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Abstract – The problem on normal low-velocity
impact of an elastic falling body upon an elastic spherical
shell is studied. At the moment of impact, shock waves
(surfaces of strong discontinuity) are generated in the
target, which then propagate along the body during the
process of impact. Behind the wave fronts upto the
boundary of the contact domain, the solution is con-
structed with the help of the theory of discontinuities
and one-term or multiple-term ray expansions. Nonlinear
Hertz’s theory and linearized elastic contact laws are
employed within the contact region. For the analysis of
the processes of shock interactions of the elastic sphere
or elastic spherically-headed rod with the spherical shell,
nonlinear integro-differential equation has been obtained
with respect to the value characterizing the local inden-
tation of the impactor into the target, which has been
solved analytically in terms of time series with integer and
fractional powers. In the case of the linear elastic shock
interactions, the governing differential equations for the
target and the impactor are solved analytically by the ray
method.

Keywords – Wave theory of impact, spherical shell,
ray method, Hertz’s contact law, linearized contact law, dy-
namic contact interaction, surface of strong discontinuity.

1 Introduction
The problems connected with the analysis of the shock in-
teraction of thin bodies (rods, beams, plates, and shells)
with other bodies have widespread application in various
fields of science and technology. The physical phenomena
involved in the impact event include structural responses,
contact effects and wave propagation. These problems
are topical not only from the point of view of fundamen-
tal research in applied mechanics, but also with respect
to their applications. Because these problems belong to
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the problems of dynamic contact interaction, their solu-
tion is connected with severe mathematical and calculation
difficulties. To overcome this impediment, a rich variety
of approaches and methods have been suggested, and the
overview of current results in the field can be found in re-
cent state-of-the-art articles by Abrate [1], Rossikhin and
Shitikova [2], [3] and Qatu et al. [4].

In many engineering applications, it is important to
understand the transient behaviour of isotropic as well as
composite thin-walled shell structures subjected to central
impact by a small projectile. The problem on impact of a
rigid body against an elastic spherical shell has repeatedly
considered by different authors using disparate models of
shock interaction [5]–[26].

Thus, Hammel [6] modeled the contact force via a
spring in series with a viscous element, i.e., with a help
of the Maxwell model, in so doing the local bearing of the
shell’s material was ignored. Later Senitskii [7] using the
same problem formulation as in [6] and taking the local
bearing into account studied this problem.

Using the approach which is valid for describing the
shock interaction of a sphere with a infinitely stretched
classical plate [27], as well as Reissner’s approximate the-
ory for transverse vibrations of shallow shells and the qua-
sistatic Hertzian impact theory, Koller and Busenhart [8]
reduced the solution of the problem of the impact response
of a thin shallow spherical shell to a nonlinear integro-
differential equation with respect to the value character-
izing the local indentation of the spherical impactor into
the shell. This equation was numerically integrated and its
main results were experimentally verified.

Recently Her and Liao [16] solved the non-linear
integro-differential equation derived in [8] by the numer-
ical scheme of Runge-Kutta method to obtain the time his-
tory of the contact force at the impact point of the shell.
The contact force is then applied on the apex of the shell
in order to investigate the dynamic response of the shell
including the displacement and stress fields by the finite
element method.

Method of finite elements was adopted by Lee and
Kwak [9] for the analysis of low-velocity impact of spheres
on thin elastic isotropic shell structures with due account
for transverse shear deformations in the target using eight-
node degenerated shell element. The impact phenomenon
was described by a one degree-of-freedom model based on
Hertzian contact theory. The discretized nonlinear impact
equations were numerically integrated using the Adams
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predictor-corrector method. It has been found that the max-
imum contact force increases noticeably as the impact ve-
locity of the sphere becomes higher, while the contact du-
ration does not change considerably.

Later Liu and Swaddiwudhipong [10] generalized the
approach suggested in [9] by using a nine-node degener-
ated shell element with assumed shear and membrane strain
fields to model the laminated composite target, where the
effect of large displacement and change in thickness during
the impact process have been included. Both the Hertzian
contact law and the modified Hertzian contact law were in-
corporated into the finite element program to establish the
contact force history. The comparison of numerical results
with those presented in [8] and [9] has exhibited reasonably
good agreement.

The composite laminated shell structures subjected to
low-velocity impact have been studied using ANSYS/LS-
DYNA finite element software in [14]. The impact re-
sponses have been presented for the contact force and cen-
tral deflection based on the modified Hertzian contact law.
Numerical results have shown that structures with greater
stiffness, such as smaller curvature and clamped boundary
conditions, result to a larger contact force and a smaller
deflection. The impact response of the structure is propor-
tional to the impact velocity.

Damage analysis and dynamic response of elasto-
plastic laminated composite shallow spherical shell un-
der low velocity impact have been carried out by Fu et.
al [?] and [19]. Using the classical nonlinear shell the-
ory, a series of incremental nonlinear motion equations of
orthotropic moderately thick laminated shallow spherical
shell are obtained, which are solved by adopting the or-
thogonal collocation point method, Newmark method and
iterative method synthetically. A modified elasto-plastic
contact law is developed to determine the normal con-
tact force. The effect of damage, geometrical parameters,
elasto-plastic contact and boundary conditions on the con-
tact force and the dynamic response of the structure under
low velocity impact are investigated.

An approximate analytical model to predict the re-
sponse of a fluid-filled spherical shell impacting by a solid
elastic sphere was proposed in [13]. The model based on
combining the Hertzian contact stiffness and the effective
local membrane and bending stiffness was used to study the
response of the human head to impact.

The nonlinear dynamic behavior of transversely
isotropic shallow spherical shells on Winkler foundation
subjected to impact force was studied in [20]. Based on the
nonlinear theory of shallow shells, a set of nonlinear equa-
tions of motion for transversely isotropic shallow spherical
shells on Winkler foundation subjected to an eccentric im-
pact force were founded. Considering the effect of contact
between the striking object and the shallow shells, using the
orthogonal point collection method, the effects of striking
object’s initial velocity, the point of contact, Winkler foun-

dation and shell’ geometrical parameters on the dynamic
response of shell were discussed.

Experimental studies on dynamic behavior of thin-
walled spheres in response to different impact velocity are
presented in [22]. Ping pong balls are selected to study the
collapse of thin-walled spheres. The tests were carried out
by a modified Split Hopkinson Pressure Bar (SHPB) test
system. The experimental results show that the deforma-
tion of thin-walled spherical shells depends on the impact
velocity. The dynamic force in the range of small elas-
tic deformation is larger than its quasi-static counterpart,
but significantly below the latter after snap-through of the
shell. The deformation and buckling mode are sensitive to
the loading rate. It is noted that the strain rate effect of the
materials and the inertia effect of the shell should be con-
sidered in the analysis of the shells response to dynamic
loading.

