
 

 

  
Abstract—This paper presents an exact three-dimensional free 

and forced vibration analysis of an axially polarized transversely 
isotropic piezoelectric circular cylindrical panel on elastic foundation. 
Due to the wide use of piezoelectric materials as sensor/actuators, to 
the best knowledge of the authors, no one has studied the effect of 
imperfection in bonding of these piezo-layers to the host layer for 
cylindrical panels. Using separation of variables, three-dimensional 
exact solution is presented under generalized simply supported 
boundary conditions. In addition, the effect of elastic foundation on 
both structure natural frequency and steady state frequency response 
is investigated. For validation purposes the results are compared with 
those obtained from FEM and the results from previous works. 
Finally conclusions are made. 
 

Keywords—Piezoelectric, cylindrical panel, free vibration, 
frequency response, foundation. 

I. INTRODUCTION 
iezoelectric materials have been widely used as 
transducers, sensors and actuators due to their fundamental 

direct and converse piezoelectric effects that take place 
between electric field and mechanical deformation. They are 
playing a key task as active components in many twigs of 
science and technology such as electronics, navigation, 
vibration control, etc. 

Haskins and Walsh [1] investigated the free vibration of 
transversely isotropic piezoelectric cylindrical shell. The wall 
thickness of the cylinder was assumed to be negligible so two 
elastic constants are considered in their analysis. By 
employing the same assumption, Martin [2] studied the 
vibration of longitudinally polarized piezoelectric circular 
cylindrical shell. Drumheller and Kalnins [3] used a coupled 
theory for investigation of vibration of piezoceramic shells of 
revolution and analyzed the free vibration of a cylindrical 
shell. Burt [4] simplified the circular cylinder dynamic model 
to a two-dimensional one and studied the voltage response of 
radially polarized ceramic. Tzou and Zhong [5] presented a 
linear theory of piezoelectric shell vibration, which can be 
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simplified to account for spheres, cylinders and plates. 
Ebenezer and Abraham [6] presented an Eigen function 
method to find the dynamic response of radially polarized 
piezoelectric circular cylindrical shells of finite length. Several 
works based on the methods of three-dimensional theory 
concentrated on the vibrations of cylinders. Paul [7] derived 
the frequency equation of a piezoelectric cylindrical shell 
without any numerical results. Ding et al. [8] exactly studied 
the free vibration of hollow and fluid-filled piezoelectric 
cylindrical shells on the basis of a decomposition formula for 
displacements. A more detailed description on related studies 
can be found in Saravanos and Heyliger [9]. Ding et al. [10] 
solved three dimension free vibration problem for transversely 
isotropic circular cylindrical panel. They used displacement 
function method to achieve the natural frequencies of the 
panel with different boundary conditions. Sharma and 
Pathania [11] investigated an exact analysis of the 
free vibration of a simply supported piezoelectric cylindrical 
panel using three displacement potential functions. They 
showed that a purely transverse mode is independent 
of piezoelectric effects and the rest of the motion. Yang et al. 
[12] studied the vibration characteristics of a circular 
cylindrical piezoelectric transducer using linear 
piezoelectricity theory. They solved the problem for both free 
and force vibration. Kapuria et al. [13] solved the free 
vibration and steady state response of cylindrical piezo electric 
panel by use of an exact two-dimensional piezo-elasticity 
solution. The piezoelectric layers assumed to be polarized 
along radial direction. Wang et al. [14] solved the exact 
vibration problem for magneto-electro-elastic circular cylinder 
with two simply supported ends. They used displacement 
function method. Kapuria and Kumari [15] considered a 
benchmark three-dimensional exact piezoelectricity solution in 
surface-bonded, embedded monolithic piezoelectric and 
piezoelectric fiber reinforced composite layers. The dynamic 
equations with variable coefficients are solved using the 
modified Frobenius method. Wang et al. [16] applied a 
dynamic model based on Love & Kirchhoff thin shell theory. 
They investigated the conversion of mechanical energy into 
electrical energy in a cylindrical piezoelectric panel with 
simply supported boundary conditions. Also, the effect of the 
curvature is studied. Bodaghi and Shakeri [17] investigated the 
free and forced vibration of simply supported circular 
cylindrical FGPM panel. The dynamic transient response of 
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the system evaluated under blast pulses using Laplace inverse 
method. Recently, vibration controls of cylindrical panels by 
piezo-based actuator/sensors are studied widely. Lin et al. [18] 
considered the active acoustic pressure control in 
a cylindrical cavity with a flexible cylindrical panel using a 
pair of piezoelectric actuator/sensor. The dynamic governing 
equation solved by model expansion method and a LQG 
controller is designed and implemented. Karnaukhova et al. 
[19] studied the vibrations of elastic three-layer shells 
composed of metal layer and two piezoelectric layers. They 
presented analytical solution for different cases of electrodes 
placement. Kozlov et al. [20] used piezoelectric panels as 
sensor/actuator in order to inspect the active forced damping 
of viscoelastic shells. The vibration model is achieved by the 
Kirchhoff-Love hypotheses. Also, they consider the effect of 
the temperature which leads to a nonlinear model solved by 
FE method. Karnaukhov and Tkachenko [21] solved the active 
vibration damping in a circular cylindrical panel with clamped 
boundary conditions using piezo-actuator/sensors. 
Karnaukhov et al. [22] considered the problem of active 
vibration control of a viscoelastic cylindrical panel by using 
piezoelectric actuators. The dynamic response of the panel is 
achieved by using FE method. However, the mounted 
actuator/sensor in real applications is coupled to the host 
structure using special adhesive materials. This kind of 
attachment cannot be modeled as a perfect one. 

