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Stresses in an Anisotropic Elastic Plate due
to Strip-Loading

Dinesh Kumar Madan, Shamta Chugh and Kuldip Singh

Abstract— The closed-form expressions for the stresses at any
point of monoclinic elastic plate interfacing differently with the base
due to strip-loading are obtained. The interface between the elastic
plate and the base is assumed to be either ‘perfectly bonded’ or
‘smooth-rigid’ or ‘rough-rigid’. As particular cases the stresses in
orthotropic elastic layered half-space, isotropic elastic layered half-
space and due to shear line-load in monoclinic elastic half space have
been obtained. Numerically, in the monoclinic elastic half-space, the
variation of shear stresses with the horizontal distance has been
studied.
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I. INTRODUCTION

S mentioned by Crampin [1], monoclinic symmetry is the
symmetry of two sets of non orthogonal parallel cracks,
where the plane of symmetry is perpendicular to the lines
of intersection of the two sets of crack faces. Monoclinic
symmetry of the systems of cracks may be found near the
surface of the Earth where lithostatic pressures have not closed
cracks perpendicular to the maximum compressional stress.
The solution of the problem of the deformation of a
horizontally layered elastic material under the action of the
surface loads has been finding wide applications in
engineering, geophysics and soil mechanics. When the source
surface is very long in one direction in comparison with the
others, the use of two-dimensional approximation is justified
and consequently calculations are simplified to a great extent
and one gets a closed form analytical solution. A very long
strip-source and a very long line-source are examples of such
two-dimensional sources. Love [2] obtained expressions for
the displacements due to a line source in an isotropic elastic
medium. Maruyama [3] obtained the displacement and stress
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fields corresponding to long strike-slip faults in a homogenous
isotropic half-space. Okada [4,5] provided compact analytic
expressions for the surface deformation and internal
deformation due to inclined shear and tensile faults in a
homogenous isotropic half-space. Garg et al. [6] obtained an
analytical solution for the deformation of an orthotropic
layered half-space caused by along strike-slip fault. Ting [7]
derived the Green’s functions for a line force and a screw
dislocation for the anti-plane deformation of a monoclinic
elastic medium consisting of a single half-space or two half-
spaces in ‘perfect’ contact. The calculation of anti-plane
deformation due to a line source in a monoclinic medium is
much more difficult than the corresponding calculation for a
source in an orthotropic medium because of the presence of
the mixed derivatives in the equation of equilibrium.

In the present paper, we have obtained the closed-form
expressions for the stresses in an horizontal monoclinic elastic
plate of an infinite lateral extent lying over a base due to strip-
loading. In geophysics, the elastic plate represents the crust of
the earth. The interface between the plate and the base may be
either ‘perfectly bonded’, ‘smooth-rigid’ or ‘rough-rigid’. The
deformation of the monoclinic elastic plate corresponding to
each type of the interface has been obtained. The deformation
of a monoclinic elastic uniform half-space due to strip-loading
can be obtained from our results as particular case. As
particular cases: the stresses in orthotropic elastic layered half-
space, isotropic elastic layered half-space and due to shear
line-load in monoclinic elastic half space have been obtained.
Numerically, we have studied the variation of stresses.

Il. FUNDAMENTAL EQUATIONS
The constitutive matrix equation of a monoclinic material
has the following form [8]

71| [en € Gz 0 0 cy e
73 Cho Cp C3 0 0 Cy €
73 |_|C3 Cas Cs 0 Cs36 || €3 1)
T, 0 O 0 ¢y Cs5 0 |ley
7| |0 0 0 cp Cs O | eg
176] [Ci6 Cas C 0 0 cCe e

In equation (1), we used Voigt’s convention by which the
tensional indices are replaced by matrix indices in the
expression of the stress and shear components z; ande;

(1=12,34,56). The elements c;,i, j=12,34,56 of the

stiffness matrix from (1) represent the elasticity’s of the
monoclinic material.
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The field’s equations of a monoclinic material in anti-plane
strain equilibrium state are:
-displacement equations:

Up =U, =0, Uz =U3(X;, X, ); )
-strain equations:

1
€1 =€y =€33 =€, =0, €5 :Eusm €23 :EUS,Z! 3)
-stress equations:
Ty =Ty =Tg3 =11 =0, 73 =Cp5Ug+ Co5Ugy, Tog =Cyy Ut CslUgy (4)

Consequently, Cauchy’s first two equations are identically
satisfied and the third equation becomes
T131 + 7232 =0 ®)
Using equations (4) and (5), the equilibrium equation
satisfied by u, can be written in the following form:
u 3,11+Cﬂu 3,12+Cﬂu 3,2=0. (6)
Css 55

I1.LFORMULATION AND SOLUTION OF THE
PROBLEM
We consider a horizontal monoclinic elastic plate of
thickness H lying over a base. The origin of Cartesian co-
ordinates system (x, X, x3) is taken at the upper boundary of

the plate and x;-axis is drawn into the medium. The
monoclinic elastic plate occupies the region 0<x; <H and
the region X; > H is the base over which the plate is lying

(Fig. 1).
P
h X,

Monoclinic

Base

v
Xy
Fig. 1. Section of the model by the plane x5 = 0.