A study of the collapse behaviour of hemi spherical
and shallow spherical shells and their modes of deforma-
tion under impact loading are presented in [23]. Alu-
minium spherical shells of various radii and thicknesses
were subjected to impact loading under a drop hammer and
the load histories were obtained in all the cases. Three-
dimensional numerical simulations were carried out for all
the tested specimen geometries using LS-DYNA. Material,
geometric and contact nonlinearities were incorporated in
the analysis. The uni-axial stress-strain curve for the mate-
rial was obtained experimentally. The results from impact
experiments are used for the validation of the numerical
simulations.

The normal impact of an elastic sphere upon an elas-
tic isotropic spherical shell was also considered in [24].
The elastic features of the impactor were modeled by a lin-
early elastic spring, while the equations of motion of the
spherical shell were adopted from the paper by Biryukov
and Kadomtsev [11], who used the membrane theory of
shells for describing the shock interaction of the shell with
a spherical impactor.

Recently Rossikhin and Shitikova [15] have developed
a new formulation of the ray method which is applicable
for analyzing the propagation of surfaces of strong and
weak discontinuity in thin elastic bodies when the wave
fronts and the rays are referenced to the curvilinear sys-
tem of coordinates. It should be noted that the ray method
is primarily used for obtaining the problem solution analyt-
ically. This approach is based on the reduction of the three-
dimensional equations of the dynamic theory of elasticity,
which first should be written in discontinuities, to the two-
dimensional equations by virtue of integration over the co-
ordinate perpendicular to the middle surface of a thin body.
The recurrent equations of this ray method are free from
the shear coefficient, which is usually inherent to the Tim-
oskenko type theories, and involve only two elastic con-
stants: Poissons ratio and elastic modulus of elongation.

The theory proposed in [15] is applicable for short
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times after the passage of the wave front, but it possesses
the simplicity inherent in the “classical” theory of thin bod-
ies. The advantages of this approach have been readily il-
lustrated by solving the engineering problems on normal
impact of an elastic thin cylindrical and spherical projec-
tiles against an elastic spherical shell, respectively, in [25]
and [26]. Nonlinear Hertz’s theory was employed within
the contact region, resulting in the nonlinear differential
equation with respect to the value characterizing the local
indentation of the impactor into the target, the analytical
solution of which was found in terms of time series with
integer and fractional powers. It has been shown that the
contact duration and the peak of the contact force gradu-
ally decrease for increasing shell curvature. The similar
conclusion concerning the contact duration can be found in
[8].

In the present paper, the analytical approach proposed
in [25] and in [26] for the analysis of the dynamic response
of the elastic isotropic spherical shell subjected to the im-
pact by elastic spherical and long cylindrical hemisphere-
nose projectiles will be revised first. Then instead of the
nonlinear Hertzian law we will use linearized elastic inter-
action law within the contact region, resulting in algebraic
equations for the dsiplacements of the target and the im-
pactor.

2 Impact response of a spherical
shell of the Timoshenko type

Let an elastic sphere with the radius r0 and mass m (Fig.
1) or a long cylindrical elastic rod of radius r0 with a hemi-
spherical nose of the same radius (Fig. 2) move along the
x3-axis with the velocity V0 towards an elastic isotropic
spherical shell of the R radius .

The impact occurs at the initial instant of time at x3 =
R. At the moment of impact, two shock wave lines (sur-
faces of strong discontinuity) are generated in the shell,
which then propagate along the shell during the process of
impact. During transition through the wave line, the fol-
lowing wave fields experience the discontinuities: stresses,
velocities of displacements, and the values of the higher
order time-derivatives in the displacements.

2.1 Geometry of the wave surface
A wave-strip is a ruled cylindrical surface consisting of the
directrix C, which is the wave line propagating along the
median surface of the shell, and the family of generatrices
representing the line segments of the length h, which are
perpendicular to the shell’s median surface and thus to the
wave line, and which are fitted to the wave line by their
middles. Let us take the family of generatrices as the u1-
curves, where u1 is the distance measured along the straight
line segment from the C curve, and choose the distance
measured along the C curve as u2 (Fig. 3). The u1-family

Figure 1: Scheme of the shock interaction of a falling
sphere with a spherical shell

is the family of geodetic lines. In this case, all conditions
of the McConnel theorem are fulfilled, and a linear element
of the wave surface takes the form [28]

ds2 = (du1)2 + g22(u1, u2)(du2)2, (1)

in so doing
g22(0, u2) = 1, (2)

where g11 = 1, g22, and g12 = 0 are the covariant
components of the metric tensor of the wave surface.

The Gaussian curvature for the linear element (1) is
defined by the following formula [28]:

K = − 1
√
g22

∂2√g22
(∂u1)2

= 0. (3)

Integrating Eq. (3) and considering formula (2) yields

√
g22 = 1 + cu1, (4)

where c is a certain constant.
It is known that small distances along the coordinate

lines u2 are defined by the formula [28]

ds2 =
√
g22 du

2,

or considering (4)

ds2 = (1 + cu1)du2. (5)

Let us rewrite formula (5) in the form

ds2 − du2

du2
= cu1,
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Figure 2: Scheme of the shock interaction of a falling cylin-
drical rod with a shell

Figure 3: Scheme of the propagating wave-strip along the
spherical shell surface

and integrate the result relationship with respect to u1 from
−h/2 to h/2. As a result we obtain∫ h/2

−h/2

ds2 − du2

du2
du1 = 0,

or ∫ h/2

−h/2

ds2
du2

du1 = h. (6)

Equation (6) can be written as

1
h

∫ h/2

−h/2

√
g22 du

1 = 1,

i.e., the mean magnitude of the value
√
g22 over the thick-

ness of the shell is equal to unit.
If the shell’s thickness is small, then it is possible to

consider approximately that

√
g22 ≈ 1 (7)

at any point of the wave surface.
Since all values for the shell are averaged over its thick-

ness, then such an approximation for
√
g22 is not unreason-

able.
The linear element (1) with due account for (7) can be

approximately written as

ds2 ≈ (du1)2 + (du2)2, (8)

i.e., it looks like a linear element on the plane in the Carte-
sian set of coordinates.

Now let us define a linear element of the median sur-
face of the shell. Since the rays intersecting the line C
(the wave line) under the right angles are the family of the
geodetic lines, then we once again are under the conditions
of the McConnel theorem, and thus the linear element of
this surface takes the form

ds2 = (du1
∗)

2 + g22(du2)2, (9)

but considering formula (7) it can be rewritten in the form
of (8) by substituting du1 by du1

∗.

2.2 The main kinematic and dynamic char-
acteristics of the wave surface

Now we write the condition of compatibility on the wave
surface of strong discontinuity. Based on the aforesaid and
considering (7)-(9), it takes the form (see Appendix A)

[ui,j(k)] = −G−1[vi,(k)]λj +
δ[ui,(k)]
δs1

λj

+
δ[ui,(k)]
δs2

τj +
[
δui,(k)ξj

δξ

]
, (10)

where ui are the displacement vector components, G is the
normal velocity of the wave surface, [ui,j ] = [∂ui/∂xj ], xj
are the spatial rectangular Cartesian coordinates, ξ = u1,
s1 = u1

∗, [ui,(k)] = [∂kui/∂tk], t is the time, vi = ui,(1),
λi, τi, and ξi are the components of the unit vectors of the
tangential to the ray, the tangential to the wave surface, and
the normal to the spherical surface, respectively, and Latin
indices take on the values 1,2,3.

