
 

 

   Abstract— The closed-form expressions for the stresses at any 

point of monoclinic elastic plate interfacing differently with the base 

due to strip-loading are obtained. The interface between the elastic 

plate and the base is assumed to be either „perfectly bonded‟ or 

„smooth-rigid‟ or „rough-rigid‟. As particular cases the stresses in 

orthotropic elastic layered half-space, isotropic elastic layered half-

space and due to shear line-load in monoclinic elastic half space have 

been obtained. Numerically, in the monoclinic elastic half-space, the 

variation of shear stresses with the horizontal distance has been 

studied. 
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I. INTRODUCTION 

 

S mentioned by Crampin [1], monoclinic symmetry is the 

symmetry of two sets of non orthogonal parallel cracks, 

where the plane of symmetry is perpendicular to the lines 

of intersection of the two sets of crack faces. Monoclinic 

symmetry of the systems of cracks may be found near the 

surface of the Earth where lithostatic pressures have not closed 

cracks perpendicular to the maximum compressional stress. 

The solution of the problem of the deformation of a 

horizontally layered elastic material under the action of the 

surface loads has been finding wide applications in 

engineering, geophysics and soil mechanics. When the source 

surface is very long in one direction in comparison with the 

others, the use of two-dimensional approximation is justified 

and consequently calculations are simplified to a great extent  

and one gets a closed form analytical solution.  A very long 

strip-source and a very long line-source are examples of such  

two-dimensional sources. Love [2] obtained expressions for 

the displacements due to a line source in an isotropic elastic 

medium. Maruyama [3] obtained the displacement and stress 
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fields corresponding to long strike-slip faults in a homogenous 

isotropic half-space. Okada [4,5] provided compact analytic 

expressions for the surface deformation and internal 

deformation due to inclined shear and tensile faults in a 

homogenous isotropic half-space. Garg et al. [6] obtained an 

analytical solution for the deformation of an orthotropic 

layered half-space caused by along strike-slip fault. Ting [7] 

derived the Green‟s functions for a line force and a screw 

dislocation for the anti-plane deformation of a monoclinic 

elastic medium consisting of a single half-space or two half-

spaces in „perfect‟ contact. The calculation of anti-plane 

deformation due to a line source in a monoclinic medium is 

much more difficult than the corresponding calculation for a 

source in an orthotropic medium because of the presence of 

the mixed derivatives in the equation of equilibrium. 

In the present paper, we have obtained the closed-form 

expressions for the stresses in an horizontal monoclinic elastic 

plate of an infinite lateral extent lying over a base due to strip-

loading. In geophysics, the elastic plate represents the crust of 

the earth. The interface between the plate and the base may be 

either „perfectly bonded‟, „smooth-rigid‟ or „rough-rigid‟. The 

deformation of the monoclinic elastic plate corresponding to 

each type of the interface has been obtained. The deformation 

of a monoclinic elastic uniform half-space due to strip-loading 

can be obtained from our results as particular case. As 

particular cases: the stresses in orthotropic elastic layered half-

space, isotropic elastic layered half-space and due to shear 

line-load in monoclinic elastic half space have been obtained. 

Numerically, we have studied the variation of stresses.  

 

II. FUNDAMENTAL EQUATIONS 

The constitutive matrix equation of a monoclinic material 

has the following form [8] 
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In equation (1), we used Voigt‟s convention by which the 

tensional indices are replaced by matrix indices in the 

expression of the stress and shear components i  and ie

 6,5,4,3,2,1i . The elements 6,5,4,3,2,1,, jicij  of the 

stiffness matrix from (1) represent the elasticity‟s of the 

monoclinic material.   
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The field‟s equations of a monoclinic material in anti-plane 

strain equilibrium state are: 

-displacement equations: 

 ;,,0 213321 xxuuuu 
           (2)

 

-strain equations: 

;
2

1
,

2

1
,0 2,3231,33112332211 ueueeeee      (3) 

-stress equations:

.,,0 1,3452,344231,3552,3453112332211 ucucucuc  
   

(4)

 

Consequently, Cauchy‟s first two equations are identically 

satisfied and the third equation becomes  

02,231,13  .                                                             (5) 

Using equations (4) and (5), the equilibrium equation 

satisfied by 3u  can be written in the following form: 

022,3
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III.FORMULATION AND SOLUTION OF THE 

              PROBLEM 

We consider a horizontal monoclinic elastic plate of 

thickness H lying over a base. The origin of Cartesian co-

ordinates system  321 xxx  is taken at the upper boundary of 

the plate and 1x -axis is drawn into the medium. The 

monoclinic elastic plate occupies the region Hx  10 and 

the region Hx 1 is the base over which the plate is lying 

(Fig. 1). 

                                               P 
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      H                                             Monoclinic 
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Fig. 1. Section of the model by the plane 3x  = 0. 

 

Let a shear-load P per unit area is acting over the strip 

hx 2 of the surface 01 x
 
in the positive 3x direction. 

The boundary condition at the surface 01 x is  
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The interface Hx 1 between the plate and the base may be 

either „smooth-rigid‟ or „rough-rigid‟ or „perfectly bonded‟.  