The main subject of this study is to investigate the free 
vibration and harmonic force response of transversely 
isotropic piezoelectric cylindrical panel on elastic foundation. 
Based on the general solution of coupled equations for 
piezoelectric media presented by Ding et al. [23], three-
dimensional exact solutions are obtained by using of the 
variable separation method. The obtained solutions not only 
satisfy the basic equations, but also satisfy any boundary 
conditions. A numerical example is finally presented with 
results compared to FEM results and good agreements are 
obtained. 

 

 
Fig. 1 A cylindrical panel on elastic foundation 

 

II. PROBLEM FORMULATION 
A transversely isotropic piezoelectric cylindrical panel 

(length , central angle , inner radius  and outer radius , 
is considered (see Fig. 1). The  cylindrical coordinate 
system is set at the bottom of central axes of the cylindrical 
panel, as shown in Fig.1. Because of considering  stress, all 
components of stress tensor are considered. Also, there are 
additionally three nonzero electric displacement components 

,  and  in the piezoelectric layer. In the following two 
subsections, the basic governing equations of the transversely 
isotropic piezoelectric circular cylindrical panel will be 
derived and suitable boundary condition will be set. 

A. Dynamic Modeling of Piezoelectric Cylindrical Panel 
For dynamic modeling of the piezoelectric panel, two 

displacement functions  and  are introduced. Ding et al. 
presented a general solution for the coupled linear dynamic 
equations of a transversely isotropic piezoelectric media [23]. 
In circular cylindrical coordinates , if the media is 
axially polarized the general solution can be written as 

 

 

 
(1) 

 
where ,  and  are three displacement components,  is 
the electric potential, and the differential operators ,  
and  are 
 

 

(2) 

 

(3) 

 

(4) 

 
where  is the two-
dimensional Laplacian operator. The displacement 
functions  and  must satisfy the following two equations 
 

 (5) 
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where 
 

 

(6) 

 
Here  can be expressed in terms of elastic 

constants , dielectric constants  and piezoelectric 
coefficients  as follows 

 
 

 

 
 

 
 

 
 

 

(7) 

 
Consider a circular cylindrical panel with outer radius , 

inner radius , circular center angle  and length , as one is 
shown in Fig. 1. If the panel vibrate with a resonant frequency 