Putting k = 0 in (10) yields

[ui,j ] = −G−1[vi]λj +
[
δ(uiξj)
δξ

]
. (11)

Writing the Hook’s law for a three-dimensional
medium in terms of discontinuities and using the condition
of compatibility (11), we find

[σij ] = −G−1λ[vλ]δij −G−1µ ([vi]λj + [vj ]λi)

+ λ[uξ,ξ]δij + µ

([
δ(uiξj)
δξ

+
δ(ujξi)
δξ

])
(12)

where

[vλ] = [vi]λi, [uξ,ξ] =
[
δ(uiξi)
δξ

]
=
[
δuξ
δξ

]
,
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λ and µ are Lame constants, and δij is the Kroneker’s sym-
bol.

Multiplying relationship (12) from the right and from
the left by ξiξj and considering equation

[σξξ] = [σij ]ξiξj = 0,

what corresponds to the assumption that the normal stresses
on the cross-sections parallel to the middle surface could be
neglected with respect to other stresses, we find

[uξ,ξ] =
λ

G(λ+ 2µ)
[vλ]. (13)

Multiplying relationship (12) from the right and from
the left by λiλj , we are led to the equation

[σλλ] = [σij ]λiλj = −G−1(λ+ 2µ)[vλ] + λ[uξ,ξ]. (14)

Substituting (13) in (14) yields

[σλλ] = −4µ(λ+ µ)
λ+ 2µ

G−1[vλ],

or

[σλλ] = − E

1− σ2
G−1[vλ], (15)

where E and σ are the elastic modulus and the Poisson’s
ratio, respectively.

Alternatively, multiplying the three-dimensional equa-
tion of motion written in terms of discontinuities

[σij ]λj = −ρG[vi], (16)

by λi, we obtain

[σλλ] = −ρG[vλ], (17)

where ρ is the density of the shell’s material.
Eliminating the value [σλλ] from (15) and (17), we find

the velocity of the quasi-longitudinal wave propagating in
the spherical shell

G1 =

√
E

ρ(1− σ2)
. (18)

Relationship (15) with due account for (18) takes the
form

[σλλ] = −ρG1[vλ]. (19)

Multiplying (12) by λiξj and (16) by ξi, we have

[σλξ] = [σij ]λiξj = −µG−1[vξ], (20)

[σλξ] = −ρG[vξ], (21)

where [vξ] = [vi]ξi.

Eliminating the value [σλξ] from (20) and (21), we find
the velocity of the quasi-transverse wave

G2 =
√
µ

ρ
. (22)

Considering (22), relationship (20) takes the form

[σλξ] = −ρG2[vξ]. (23)

Note that in the three-dimensional medium only one
value, i.e., [uλ,λ], is nonzero on the quasi-longitudinal
wave, while in the two-dimensional medium, where the
’wave-strip’ propagates, on the quasi-longitudinal wave
there are two nonvanishing values, namely, [uλ,λ] and
[uξ,ξ]. Between these two values it is possible to find the
relationship. For this purpose, we multiply (11) from right
and from left by λiλj and express the values [vλ]

[vλ] = −G1[uλ,λ],

and then the obtained expression we substitute in (13). As
a result we find the desired linkage

[uξ,ξ] = − σ

1− σ
[uλ,λ]. (24)

However, if we simply consider the strains in a thin
body, for example, a plate in the rectangular Cartesian set
of coordinates, assuming that

σzz =
E [(1− σ)uz,z + σ(ux,x + uy,y)]

(1 + σ)(1− 2σ)
= 0,

then it is possible to obtain a little bit another formula

uz,z = − σ

1− σ
(ux,x + uy,y). (25)

From the comparison of (24) and (25) it is seen that in
the right-hand side of (24) the value [uτ,τ ] = [uij ]τiτj is
absent, but its absence is connected with the peculiarities
of the ’wave-strip’, namely: it has free edges at ξ = ±h/2
and a closed contour with respect to s2.

2.3 Governing equations
Thus, behind the front of each of two transient waves (sur-
faces of strong discontinuity) upto the boundary of the con-
tact domain (Fig. 1 or Fig. 2) relationships (19) and (23)
are valid, which are the first terms of the ray expansions
(Fig. 4), i.e.,

σλλ = −ρG1vλ, (26)

σλξ = −ρG2vξ. (27)

Considering the cone angle of the contact spot 2γ as a
small value (Fig. 4), and putting cos γ ≈ 1, sin γ ≈ γ =
aR−1, we obtain

ṽz = ṽξ − ṽλ
a

R
, (28)
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Figure 4: Scheme of velocities and stresses in the shell’s
element on the boundary of the contact domain

ṽr = ṽξ
a

R
+ ṽλ, (29)

σ̃rz = ρG1ṽλ
a

R
− ρG2ṽξ, (30)

where a is the radius of the contact spot, and σ̃rz =
σrz|r=a.

According to the Hertzian theory of contact, during the
loading phase the contact force Fcont is related to the in-
dentation α (i.e., the difference between the displacements
of impactor and target, or the local bearing of impactor and
target materials), by the relationship

Fcont = kα3/2, (31)

where k is the contact stiffness coefficient depending on
the geometry of colliding bodies, as well as their elastic
constants:

k =
4
3π

√
R′

k′ + k′′
, k′ =

1− σ2

E
, k′′ =

1− σ2
im

Eim
,

1
R′

=
1
R

+
1
r0
,

and σim and Eim are the Poisson’s ratio and the Young’s
modulus of the impactor.

In this case, the radius of the contact zone a is con-
nected with the relative displacement α by the following
relationship:

a = R′
1/2
α1/2. (32)

2.4 Normal impact of an elastic sphere upon
an elastic spherical shell

Let us choose a cylindrical set of coordinates r, θ, z = x3

with the center at the original point of tangency of the

sphere and the spherical shell (Fig. 2). Then the equa-
tions of motion of the sphere and the contact spot as a rigid
whole in the chosen coordinate system have the form

m( ˜̇vz + α̈) = −Fcont (33)

ρπa2h ˜̇vz = 2πahσ̃rz + Fcont, (34)

where Fcont is the contact force, and ˜̇vz = v̇z|r=a.
The kinematic condition

ṽr = ȧ (35)

and the initial conditions

α|t=0 = 0, α̇|t=0 = V0, vz|t=0 = 0, (36)

where ṽr = vr|r=a, should be added to equations (33) and
(34).