 

 

A. Interface Conditions 

When the interface Hx 1  is of the smooth-rigid type, the 

condition is [9]  

  .Hx 0131                                                                   (8) 

 

When the interface is in rough-rigid contact at Hx 1 , the 

condition is [9] 

  .013  Hxu                                                                      (9) 

 

When the plate and the base are in perfectly bonded at

Hx 1 , the continuity of the displacement and shear stress

31  implies [10] 

   .1313  HxuHxu
 

   .131131  HxHx                                          (10) 

                                                                                       

We shall find the deformation field at any point of the 

monoclinic elastic plate corresponding to each type of contact 

between the plate and the base due to strip-loading.  

The Fourier transform of  21, xxX is defined as 

    2211
2,, xdexxXkxX
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so that  
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   Taking the Fourier transform of (6), we get 
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   The solution of the ordinary differential equation (13) is 

  121111

213
xkmixkmxkm

eeCeCu


 .       (14) 

where
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mmmm   and 1C  and 

2C  may be functions of k. 

By using inverse Fourier transform, we have 
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Using equation (15) and equation (4), the shear stresses are 
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(17)                                        

where 5511 cmT  . Using the boundary condition (7), we       

have 
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From (16) and (18), we obtain 

.
kk

khsin

T

P
CC
















1
21

2
                                            (20) 

 

Smooth-Rigid Interface  

 When the contact between the plate and the base at Hx 1

is smooth-rigid, the interface condition (8) and equation (16) 

yield
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             (21)  

 

From (20)-(21), we have 

 






















Hkm

Hkm

e

e

kkT

khsinP
C

1

1

2

2

1
1

1

2
,        

.
ekkT

khsinP
C

Hkm 
















 12
1

2

1

12
               (22) 

 

The displacement of monoclinic elastic plate for a smooth-

rigid interface can be obtained from (15)-(17) and (22). The 

integral expression for the displacement is obtained as: 

 

                                                                                         (23) 

and the analytical expressions for the shear stresses 31
 
and

32
 
in an elastic plate are obtained as: 
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Rough-Rigid Interface

 

When the contact is rough-rigid then after using the 

interface condition (9) in equation (15), we obtain

.eCeC
HkmHkm
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                                               (26)
 

From (20) and (26), the values of 1C and 2C  are found to 

be 
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   Using (27) in equation (15), the displacement is 
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 (28)              

The analytical expression for the stresses are obtained as: 
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Perfect Contact 

The displacement in the monoclinic elastic half-space 

Hx 1  is 
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 and the coefficient 2C 

is to be determined from the boundary conditions. Then 
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where 5511 cmT  . 

Equations (10), (15), (16), (31) and (32) yield the relations 
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Solving (20), (33) and (34), we get 
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where  

    1111 11 mmA,TTV,TTT  and 22 mmB  .      (36) 

   

   Using (31) in equations (15), (16) and (17), we obtain the 

deformation field as follow: 
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for Hx  10 and for Hx 1  
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We obtain that the deformation fields for smooth-rigid and 

rough-rigid interfaces can also be obtained from the 

deformation field for the perfectly bonded case respectively, 

on substituting 1V  and 1V . 

 

IV.PARTICULAR CASES 

 

A. Orthotropic Elastic Layered Half-Space 

Taking 045 c
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in the 

equations (37)-(42), we obtain the deformation for an 

orthotropic elastic layered half-space. 

  

B. Isotropic Elastic Layered Half-Space 

Taking 045 c and  5544 cc

 01 231  m,mm.e.i in the equations (37)-(42), we obtain 

the deformation field for an isotropic elastic layered half-space 

.  

C. Shear Line-Load in Monoclinic Elastic Half Space 

Taking
h

P
P

2

0  (shear Line-load) and proceeding to limit 

,h 0  we obtain the deformation field caused by shear line-

load ,P0 per unit length, acting at the boundary 02 x of the 

semi-infinite monoclinic elastic medium in the positive 3x

direction 
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V.NUMERICAL RESULTS 

In this section, we wish to show the variation of following 

stresses with the horizontal distance in a monoclinic elastic  

half-space due to strip-loading on taking 11 mm  and 22 mm 

i.e. 1T  and 0V in the equations (40)-(42)  
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Further, we use the elastic constants (in Gpa) for Dolomite 

given by Rasolofosaon and Zinszner [11] 
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Figures 2(a)-(c) show the variations of shear stress 31 with 

the horizontal distance 2x for different values of h 0.25, 

0.50, 0.75 and 1 by taking 1x  = 0.25, 0.75 and 1.5.  
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Fig. 2(c) 

 

Fig.2. Variation of stress 31 with the horizontal distance 2x

for different values of 750500250 .,.,.h  and 1 for (a) 1x  = 

0.25, (b) 1x =0.75 and (c) 1x =1.5. 

Figures 3(a)-(c) show the variations of shear stress 32 with 

the horizontal distance 2x  for the same values. It has been 

found from all the figures that the distance between stresses 

increases in magnitude. 

 

 
Fig. 3(a) 

 

 Fig. 3(b) 
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