, the displacement functions can be assumed as 
 

 

 
(8) 

 
where ,  are the dimensionless coordinates (  
is mean radius of the panel) in  and  directions, and  
and  denote the derivation of ,  with respect to 

 and the derivation of  with respect to , 
respectively. In addition, 
 

 
 

(9) 

 
where  are constants. Substitution of (8) into 
(5) yields 

 
 (10) 

 (11) 

 
where  and 
 

 (12) 

 
(13) 

 
where  and  (assuming 

) are the eigenvalues of the following equation 
 

 
(14) 

 
In which 
 

 
 

 
(15) 

 
The solution of Eq. (11) can be assumed as 
 

 (16) 
 
where  is obtained as  
 

 (17) 

 
Substituting (8) into (1) gives the mechanical displacements 

and electric potential as bellow 
 

 
(18) 

 
(19) 

 (20) 

, (21) 

 
where 
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(22) 

 
Utilizing the constitutive relations of piezoelectricity 

together with Eqs. (18)–(22), one can derive the stress 
components and electric displacement components as  

 

 

(23) 

 

(24) 

 

(25) 

 

(26) 

 

(27) 

 

(28) 

 

(29) 

 

(30) 

 

(31) 

B. 5BBoundary Conditions 
The piezoelectric panel has eight boundary conditions 

consist of six mechanical and two electrical. By considering 
generalized simply support boundary conditions at  and 

 we will have 
 

, (32) 
 
One can take 
 

 (33) 
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And by considering generalized simply support boundary 
conditions at  and  

 
, , (34) 

 
One can take 
 

 (35) 
 
By considering the free vibration of the piezoelectric panel 

on an elastic foundation, no external force acts on the 
structure. Now, the coupled free vibration problem is 
considered. 

Because of the effect of the foundation, the boundary 
conditions at inner surface  become 

 
, (36) 

 
where  is the reactive force of the foundation, which satisfies 
the following equation for Kerr model [24] 
 

 (37) 

 
where   and  are the spring 
constants of the spring layers and  is the shear constant of the 
shear layer. From (22)-(38), we get the coupled free vibration 
frequency equation as follows 
 

 (38) 
 
where 
 

 
(39) 

 
(40) 

 
(41) 

 (42) 

 

 
(43) 

 
where prime denotes derivation with respect to . According 
to the electrical condition, which is open circuit at both inner 
and outer surface, one can obtain 
 

 
(44) 

 (45) 

 
In which  is the ratio of the inner radius to the 

outer radius in the piezoelectric panel. Also, for closed circuit 
electrical condition at both inner and outer surface of 
piezoelectric layer 

 
 (46) 

 
In (39)-(46) only elements of  

columns are listed, however, the elements of 
 can easily obtained by replacing  by and zero 

elements remain zero. And the elements of  order, if 
not mentioned, can obtained by replacing  by  in order 
form except for 

 
 (47) 

 (48) 
 (49) 

 
where  
 

 
 
And, ,  and  are the 
three non-dimensional foundation parameters. It can be seen 
that if we take  in (47)-(49), then the effect of a Kerr 
foundation on the frequencies will be identical with that of a 
Pasternak foundation, in which only two foundation 
parameters are involved [25]. Moreover, if we take

, then frequency equation degenerates to the one of a panel 
on a Winkler foundation [26]. Note that if , frequency 
equation will be the same as the uncoupled one. 