Integrating (33) over t and considering the initial con-
ditions (36), we find

ṽz = −α̇− k

m

∫ t

0

α3/2dt+ V0. (37)

Eliminating the value ṽz from (28) and (37), we are led
to one of the desired equations

ṽξ − ṽλ
a

R
= −α̇− k

m

∫ t

0

α3/2dt+ V0. (38)

We obtain the second desired equation if first we elim-
inate the value ˜̇vz from (33) and (34) and then exclude the
value σ̃rz from the equation found at the previous step and
from (30) at a time. As a result we obtain

ρG1ṽλ
a

R
− ρG2ṽξ = −1

2
ρa

(
α̈+

k

m
α3/2

)

− k

2πh
√
R′

α. (39)

Solving the set of equations (38) and (39) with respect
to the values ṽλ and ṽξ, we have

ṽξR
−1
√
R′α = − 1

ρ(G1 −G2)

[
k

2πhR
α2

+
ρR′

2R
α3/2

(
α̈+

k

m
α3/2

)

+ρG1
R′

R
α

(
α̇+

k

m

∫ t

0

α3/2dt− V0

)]
, (40)

ṽλα
1/2 = − 1

ρ(G1 −G2)

[
kR

2πhR′
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+
1
2
ρR α1/2

(
α̈+

k

m
α3/2

)
α

+ρG2
R√
R′

(
α̇+

k

m

∫ t

0

α3/2dt− V0

)]
. (41)

Substituting (40) and (41) in relationship (29), which
is preliminary multiplied by α1/2, and considering formula
(35), we obtain the following governing nonlinear integro-
differential equation with respect to the value α:[

1
2
ρ α1/2

(
α̈+

k

m
α3/2

)
+

k

2πhR′
α

](
R′

R
α+R

)

+
ρ√
R′

(
G1

R′

R
α+G2R

)(
α̇+

k

m

∫ t

0

α3/2dt

)

+
1
2
ρ(G1 −G2)

√
R′α̇ =

ρV0√
R′

(
G1

R′

R
α+G2R

)
.

(42)

In the limiting case, when the radius of the spherical
shell tents to infinity R → ∞, equation (42) could be re-
duced to the following

1
2
ρ α1/2

(
α̈+

k

m
α3/2

)
+

k

2πhr0
α

+
ρG2√
r0

(
α̇+

k

m

∫ t

0

α3/2dt

)

+
1
2
ρ(G1 −G2)

√
r0α̇ =

ρV0G2√
r0

. (43)

We will seek a solution of (42) in the form of the fol-
lowing series with respect to time t:

α = V0t+
∞∑
i=1

ait
(2i+1)/2 +

∞∑
j=2

bjt
j , (44)

where ai and bj are coefficients to be determined.
Substituting (44) into equation (42) and equating the

coefficients at integer and fractional powers of t, we are led
to the set of equations for defining the coefficients ai and
bj . For example, the first three of them have the form

a1 = −4
3
(G1 −G2)

V
1/2
0 R′

1/2

R
< 0,

b2 =
2G2(G1 −G2)

R

(
1 +

1
3

(G1 −G2)R′

G2R

)
> 0,

a2 = − 4
15

kV
1/2
0

ρπhR′
− 4

15
V

1/2
0 R′

1/2

Figure 5: Dimensionless time dependence of the dimen-
sionless contact force occurring in the spherical shell im-
pacted by the falling sphere

×
[
G2b2
2V0R′

(
8 +

1
3

(G1 −G2)R′

G2R

)
− (G1 −G2)V0R

′

R3

]
Thus, the approximate four-term solution of (42) takes

the form

α = V0t+ a1t
3/2 + b2t

2 + a2t
5/2. (45)

When R → ∞, the solution for equation (47) is re-
duced to

α = V0t−
4
15

kV
1/2
0

ρπhr0
t5/2. (46)

Substituting the found function α (45), or (46) in the
limiting case, in equation (31), we can obtain the final ex-
pression for the contact force.

The dimensionless time t∗ = tV0h
−1 dependence of

the dimensionless contact force F ∗cont = Fcont(Eh2)−1

calculated according to (31) and (45) (relationship (62) is
utilized in the limiting case) is presented in Fig. 5 for the
following ratios of r̃ = Rim/R: 0 (what corresponds to the
case of an elastic plate), 0.001, and 0.01. Reference to Fig.
5 shows that the increase in the radius of the shell results in
the increase of both the contact duration and the maximum
of the contact force.

2.5 Normal impact of an elastic long
hemisphere-nose bar against an elas-
tic spherical shell

At the moment of impact of a bar against a spherical
shell (Fig. 2), the shock waves are generated not only
in the shell but in the bar (a longitudinal shock wave) as
well. This wave propagates along the bar with the velocity

G0 =
√
Eimρ

−1
0 , where Eim and ρ0 are the elastic mod-

ulus and density of the bar. Behind the front of this wave,
the relationships for the stress σ− and velocity v− could be
obtained using the ray series [2]

σ− = −
∞∑
k=0

1
k!
[
σ,(k)

](
t− x3

G0

)k
, (47)
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v− = V0 −
∞∑
k=0

1
k!
[
v,(k)

](
t− x3

G0

)k
. (48)

It is assumed that the impactor is long enough, and re-
flected waves do not have time to return at the place of con-
tact before the moment of the rebound of the bar from the
shell.

Considering that the discontinuities in the elastic bar
remain constant during the process of the wave propaga-
tion, and using the condition of compatibility

G0

[
∂Z,(k−1)

∂x3

]
= −[Z,(k)] +

δ[Z,(k−1)]
δt

,

where Z is the function to be found, and δ/δt is the
Thomas-derivative [29] , we have[

∂σ,(k−1)

∂x3

]
= −G−1

0 [σ,(k)]. (49)

With due account for (49) the equation of motion on
the wave surface is written in the form

[σ,(k)] = −ρ0G0[v,(k)]. (50)

Substituting (50) in (47) yields

σ− = ρ0G0

∞∑
k=0

1
k!
[
v,(k)

](
t− x3

G0

)k
. (51)

Comparing relationships (51) and (48), we obtain

σ− = ρ0G0(V0 − v−). (52)

At x3 = 0, expression (52) takes the form

σcont = ρ0G0(V0 − ṽz − α̇), (53)

where σcont = σ−|x3=0 is the contact stress, ṽz + α̇ =
v−|x3=0 is the normal velocity of the displacements of the
spherical shell’s points at the place of contact of the bar
with the shell, α is the value characterizing the local inden-
tation of the impactor into the shell, and an overdot denotes
the time-derivative.

