencyω increases until a certain value and in the course of
subsequent increase ofγ the quantityω slowly decreases (Fig.
3). For instance, ifc = 0, the point of maximum is achieved
for γ = 0.5 and if c = 0.6h1 thenγ = 0.7.
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Fig. 2. Natural frequency vrsa/l, N = 0, γ = 1
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Fig. 3. Natural frequency vrsh1/h0, N = 0, α = 0.5

If the ratio of thicknessγ is fixed then there exists also
a maximum ofω with respect to the step locationα. If, for
instance,N = 0, γ = 0.5 (Fig. 4) then the maximum points
are α = 0.65 (for uncracked plate,s = 0), α = 0.7 (for
s = 0.4) andα = 0.85 (for s = 0.9).

Calculations carried out showed that the natural frequency
depends quite weakly on the edge tensionN if N < N∗ where
N∗ is a critical value of the edge tension. The dependence of
the frequencyω on the ratio of thickness and on the crack
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Fig. 4. Eigenfrequency vrsa/l, N = 0, γ = 0.5
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Fig. 5. Stretched strip,N = 10
6, γ = 0.5

length is depicted in Fig. 5. HereN = 106 andh1 = 0.5h0.
Comparing the results presented in Fig. 3 and Fig. 5 one

can see that the corresponding curves are relatively close each
other.

Similar results are presented in Fig. 6 and 7 forN = 5 ·106.
The curves depicted in Fig. 6 correspond to the casea = 0.5l
and these shown in Fig. 7 are associated with the fixed value
of the ratio of thicknessesh1 = 0.5h0.

Comparing Figures 6 and 7 with Fig. 3 and 4, respectively,
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Fig. 6. Eigenfrequency vrsh1/h0, N = 5 · 106, α = 0.5
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Fig. 7. Eigenfrequency vrsa/l, N = 5 · 106, γ = 0.5

one can see that in the case of larger edge tension values of
the natural frequency are smaller than those corresponding to
the plate without edge tension. Naturally, it is assumed herin
that the strips with the same geometrical parameters and with
the same crack parameters are compared. It can be seen from
Fig. 6, 7 as well, that the increase of the crack length entails
reduced values of the natural frequency.

The influence of the edge loadingN on the natural fre-
quencyω is presented in Fig. 8. Hereα = 0.5 and γ = 0.5
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Fig. 8. Eigenfrequency vrs edge tension,α = 0.5, γ = 0.5
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Fig. 9. Natural frequency vrsh1/h0, α = 0.3, N = 0

whereas the units in the horizontal axis are taken in millions.
It can be seen from Fig. 8 that in this scale the natural

frequencyω does depend on the crack length and on the edge
tension. The larger is the edge load the smaller is the natural
frequency of the plate.

In Fig. 9 and Fig. 11 the natural frequency is shown as a
function of the ratio of thicknessh1 andh0.

In Fig. 9 a/l = 0.3 whereas in Fig. 11a/l = 0.7. In both
cases the tensionN = 0.
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Fig. 10. Natural frequency vrsa/l, γ = 0.3, N = 0
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Fig. 11. Natural frequency vrsh1/h0, α = 0.7, N = 0

The natural frequency versusα = a/l is depicted in Fig.
10 and Fig. 12 in the casesh1/h0 = 0.3 andh1/h0 = 0.7,
respectively. It can be seen from Fig. 9 – 12 that the highest
curves correspond to plate strips without defects.

Comparing the results presented in Fig. 3, Fig. 9 and Fig.
11 one can see that when the step tends to the edge of the
strips then the peaks of curves tend to the center of the strips.
However, the peaks of corresponding curves in Fig. 4, Fig.
10, Fig. 12 are less sensitive with respect to the parameter
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Fig. 12. Natural frequency vrsa/l, γ = 0.7, N = 0
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Fig. 13. Natural frequency vrsa/l, γ = 0.7, N = 5 · 106

γ = h1/h0. The relationship between the natural frequency
and location of the stepa/l is shown in Fig. 13 for the case
h1/h0 = 0.7. Here the tensionN = 5 · 106.

VIII. C ONLUDING REMARKS

Free vibrations of elastic plate strips of piece wise constant
thickness have been studied accounting for flaws and cracks.
The cracks are considered as stationary surface cracks which
are located at the corners of steps and which have not
penetrated the plate thickness.
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Combing the methods of the theory of elastic plates and of
the linear elastic fracture mechanics an approximate technique
for determination of natural frequencies of plate strips is
developed. This technique admits to account for the tension
applied at the edge of the plate weakened by part-through
surface cracks occurring at the re-entrant corners of steps.

Calculations carried out showed that the crack location and
the crack depth have an essential influence in the frequency of
free vibrations. It was established numerically that when the
crack extends then the natural frequency decreases, provided
the other geometrical parameters remain unchanged. It is
interesting to remark that the reduce of the frequency takes
place independently of the ratio of thicknesses, of the location
of the step and of other geometrical parameters.
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