For obtaining the frequency response function of the 
piezoelectric structure on the aforementioned foundation, one 
can suppose that an external force act on the upper surface of 
the panel. So, 

 
 (50) 

 
where  and  are external force and electric potential, 
respectively. For obtaining frequency response of cylindrical 
panel under a harmonic external excitation, the following 
matrix equation must solved 
 

, 
, (51) 

 
where  is the coefficient matrix and given in (40)-(50), and 
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Also, 
 

 
 

(52) 

 
In addition, 
 

 
(53) 

 

 
where 

 

 
(54) 

 

 
In which  is the upper surface of the panel. After finding 

these unknown constants that are functions of , by 
replacing them in the displacement and stress and electric 
displacement of corresponding equations all of the system 
variables can easily determined. However, the voltage 
obtained from the piezoelectric layer is calculated as 

 

 (55) 

 
In which,  is the electric 

displacement vector in the principle cylindrical coordinates. 
 in the integration stands for the place that the layer is 

active and voltage is measured and  
which simplifies the above equation as 

 

 (56) 

 
where  and  shows the integration bounds 
(electroded area). And by considering the piezoelectric layer 
as an electric capacitance  one can obtain the voltage 
as 

 

 (57) 

 
where  is the capacitance of the piezoelectric layer. 

III. NUMERICAL EXAMPLES AND DISCUSSION 
A piezoelectric panel with different relative radius ratios, 

and fabricated from / PZT4 with the mechanical 
and electrical material properties as given in Table. I is 
considered. 

 Computations were performed on a network of personal 
computer with a maximum truncation constant of  
in Fourier expansions in all stress, displacement and electric 
voltage equations to assure convergence in the high frequency 
range. Before presenting the main results, the overall validity 
of the formulation should be demonstrated. To do this, the 
panel natural frequencies are computed for the same geometry 
used in [10]. The outcome, as shown in Table. II, shows good 
agreements with those calculated using commercial finite 
element software and [10]. 

 
TABLE I 

MATERIAL PROPERTIES OF THE PANEL 

 Piezoelectric Layer 
 

 
 

  
  
  
  
  
  
  
  
  

 
 

  
  
  
  
  

 
 

  
  
  

 
TABLE II 

COMPARISON OF FIRST THREE NATURAL FREQUENCIES ( ) 
Model    
Reference [10]    
FEM    
Present    

 
 In the validation procedure, FEM parameters are selected 

as shown in Table. III. In addition, mesh size sensitivity 
analysis was carried out for numerical convergence checking. 

The first five natural frequencies of the piezoelectric panel 
computed without any foundation, are listed in the Table. IV. 
As one can see the natural frequency decreases as the 
thickness ratio increases.  

The first five mode shapes of thickness ratio 
 are shown in Figs 2, 3 and 4. Figs 2, 3 and 4 

show the displacements due to each mode shape in the -
direction, -direction and -direction, respectively. 
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Fig. 2 Displacement of the first five mode shapes in  direction 
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Fig. 3 Displacement of the first five mode shapes in  direction 
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Fig. 4 Displacement of the first five mode shapes in  direction
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Also, the first five natural frequencies of the circular 
cylindrical piezoelectric located on a foundation with 

 for different thickness ratios are listed as 
Table. V. As one can see, adding the Winkler foundation 
increases the panel natural frequencies. 

 
TABLE III 

CONSIDERED FEM MODEL PARAMETERS 
ABAQUS elastic coefficients: Engineering Constants 

Parameters Magnitude 
  
  
  

  
  
  

  
  
  

ABAQUS Mesh Element Type for Piezoelectric 
 

 
TABLE IV 

THE FIRST FIVE NATURAL FREQUENCIES OF THE PANEL ( ) 
      

0.1 334.45 458.20 611.02 738.25 806.13 
0.2 331.49 458.25 573.76 667.07 794.78 
0.3 327.22 458.22 527.22 583.12 777.45 
0.4 322.01 458.35 481.94 502.13 753.29 
0.5 316.15 425.76 441.95 458.34 720.53 
0.6 309.97 352.65 407.67 458.42 666.99 
0.7 283.08 303.94 378.39 458.45 509.97 
0.8 221.25 298.67 344.72 353.18 458.48 
0.9 177.21 182.08 279.82 294.82 331.23 

 
TABLE V 

The first five natural frequencies of the panel ( ) 
      