Using formula (53), it is possible to find the contact
force

Fcont = ρ0G0(V0 − ṽz − α̇)πa2. (54)

However, the contact force can be determined not only
by formula (54) but according the Hertz’s law as well (31).
Therefore

πa2ρ0G0(V0 − ṽz − α̇) = kα3/2,

whence it follows that

ṽz = −α̇− k

πρ0G0R′
α1/2 + V0. (55)

Eliminating the value ṽz from (28) and (55), we are led
to one of the desired equations

−ṽλ
a

R
+ ṽξ = −α̇− k

πρ0G0R′
α1/2 + V0. (56)

The second desired equation we obtain if we eliminate˜̇vz and σ̃rz from (34) by virtue of (30) and (55). As a result
we obtain

ρG1ṽλ
a

R
−ρG2ṽξ =

1
2
ρa

(
−α̈− k

2πρ0G0R′
α−1/2α̇

)

− k

2πh
√
R′

α. (57)

Solving the set of equations (56) and (57) with respect
to the values ṽλ and ṽξ, we have

ṽξR
−1
√
R′ α = − 1

ρ(G1 −G2)

[
1
2
ρR′

R
α3/2

(
α̈

+
k

2πρ0G0R′
α−1/2α̇

)
+

k

2πh
√
R′

α2

+ρG1
R′

R
α

(
α̇+

k

πρ0G0R′
α1/2 − V0

)]
, (58)

ṽλα
1/2 = − 1

ρ(G1 −G2)

[
1
2
ρR α1/2

(
α̈

+
k

2πρ0G0R′
α−1/2α̇

)
+

kR

2πh
√
R′

α

+ρG2
R√
R′

(
α̇+

k

πρ0G0R′
α1/2 − V0

)]
. (59)

Substituting (58) and (59) in (29), which is preliminary
multiplied by α1/2, we obtain the governing nonlinear dif-
ferential equation with respect to the value α[

1
2
ρ

(
α1/2α̈+

k

2πρ0G0R′
α̇

)
+

k

2πhR′
α

]

×
(
R′

R
α+R

)
+

ρ√
R′

(
G1

R′

R
α+G2R

)(
α̇+

k

2πρ0G0R′
α1/2

)
+

1
2
ρ(G1 −G2)

√
R′α̇ =

ρV0√
R′

(
G1

R′

R
α+G2R

)
.

(60)

In the limiting case, when the radius of the spherical
shell tents to infinity R → ∞, equation (60) could be re-
duced to the following

1
2
ρ

(
α1/2α̈+

k

2πρ0G0r0
α̇

)
+

k

2πhr0
α

+
ρ
√
r0
G2

(
α̇+

k

2πρ0G0r0
α1/2

)
=
ρV0√
r0
G2. (61)
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We will seek a solution of (60) in the form of the series
(44) with respect to time t. Substituting (44) into Eq. (60)
and equating the coefficients at integer and fractional pow-
ers of t, we are led to the set of equations for defining the
coefficients ai and bj . For example, the first four of them
have the form

a1 = −4
3

(
k

2πρ0G0R′
+ (G1 −G2)

√
R′

R

)
V

1/2
0 < 0,

b2 =
3
8
a2
1V
−1
0 +G2

(
k

2πρ0G0R′
3/2

+
2(G1 −G2)

R

)
,

a2 =
8
15

{
1
16

a1b2V
−1
0 − 3

8
R′

R2
a1V0 −

kV
1/2
0

2πρhR′

− kV
1/2
0

4πρ0G0

(
V0

R2
+

a1G2

V
3/2
0 R′3/2

)

+
1

V
1/2
0 R′1/2

(
R′

R2
G1V

2
0 − 2b2G2

)}
,

b3 = − 1
16
a1a2V

−1
0 − 3

16
R′

R2
a2
1 −

1
6
b22V

−1
0

− ka1

6πρhR′V 1/2
0

− 5kV 1/2
0 a1

24πρ0G0R2

− 1

6V 1/2
0 R′1/2

(
R′

R2
G1V

2
0 a1 + 5a2G2

)
− k

6πρ0G0R′
3/2

(
b2G2

2V0
+
R′

R2
G1V0

)
.

Thus, the approximate five-term solution has the form

α = V0t+ a1t
3/2 + b2t

2 + a2t
5/2 + b3t

3. (62)

In the limiting case, the coefficients in the series (44)
representing the solution of equation (61) take the form

a1 = −2
3

kV
1/2
0

πρ0G0r0
< 0,

b2 =
1
2

k

πρ0G0r0

(
1
3

k

πρ0G0r0
+

G2

r
1/2
0

)
> 0,

a2 = − 4
15

k

πρ0G0r0V
1/2
0

[
2G2

2

r0
+
ρ0V0G0

ρh

+
1
8

k

πρ0G0r0

(
1
9

k

πρ0G0r0
+

3G2

r
1/2
0

)]
< 0.

The dimensionless time t∗ = tV0h
−1 dependence of

the dimensionless contact force F ∗cont = Fcont(Eh2)−1

calculated according to (31) and (62) is presented in Fig.

Figure 6: Dimensionless time dependence of the dimen-
sionless contact force occurring in the spherical shell im-
pacted by the long cylindrical rod

6 for the following ratios of r̃ = Rim/R: 0 (what corre-
sponds to the case of an elastic plate), 0.001, and 0.01.

From Fig. 6 it is seen that the increase in the radius of
the shell results in the increase of both the contact duration
and the maximum of the contact force, as it has been men-
tioned above in the case of the dynamic response of the
spherical shell impacted by the elastic sphere. However,
the comparison of Figs. 5 and 6 shows that the magnitudes
of the contact duration and the maximum of the contact
force in the case when the spherical shell is impacted by
the cylindrical rod are lower than those when the shell is
impacted by the sphere. This is due to the fact that the
wave phenomenon is neglected in the falling sphere, while
the propagation of the transient waves in the falling rod is
taken into account.

3 Impact response of a thin spherical
membrane shell

Biryukov and Kadomtsev [11] suggested to determine the
general displacements of the thin elastic spherical shell un-
der the action of the force Fcont(t) from the momentless
equations of motion for spherical shells proposed in [30],
which due to the symmetry of the problem under consid-
eration and the axisymmetric character of impact loading
have the following form:

(Nϕ sinϕ) ,ϕ−Nθ cosϕ = ρhRüϕ sinϕ, (63)

Nϕ +Nθ = −ρhRẅ, (64)

Nϕ =
D

R
(uϕ,ϕ + w + σ(uϕ cotϕ+ w)) , (65)

Nθ =
D

R
(uϕ cotϕ+ w + σ(uϕ,ϕ + w)) , (66)

where D = h/k′ is the rigidity coefficient of the shell, Nϕ
and Nθ are membrane forces directed along a meridian ϕ
and a parallel θ, respectively, while its local displacements
within the zone of contact of the impacting body with the
shell were considered via the Hertz theory with due account
for plastic deformations [11], [12] .
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As it has been discussed in [2] and [31], linearization
of the contact deformation is of frequent use for investi-
gating shock interaction of solids. For the first time this
approach was used in 1970 by Conway and Lee [32] for
analyzing the impact between an indenter and a large elas-
tic plate through a linear spring when investigating the me-
chanics of printing process. The plate was sufficiently large
to ignore reflections from its boundaries, so the velocity of
the contact spot was proportional to the contact force, i.e.,
the approach proposed by Zener [27] was valid. An elas-
tic spring was located between the target and the indenter,
so the contact force is connected with the displacements of
the indenter and the contact spot (the plate’s displacement
at the place of contact) by a linear relationship.

Indeed, in some practical cases instead of the nonlin-
ear Hertzian law (31) it is convenient to use the linearized
contact law

Fcont(t) = E1(α− w), (67)

where α and w are, respectively, the displacements of the
upper and lower ends of the spring with rigidity E1, result-
ing in the case of an invariant contact spot (Fig. 7).