Let a shear-load P per unit area is acting over the strip
[Xo| <hof the surface % =0 in the positive x; — direction.

The boundary condition at the surface X, =0is
=P, |xs|<h o
700, x| >h

The interface x; = H between the plate and the base may be
either ‘smooth-rigid’ or ‘rough-rigid’ or ‘perfectly bonded’.
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A. Interface Conditions

When the interface x; =H is of the smooth-rigid type, the
condition is [9]
ry1(X =H)=0, ®)

When the interface is in rough-rigid contact at x, = H , the
condition is [9]
uz(x, =H)=0. 9)

When the plate and the base are in perfectly bonded at
X, =H, the continuity of the displacement and shear stress

74, implies [10]
Us(x, =H-)=u3(x =H+)

Tsl(xl =H _): 731 (Xl =H +)- (10)

We shall find the deformation field at any point of the
monoclinic elastic plate corresponding to each type of contact
between the plate and the base due to strip-loading.

The Fourier transform of X(xl, x2) is defined as

X (%, k)= jx(xl,xz)eikxzd Xs , (11)

so that

X(xl,xz):iJ‘)?(xl,k)e‘”‘x?dk. (12)

2z i
Taking the Fourier transform of (6), we get

2 —
d u23_2 Cas d“_3_cik253:o, (13)
d x{ Css dx;  Css

The solution of the ordinary differential equation (13) is

U, = (Cleml‘k‘x1 Jr(Zzefml‘k‘Xl)eimzk X (14)
c c
wherem; =m;-m2, m, =-% m, =% and C; and
Css Css
C, may be functions of k.
By using inverse Fourier transform, we have
us = zi J.(Cle ml\k\x1+C2e—m1\k\x1)e—i(x2—m 2 Xl)kd k. (15)
T

—o0

Using equation (15) and equation (4), the shear stresses are

Ta = ;-_711_ J-(Cleml‘k‘xl —Czefm 1\@"1) e*i(xrm le)k‘k‘ dk, (16)

Tgp = T1|:m2 J‘(Cleml\k\xl 7C297m 1\k\xl)e—i(x z—mle)k ‘k‘d K

2 (17)

—o0

—im, _f(cle”“““ X1 cpe ™M lee’i( xz=max 1)k i g k}.

where T, = m;Cg5 . Using the boundary condition (7), we
have
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T
Therefore,
=1 [MjeikXde. (19)
7 J k
From (16) and (18), we obtain
2P sin kh
C,-C, = . 20
1 2 T1 ( k|k| J ( )

Smooth-Rigid Interface
When the contact between the plate and the base at x; = H

is smooth-rigid, the interface condition (8) and equation (16)
yield

ce™MH _c e kM _g. (1)
From (20)-(21), we have
. _ 2Psinkh e 2m IKIH
VUOTk|K | p_e2ml KM )
C, - 2P sinkh 1 . 22)
T klk| (1— g 2mikIH

The displacement of monoclinic elastic plate for a smooth-
rigid interface can be obtained from (15)-(17) and (22). The
integral expression for the displacement is obtained as:

ik

4 ie—ml\ K (2 nH—xl)}e—i (x ;—m 2X1)kd K.

n=1

T sin kh
4 kK|

Uz =

o0
—ml\ K|% N Ze—ml\ k|[(2nH+x)

T T1 —

(23)
and the analytical expressions for the shear stresses r53; and
73, inan elastic plate are obtained as:

2hm; %
m; %)+ mf ¢

2hm (2nH +x,)
—myx F+mZ(2nH+x ) -

he "

0

731 = —E tanil
7 (%2 -
+2
n

{tan‘l
=1

h2
2hm, (2nH —x)

mf(ZnH—xl)z—th'

(24)

—tan >
m, Xl) +

(-
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2hmy x;

=)
Tap = —{mz{tanl
4 (x2

2hm;(2nH +x,)

—myx; )? +mZxZ —h?

h2
2hm;(2nH —x;)