0.1 334.48 458.20 611.02 738.25 806.14 
0.2 331.53 458.25 573.76 667.09 794.80 
0.3 327.30 458.30 527.22 583.17 777.49 
0.4 322.13 458.35 481.94 502.23 753.35 
0.5 316.33 425.93 441.95 458.39 720.63 
0.6 310.23 352.96 407.67 458.42 667.16 
0.7 283.67 304.35 378.39 458.45 510.32 
0.8 222.52 299.37 345.61 353.19 458.48 
0.9 180.66 185.82 282.35 296.38 331.25 

 
The effect of increasing  on the panel natural frequencies 

is investigated in Table. VI. These results are obtained for the 
thickness ratio  

TABLE VI 
The first five natural frequencies of the panel for different  

      
 221.25 298.67 344.72 353.18 458.48 

 221.89 299.02 345.16 353.19 458.48 
 222.52 299.37 345.61 353.19 458.48 
 223.16 299.72 346.05 353.19 458.48 
 223.79 300.07 346.50 353.19 458.48 
 224.42 300.42 346.94 353.20 458.48 
 225.05 300.77 347.38 353.20 458.48 
 225.68 301.12 347.82 353.20 458.48 
 226.30 301.47 348.27 353.20 458.48 

 
Obtained results show that, the natural frequencies increase 

by increasing the foundation constant ( ). Note that this 

effect decreases for higher order mode shapes, and in the fifth 
mode shape, the natural frequency does not change due to 
adding the foundation. This shows that structure vibration in 
the high frequencies does not depend on the foundation. 

The effect of large increasing of  is studied in Table. VII. 
This table shows that by increasing the Winkler foundation 
constant, the natural frequencies increase and tend to a 
constant bound, finally. This constant bound is the structure 
natural frequencies with clamped boundary condition at lower 
surface. 

In order to investigate the panel frequency response, it is 
excited by a harmonic pressure force distributed on the upper 
surface. Fig. 5 compares the electric voltage induced due to 
this excitation for the case  and . This 
figure shows that the response peaks slip to higher frequency 
by adding the Winkler foundation, which is in agreement with 
the calculated natural frequencies. In high frequencies this 
effect is insignificant. Also, as shown in Fig. 5 and Fig. 6 the 
vibration amplitude increases by adding the foundation. 

 
TABLE VII 

The first five natural frequencies of the panel for different large  
      

 221.50 298.81 344.89 353.18 458.48 
 223.79 300.07 346.50 353.19 458.48 
 245.41 312.27 353.27 362.09 458.48 
 353.75 396.73 401.21 458.51 489.56 
 354.41 458.81 549.50 772.82 786.24 
 354.66 461.76 573.81 773.35 847.84 

Clamped boundary condition 
 354.79 458.48 574.29 773.76 851.46 

 

 
Fig. 5 Comparison magnitude of electric potential 

 

 
Fig. 6 Comparison magnitude of electric potential 
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By comparing Fig. 5 and Fig. 6, it can be easily seen that by 
increasing the elastic coefficient the vibration amplitude 
decreases. 

Fig. 7 and Fig. 8 show the vibration amplitude in -
direction for two cases of no foundation and elastic 
foundation. 

 

 
Fig. 7 Comparison magnitude of electric potential 

 

 
Fig. 8 Comparison magnitude of electric potential 

 
As one can see, the effect of increasing  on vibration 

amplitude in lower frequencies is more than higher 
frequencies. 

IV. CONCLUSIONS 
The free/forced vibration of a transversely isotropic 

piezoelectric circular cylindrical panel supported on an elastic 
Winkler foundation was investigated in this paper. An exact, 
three-dimensional frequency response is presented. The effect 
of foundation constant on the natural frequencies of 
piezoelectric panel is numerically investigated for transversely 
isotropic materials with a generalized simply support 
boundary condition. Also, the frequency response of the panel 
compared for different foundations. As it is shown in the 
results, the imperfections in the placement of the piezoelectric 
layers as sensor/actuator have important effect on the structure 
vibration response. In addition, for validation purposes, 
calculated results compared with the results from FEM and 
results from a previous work. 
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