If the contact domain does not change its dimensions,
then the solution of problems connected with the shock in-
teraction of bodies is simplified significantly.

Below we shall apply this approach for describing the
contact law when analyzing the impact response of the
spherical membrane shell (Fig. 7).

3.1 Problem formulation and governing
equations

Thus, in this case, the equation of motion of the impactor

m(α̈+ ẅ) = −Fcont(t), (68)

and the equation of motion of the contact domain defined
by the radius of the impactor’s nose r0

ρhπr20ẅ = 2πr0Nϕ|ϕ=ϕ0 sinϕ0 + Fcont(t) (69)

subjected to the initial conditions

α̇|t=0 = V0, w|t=0 = ẇ|t=0 = 0 (70)

where m is the mass of the impactor, and ϕ0 is the merid-
ional coordinate of the contact spot boundary, should be
added to Eqs. (63)-(66) describing the motion of the shell.

The similar approach was used in [24] for investigat-
ing the dynamic elastic response of the spherical membrane
shell impacted by a sphere, however the governing Eq. (63)
was written with an error, namely: the force Nθ was multi-
plied by sinϕ (see Eq. (5) in [24]) instead of cosϕ.

Along with an incorrect governing equation, there is a
lot of other mistakes which can be found in the cited pa-
per by Loktev and Loktev [24], including (a) the incorrect
equation of the motion of the contact domain (see Eq. (2)

Figure 7: Scheme of the shock interaction of a
hemispherical-nose impactor with a membrane shell

in [24]), wherein the meridional membrane force and cir-
cumferential membrane force acted on the contact domain
boundary on its different cross sections are algebraically
added and projected onto the vertical; (b) the contact force
has been written as Fcont(t) = E1α, i.e., in the form de-
pendent only of the spring’s upper end and, thus, inde-
pendent of the shell’s displacement; (c) faulty condition of
compatibility (see Eq. (8) in [24]) which is needed for de-
scribing the longitudinal shock wave propagation during
the process of impact on the basis of the theory of dis-
continuities. The authors of [24] have included also the
boundary conditions uϕ|ϕ=ϕ1 = 0 and w|ϕ=ϕ1 into con-
sideration, what only misleads a reader, since under this
approach they are not in use for finding the wave reflected
from the simply supported boundary of the spherical panel,
because it is assumed that the reflected wave comes back to
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the contact domain after the re-bounce of the impactor from
the target due to the significant dimensions of the spherical
panel.

Such fallacies result in the final relationships for the
discontinuities in the physical values to be found, where
terms of different dimensions are added with each other,
i.e., ”kilometers” are added with ”kilograms”. Thus, pa-
per by Loktev and Loktev [24] involves 21 equations in all,
and only two of them, (4) and (6), are written without mis-
takes. The surprising thing is that this fact has not been
understood by both the authors and the reviewers of this
opus [24]. Moreover, it remains a mystery how the authors
could carry out further the numerical investigation of such
’fantastic’ relationships and present its graphical interpre-
tation.

Since the solution of the given problem in such for-
mulation is of certain practical interest, and its analytical
results together with those obtained in the previous section
could be used for the comparative analysis, then we have
taken over the task of correcting all fallacies made in [24].

Below the construction of the correct solution of the
problem of the shock interaction governed by Eqs. (63)-
(70) is presented, resulting in the physically justified re-
sults.

3.2 Solution for the membrane spherical
shell in the case of the linear contact law

Distinct from the case described in Sec. 2, the dynamic de-
formation of the spherical shell of the membrane type after
the moment of impact t = 0 is governed by the longitu-
dinal wave front of strong discontinuity which is generated
in the shell in terms of the circumference propagating along
the shell’s middle surface with the velocity G.

Behind the front of the wave surface upto the bound-
ary of the contact domain, a certain function Z(ϕ, t) to be
found could be represented by a ray series in terms of the
powers of t−R(ϕ− ϕ0)G−1 > 0 (see [2], [33])

Z(ϕ, t) =
∞∑
k=0

1
k!

[Z,(k)]
(
t− R(ϕ− ϕ0)

G

)k

×H
(
t− R(ϕ− ϕ0)

G

)
, (71)

where [Z,(k)] = [∂kZ/∂tk] are the jumps of the k-th or-
der time-derivatives of the function Z, and H(t) is the unit
Heaviside function.

To determine coefficients of the ray series (71) for the
desired functions entering in (68) and (69), we differentiate
Eqs. (63)-(66) k times with respect to time, take their dif-
ference on the different sides of the wave surface, and apply
the condition of compatibility [34] for discontinuities in the
k + 1th derivatives of a certain function Z(ϕ, t)

G

[
∂Z,(k)

∂γ

]
= −[Z,(k+1)] +

δ[Z,(k)]
δt

, (72)

where the curvilinear coordinate s = Rϕ in the problem
under consideration.

Note that the compatibility condition (72) for the com-
ponents of the desired values on the curvilinear surface in
the curvilinear coordinates was derived for the first time by
Rossikhin and Shitikova in 1995 (see Eq. (3.1) in [34]),
but for an unknown reason the first author of [24] has got
himself credit for formulating this condition.

As a result of the procedure just described, we are led
to the following set of the recurrent equations of the ray
method:

R

G

(
1− ρG2(1− σ2)

E

)
[vϕ(k+1)] = 2

d[vϕ(k)]
dϕ

+ cotϕ[vϕ(k)] + (1 + σ)[W(k)]

−G
R

{
d2[vϕ(k−1)]

dϕ2
+ cotϕ

d[vϕ(k−1)]
dϕ

−(cot2 ϕ+ σ)[vϕ(k−1)] + (1 + σ)
d[W(k−1)]

dϕ

}
, (73)

[W(k+1)] =
G

R
(1 + σ)

{
[vϕ(k)]

−G
R

(
d[vϕ(k−1)]

dϕ
+ cotϕ[vϕ(k−1)] + 2[W(k−1)]

)}
,

(74)
where W = ẇ, vϕ = u̇ϕ, and ϕ = ϕ0 +R−1Gt.

At k = −1 from Eqs. (73) and (74) we find

ρG2 =
E

1− σ2
, [W(0)] = 0. (75)

Reference to (75) shows that the velocity of the tran-
sient longitudinal wave propagating in the spherical mem-
brane shell coincides with that for the spherical shell of the
Timoshenko type, i.e., with G1 defined by (18).