(x, =m, x,)> +mZ(2nH +x,)* -
—myx)? +mZ(2nH —x,)? -
[(xo —my x;)+h] 2+ [my x,] 2

[(x; =my x;)—h] 2+[my x,] 2

[(x; =my x3)+h] 2+ [m(2nH +x,)]?
[(Xz —m; Xl)*h] 2+[m1(2n H +x1)] 2

—m, x;)+h]2+[m(2nH —x;)]? ]H
5 .
Rough-Rigid Interface

—m; Xl)—h]2+[m1(2nH—x1)]
When the contact is rough-rigid then after using the

(25)
[(Xz

(%,

interface condition (9) in equation (15), we obtain
c,e™ M e N _o, (26)
From (20) and (26), the values of C,and C, are found to
be
_ 2Psinkh[ e *mK"
YTk [ ppe2mlKH
2P sinkh 1
C, = . 27
2= 1 kK [“em o J @)
Using (27) in equation (15), the displacement is
Uy = P Tsinkh 7m1‘ k|% N i (—l)n e—ml‘ k|(2nH+x, )
zTy 7 k|k| —~
_i(_l)n e—ml\ k|(2nH xl):|e—i(x2—m2x1)k dk.. (28)

n=1

The analytical expression for the stresses are obtained as:

2hmx,

Pl 4
=——|tan
o 7[{ (Xz—mle)2+mllez—h2
2hmy(2nH +x,)

-1)"itan™t
{ (X, —my x, P +mZ(2nH +x, ) —h?

2hm, (2nH - x,) H

J+mZ(2nH —x, ) —h?

(29)

(%, —m, x
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P ) 2hmyx
T3, = ——| Mystan > 3
7 (Xz—mle) +mixy=h

an! 2hm, (2nH +x)
(x, —myx P +mZ(2nH +x, )’ —h?
tan 2hm; (2nH - x,)
(x, —my %, ) +m?Z (2nH — x,  —h?

M [(x, = my )+ P +[myx,
{I ’ [0, = my %)= hF + [y [

1o [(x, —my %)+ hF + [my(2nH + % )P
1( Y [I ’ [0 = my x)=hF + [my(2nH + x )P

[(Xz —m, X1)+ h]2 + [m1(2 nH — Xl)]2 JH

+
0
=

[

>
Il
[N

n=.

(30)

o9 [(x, = my %)= + [my(2nH - Xl)]z

Perfect Contact
The displacement in the monoclinic elastic half-space
X, >H is

uj _1 _[Cé oMk efi(xzfm’le)kdk’
27 i 31)
where

C!

mj =yJmp —m3?, mj == mj =
Css Cs5

is to be determined from the boundary conditions. Then

and the coefficient C,

T31 = (32)

_ jcg o™ g -md Xl)k|k|dk.
27

where T =mj Cgs .
Equations (10), (15), (16), (31) and (32) yield the relations
(Cleml‘ k|H +C267ml‘ k\H)eikmzH _ Céefmll [ K[ Hgikm; H

(33)
(Cleml\k\H e \k\H)elkmzH iy MHHgImiH.
(34)
Solving (20), (33) and (34), we get
_2Psinkh( ve 2mlkH
1 T1k|k| 1_Ve—2m1‘k‘H '
2P sin kh 1
C, = , 35
2 T, k|k| (1_Ve—2m1kH ] (35)
o, _ APsinkh g Ak +iB kH T
27 Tk | 1ove2mKH (T +1)
where
T=T,/T, V=T-1)/(T+1), A=m,-m; and B=m,-mj.  (36)

Using (31) in equations (15), (16) and (17), we obtain the
deformation field as follow:

Issue 2, Volume 5, 2011

60

k[K

o0
Uy = % sinkh { _ml‘k‘xl +ZV ne—m1\k\(2nH+x1)

ﬂTl 2 ~

. ZV ne—ml\k\(Zn Hxl):le_i(xz_mle)kdk-,

n=1
2hm, x4
m, % f +m?x?—h?

P
T4 = ——| tan™*
7z (%, —
+ ZV “{tan‘1
n=1

2hm (2nH +x)
—myx P +m2(2nH +x ) —h?

—tan™!

2hm,(2nH - x,) H

(X —myx P +mZ(2nH —x, )* —h?

Tan __P m,J{tan~t
7 (%2

< _ 2hmy(2nH + x,)
+> V" tan™ 1
n=1 [ (xz —mpx ) +m(2nH + %, ) —

2hmy(2nH — x,) j}

2hmyx;
—myx )? +m2xZ —h?

(xp — My 2 +m2(2nH — x> — h?

—tan™?
{ [(x2 —myx )+ h] +[m1X1]
2 [(Xz—mle) h] [m1X1]2

4 S\ n o [(x = myx)+ h P +[my(2nH + % )P
ZV [I ’ [(x; —myx ) — h]2 +[my(2nH + Xl)]2

(20K )F JH
P m@nH )P

H and for x; > H

[(Xz
[(Xz

for0<x; <

—myx )+ h]
—myx;)—h]

+log
, 2P

Ul -
3T, (T+l)

o0
Vo ml\k\(znmxl) Alk|H +iBkH }e i(x,— m’le)kdk’

sinkh [ —my k|, — AJK| H-+iBKH
A

+

n=

, 2P 4 2h(m; x + AH)
T'g =~ tan
2(1+T) (x, —mj x, —iBH }* + (m; %, + AH }? —h?