Integrating (73) at k = 0 yields

[vϕ(0)] = c0 (sinϕ)−1/2
, (76)

where c0 is an arbitrary constant, but from (74) we obtain
[W(1)] by the algebraic operation

[W(1)] =
G

R
(1 + σ)c0 (sinϕ)−1/2

. (77)

Integrating (73) at k = 1 with due account for (76) and
(77) yields

[vϕ(1)] =
[
c1 +

1
2
G

R

(
3
4

cotϕ+Bϕ

)
c0

]
(sinϕ)−1/2

,

(78)
where c1 is an arbitrary constant, andB = 5

4−σ−(1+σ)2.
Putting k = 1 in (74) with due account for (76)-(78),

we have

[W(2)] =
G

R
(1 + σ)
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×
[
c1 +

1
2
G

R

(
Bϕ− 1

4
cotϕ

)
c0

]
(sinϕ)−1/2

. (79)

In a similar way we could find the discontinuities of
the higher orders putting k = 2 and k = 3 in Eqs. (73) and
(74). As a result we, respectively, obtain

[vϕ(2)] =
{
c2 +

1
2
G

R

(
3
4

cotϕ+Bϕ

)
c1

+
1
4
G2

R2

[
−15

32
cot2 ϕ+

5
4
B ln(sinϕ)

−1
2
Bϕ cotϕ− 5

4
B

(
ϕ− ϕ3

9
− ϕ5

225

)
−B

(
σ + (1 + σ)2

) ϕ2

2

]
c0

}
(sinϕ)−1/2

, (80)

[W(3)] =
G

R
(1 + σ)

{
c2 +

1
2
G

R

(
Bϕ− 1

4
cotϕ

)
c1

+
G2

R2

[
3
8

(
1 +

3
16

cot2 ϕ
)

+
5
16

B ln(sinϕ)− 1
2
B

(
1 +

3
4
ϕ cotϕ

)
− 5

16
B

(
ϕ− ϕ3

9
− ϕ5

225

)
− 2(1 + σ)

−1
4
B
(
σ + (1 + σ)2

) ϕ2

2

]
c0

}
(sinϕ)−1/2

, (81)

[vϕ(3)] =
{
c3 +

1
2
G

R

(
3
4

cotϕ+Bϕ

)
c2

+
1
4
G2

R2

[
−15

32
cot2 ϕ+

5
4
B ln(sinϕ)

−1
2
Bϕ cotϕ− 5

4
B

(
ϕ− ϕ3

9
− ϕ5

225

)
−B

(
σ + (1 + σ)2

) ϕ2

2

]
c1

}
(sinϕ)−1/2

, (82)

[W(4)] =
G

R
(1 + σ)

{
c3 +

1
2
G

R

(
Bϕ− 1

4
cotϕ

)
c2

+
G2

R2

[
3
8

(
1 +

3
16

cot2 ϕ
)

+
5
16

B ln(sinϕ)− 1
2
B

(
1 +

3
4
ϕ cotϕ

)
− 5

16
B

(
ϕ− ϕ3

9
− ϕ5

225

)
− 2(1 + σ)

−1
4
B
(
σ + (1 + σ)2

) ϕ2

2

]
c1

}
(sinϕ)−1/2

, (83)

where c2 and c3 are arbitrary constants to be determined
from the boundary conditions. In Eqs. (82) and (83), the
terms involving the constant c0 are omitted, since it will be
shown below that this constant vanishes.

Along with the discontinuities in the velocities of dis-
placements, we should find the discontinuities in the merid-
ional membrane force Nϕ entering into the equation of the
contact domain motion (69). For this purpose we rewrite
Eq. (65) in the discontinuities using the condition of com-
patibility (71)

[Nϕ(k)] =
D

R

{
−R
G

[vϕ(k)] +
d[vϕ(k−1)]

dϕ

+σ cotϕ[vϕ(k−1)] + (1 + σ)[W(k−1)]
}

(84)

whence it follows at k = 0 and k = 1

[Nϕ(0)] = −ρGhc0 (sinϕ)−1/2
, (85)

[Nϕ(1)] = −ρGh (sinϕ)−1/2

×
[
c1 +

G

R

{(
7
8
− σ

)
cotϕ+

1
2
Bϕ

}
c0

]
, (86)

[Nϕ(2)] = −ρGh (sinϕ)−1/2

×
[
c2 +

G

R

{(
7
8
− σ

)
cotϕ+

1
2
Bϕ

}
c1

]
. (87)

Thus, the four-term truncated ray series for the desired
values on the boundary of the contact domain at ϕ = ϕ0

take the form

Nϕ = [Nϕ(0)]|ϕ=ϕ0 + [Nϕ(1)]|ϕ=ϕ0t+ [Nϕ(2)]|ϕ=ϕ0

t2

2

+[Nϕ(3)]|ϕ=ϕ0

t3

6
, (88)

W = [W(1)]|ϕ=ϕ0t+ [W(2)]|ϕ=ϕ0

t2

2
+ [W(3)]|ϕ=ϕ0

t3

6

+[W(4)]|ϕ=ϕ0

t4

24
. (89)

Representing the value α in terms of the power series
in time t

α = α1t+ α2t
2 + α3t

3 + α4t
4 + α5t

5, (90)

where αi (i = 1, 2, ..., 5) are constants to be determined,
substituting (88)-(90) into Eqs. (68) and (69) with due ac-
count for (67) and the initial conditions (70), and equating
the coefficients at equal powers of t in the relationships ob-
tained, we could determine all desired constants

c0 = 0, c1 =
E1V0R (sinϕ0)

1/2

MG(3 + σ)
, (91)
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c2 = −G
R

[
1
2
Bϕ0 +

(
2(1− σ)
3 + σ

− 1
8

)
cotϕ0

]
c1,

c3 = −E1c1

[
1
m

+
2(1 + σ)
M(3 + σ)

]

+
G2

R2

{[
1
2
Bϕ0 +

(
2(1− σ)
3 + σ

− 1
8

)
cotϕ0

]2
− 5

16
B ln(sinϕ0) +

5
16
B

(
ϕ0 −

ϕ3
0

9
− ϕ5

0

225

)
+

1
4
B
(
σ + (1 + σ)2

) ϕ2
0

2
− 3

8

(
1 +

3
16

cot2 ϕ0

)
+

1
2
B

(
1 +

3
4
ϕ0 cotϕ0

)
+ 2(1 + σ)

−1− σ
3 + σ

[
3
4

cot2 ϕ0 +Bϕ0 cotϕ0 + 2(1 + σ)
]}

c1,

α1 = V0, α2 = 0, (92)

6α3 = −E1V0

[
1
m

+
1 + σ

M(3 + σ)

]
< 0,

12α4 =
E1V0(1− σ2) cotϕ0

M(3 + σ)
G

R
> 0,

120α5 = E2
1V0

[
1
m

+
1 + σ

M(3 + σ)

] [
1
m

+
2(1 + σ)
M(3 + σ)

]
−E1V0

M

(1− σ2)
(3 + σ)2

G2

R2

[(
1− σ
3 + σ

+
1
8

)
cot2 ϕ0

−2(1 + σ)− 1
2
Bϕ0 cotϕ0

]
,

where M = ρhπr20 is the mass of the contact domain.
Now substituting the found values in Eq. (67), we can

write the relationship for the contact force

Fcont(t) = E1V0

{
t− E1

[
1
m

+
2(1 + σ)
M(3 + σ)

]
t3

6
(93)

+
E1G(1− σ2) cotϕ0

MR(3 + σ)2
t4

6
+E1

[
E1

(
1
m

+
2(1 + σ)
M(3 + σ)

)2

+
2G2(1− σ)2

MR2(3 + σ)2

(
5σ − 1
3 + σ

cot2 ϕ0 + 2(1 + σ)
)]

t5

120

}
,

and for the dynamic deflection of the shell at the place of
the contact interaction

w(t) =
E1V0(1 + σ)
M(3 + σ)

{
t3

6
− G(1− σ) cotϕ0

R(3 + σ)
t4

12
(94)

−
[
E1

(
1
m

+
2(1 + σ)
M(3 + σ)

)
+
G2(1− σ)
R2(3 + σ)

(
5σ − 1
3 + σ

cot2 ϕ0 + 2(1 + σ)
)]

t5

120

}
.