+ZV”tan’1 ZIh(anmlH +m; X + AH)
P (xp —myx, ~1BH)

2h (m; %, + AH)

+(2nmH +mix + AHP —h? |

—mix, —iBH

4 2P my<tant
7{1+T) (x,

+(m; x, + AH? —h?

+iv”tan’1 2'h(2nHm1+m1x1+AH) :
™, (x, —myx, —iBH Y + (2nHm, +m; %, + AH) —h
o Ogl(xz—mzx1 iBH +h)? +(m] x, + AH ) ]
2 {(xz—mle—lBH h)? +(m; %, + AH) J

—mix, —iBH +h)?
—mjyx —iBH —h}

+ZV log %

+(2nHm, +mi x + AH )

+(2nHm, +mx + AH) H

37)

(38)

(39)

(40)

(41)

(42)
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We obtain that the deformation fields for smooth-rigid and
rough-rigid interfaces can also be obtained from the
deformation field for the perfectly bonded case respectively,
on substituting V =1 andV =-1.

IV.PARTICULAR CASES
A. Orthotropic Elastic Layered Half-Space

. c
Takingc,s =0 (l.e. m =my = ﬂ,mz = Oj in the

Css

equations (37)-(42), we obtain the deformation for an
orthotropic elastic layered half-space.

B. Isotropic Elastic Layered Half-Space

Taking C45 =0and Cpy =Cg5 =
(i em=mg=1m,= 0) in the equations (37)-(42), we obtain
the deformation field for an isotropic elastic layered half-space

C. Shear Line-Load in Monoclinic Elastic Half Space
P
Taking P = 2—;)] (shear Line-load) and proceeding to limit

h — 0, we obtain the deformation field caused by shear line-
load Py ,per unit length, acting at the boundary x, =0of the
semi-infinite monoclinic elastic medium in the positive X; —
direction

P, ¢, _ _
u, = —2 Ik tcos(x, —m,x, )e ™" dk
7T %
—__P_o [(x —m,X )2+m2x2]
- g 2 2N 1M )
27T,
(43)
Ty = ——c ben]_Xl .
. n[(xz—m2x1)2+m12x12J, (44)
Pom X,
Tap =— .
. ﬁ[(xz—m2x1)2+m12xfj (45)

V.NUMERICAL RESULTS
In this section, we wish to show the variation of following
stresses with the horizontal distance in a monoclinic elastic
half-space due to strip-loading on taking m; =mjand m, =mj
i.e. T=1and V =0in the equations (40)-(42)

P sinkh efm,l‘k‘xle—i(xz—mle)kdk.,
K[k

- rTy (46)

Uz

—00
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P 1 thlxl
131:—”[tan ( 5 2 2 hz ,
Xz—mle) tMyx -

(47)
P a1 2hmy x
Ty =——| M, tan
* ”{ ’ (Xz_mz x1)2+m12x12—h2
BTN (C X1+h)22+mfxli}} (48)
2 {(Xz—mz Xl_h) +m £y }

Further, we use the elastic constants (in Gpa) for Dolomite
given by Rasolofosaon and Zinszner [11]

C;y =65.53 Cyp =65.53 C3 =12.19
Cig =2.94 Cy =50.77 C,; =11..61
Cy3 =60.11 Cys =—0.19 Cq =0.84
Cy =2351 Cs5 =1.49 Cy5 = 24.57
Cgs =20.21.

Figures 2(a)-(c) show the variations of shear stress 75, with
the horizontal distance x, for different values of h=0.25,
0.50, 0.75 and 1 by taking x, = 0.25, 0.75 and 1.5.

40 - X, = 0.25

.
®eq
.
®%cccccccce

Fig. 2(a)

40 A X, =0.75

20

-2.
rt\-zo .
T
| -40 -

-60 -

-80

-100 -

Fig. 2(b)
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Fig.2. Variation of stress 3, with the horizontal distance x,
for different values of h=0.25,0.50,0.75and 1 for (a) x, =
0.25, (b) x;=0.75 and (c) x, =1.5.

Figures 3(a)-(c) show the variations of shear stress 3, with
the horizontal distance x, for the same values. It has been

found from all the figures that the distance between stresses
increases in magnitude.

11072
220 -
m-30 1
73,740 4
50 -
60 -
70 -
80 -
90 -

-20

T2-30

-40 -
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Fig. 3(b)
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