Figure 8: Dimensionless time dependence of the dimen-
sionless contact force during the impact response of the
spherical membrane shell

Putting Fcont(t) = 0 in Eq. (93), we can estimate the
duration of the contact interaction

tcont =

√
6
E1

[
1
m

+
2(1 + σ)
M(3 + σ)

]−1

(95)

From Eq. (93) it follows that the contact force attains
its maximal value

Fmax
cont (tmax) =

2
3
E1V0tmax (96)

at the instant of time t = tmax =
√

3
3 tcont.

The dimensionless time t∗ = tV0h
−1 dependence of

the dimensionless contact force F ∗cont = Fcont(E1Rim)−1

calculated according to (93) is presented in Fig. 8 for the
following ratios of r̃ = Rim/R: 0 (what corresponds to the
case of an elastic plate), 0.001, and 0.01.

From Fig. 8 it is seen that the increase in the radius of
the shell results in the increase of both the contact duration
and the maximum of the contact force, i.e., the behaviour
of these curves is similar to those for the Timoshenko type
spherical shell (Figs. 5 and 6), but here the influence of
the shell radius is rather weak, while the magnitudes of
the contact duration and the maximum of the contact force
for the membrane shell are greater than those for the Tim-
oshenko type spherical shell due to the membrane’s high
flexibility.

4 Conclusion
The problem on normal low-velocity impact of an elastic
falling body upon an elastic spherical shell has been an-
alyzed using the wave approach. Two theories of elastic
shells have been employed: the Timoshenko-type spheri-
cal shell and membrane-type spherical shell. At the mo-
ment of impact, shock waves (surfaces of strong discon-
tinuity) are generated in the target, which then propagate
along the body during the process of impact. In the case of
the Timoshenko-type shell there are two transient waves:
quasi-longitudinal and quasi-transverse waves, while in the
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case of the membrane-type shell there is only one shock
longitudinal wave. Behind the wave fronts upto the bound-
ary of the contact domain, the solution is constructed with
the help of the theory of discontinuities and one-term or
multiple-term ray expansions.

Nonlinear Hertz’s theory and linearized elastic con-
tact laws are employed within the contact region, respec-
tively, for the Timoshenko-type and membrane-type spher-
ical elastic shells. For the analysis of the processes of shock
interactions of the elastic sphere or elastic spherically-
headed rod with the Timoshenko-type spherical shell, non-
linear integro-differential or nonlinear differential equa-
tions have been ,respectively, obtained with respect to the
value characterizing the local indentation of the impactor
into the target, which have been solved analytically in terms
of time series with integer and fractional powers. In the
case of the linear elastic shock interaction, the governing
linear differential equations for the membrane-type spheri-
cal shell and the impactor are solved analytically by the ray
method.

Numerical calculations show that the increase in the
radius of the shell results in the increase of both the con-
tact duration and the maximum of the contact force for all
types of the impactor and irrespectively of the shell’s the-
ory. However, the type of the impactor or the kind of the
shell equations influence greately on the magnitudes of the
contact duration and the maximum which the contact force
could attain during the process of the contact interaction.
The shortest time of the contact interaction is seen when
the cylindrical rod is taken as the impactor, since in this
case the wave propagation phenomenon is taken into ac-
count in both interacting bodies. The largest duration takes
place when the membrane-type spherical shell is utilized as
the target due to its high compliance as compared with the
Timoshenko-type spherical shell theory.
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Appendix A

The condition of compatibility (10) could be obtained on
the basis of the following reasoning. The wave line C in
the reality is a very thin cylindrical ’surface-strip’ (Fig. 3),
for which the wave line C is served as its directrix, and
the family of generatrices representing the line segments of
the length h, which are perpendicular to the shell’s median
surface and thus to the wave line, and which are fitted to
the wave line by their middles. On the wave line of strong
discontinuity, there exist two conditions of compatibility
for the desired values [29]:
the kinematic condition of compatibility

δ[f ]
δt

=
[
∂f

∂t

]
+
[
df

dn

]
G, (A1)

and the geometric condition of compatibility[
∂f

∂xj

]
=
[
df

dn

]
λj + [f ],αgαβxj,β , (A2)

where δ/δt is the Thomas δ-derivative, d/dn is the deriva-
tive with respect to the normal to the wave surface, G is
the normal velocity of the wave surface, λj are the com-
ponents of the unit vector normal to the wave surface,
gα,β = xi,αxi,β are the covariant components of the metric
tensor of the wave surface, xi,α = ∂xi/∂u

α, uα α = 1, 2
are the coordinates on the wave surface, gαβ are the con-
travariant components of the metric tensor of the wave sur-
face, in so doing gαγgβγ = δαβ , where δαβ is the Kroneker’s
symbol, and [f ],α is the covariant derivative of the discon-
tinuity in the desired function with respect to the surface
coordinates uα.

Formula (A1) is the definition of the Thomas δ-
derivative. The validity of (A2) can be shown by sequen-
tial multiplication of its right- and left-hand sides by λj and
xj,γ at a time and considering that λjxj,γ = 0.

Excluding the value [df/du] from (A1) and (A2) yields[
∂f

∂xj

]
= −

[
∂f

∂t

]
λjG

−1 +
δ[f ]
δt

λjG
−1 +[f ],αgαβxj,β .

(A3)
Let us chose as the surface coordinates u1 and u2,

respectively, the straight line coordinate ξ along the gen-
eratrices of the wave surface and the arc length s2 along
the directrix line from the wave surface, and consider that
g11 = 1, and g22 ≈ 1 on the whole wave surface (g22 = 1
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only on the line C, but due to the small thickness of this
line this equality can be expanded on the whole surface).

Considering the above said, let us rewrite formula (A3)
in the form[
∂f

∂xj

]
= −

[
∂f

∂t

]
λjG

−1+
d[f ]
ds1

λj+
d[f ]
ds2

τj+
[
d(fξj)
dξ

]
.

(A4)
During the deduction of (A4) it was also taken into ac-

count that

δ[f ]
δt

=
d[f ]
ds1

ds1
dt

=
d[f ]
ds1

G,

where s1 is the arc length measured along the ray.
Substituting the function f by ui,(k) = ∂kui/∂t

k in
(A4), we obtain the desired relationship (10).
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