
 

 

 
Abstract— In this paper, the adaptive sliding mode controller 

(ASMC) is used to control the chaotic vibration of a block-on-belt 
system subjected to harmonic external excitations and supported by a 
limited energy supply. To control the chaotic vibration of this system, 
a switching surface is defined such that it becomes easy to ensure the 
stability of the error dynamics in the sliding mode. Then an adaptive 
sliding mode controller (ASMC) is derived to ensure the occurrence 
of the sliding motion and the Lyapunov stability analysis is used to 
guarantee the stability and tracking of the controlled system. Two 
different desired responses are considered in this study and the 
effectiveness of the proposed method is shown for both cases. 
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I. INTRODUCTION 
He friction induced vibration has been of considerable 
interests for researchers since many years ago, because it 

occurs frequently in everyday life and engineering systems. A 
number of works on the theory of oscillations with self 
excitation exists in the literature, for example: influence of the 
belt speed on the system response, dynamics of there-block 
mechanical with dry friction [1], investigation the geometry of 
chaotic attractors for dry friction oscillators [2, 3], numerical 
study of a dry friction oscillator with parametric and external 
excitations [4] and the dynamic behavior of friction driven 
oscillator with impact damper [5]. 

In practical situations, the system has a limited energy 
source such as DC motor and thus energy source dynamics is 
influenced by the oscillating system [6]. This increases the 
number of degrees of freedom, and is called a non-ideal 
problem. 

Dynamics of friction driven oscillator with limited power 
supply was investigated and the power supply influence on the 
vibrating system was observed along with chaotic motions [7]. 

Control and synchronization of chaotic systems have 
become an important topic since the pioneering work of 
Pecora and Carroll [8] in order to its vast application in 
physics and engineering systems such as in chemical 
reactions, power converters, biological systems, information 
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processing and et al. [9–13]. Many different chaos 
synchronization strategies have been developed, , adaptive 
control [14], variable structure control [15–17], optimal 
control [18], digital redesign control [19], Impulsive control 
[20] and adaptive sliding mode control [21, 22] and Impulse 
damper [22]. 

In this paper, first, the dynamical behavior of non-linear 
friction-driven oscillator with limited power supply under 
harmonic excitation is investigated numerically.  Investigating 
the response of the system in the wide range of excitation 
frequency shows that the chaotic motion of the system near 
the system natural frequency. To control the chaotic vibration 
of this system to desired response, an adaptive sliding mode 
control is proposed. Using the sliding mode control technique 
based on Lyapunov stability theory, an adaptive control law is 
established which stabilizes the chaotic response of the system 
to desired response. Numerical results have verified the 
effectiveness of the proposed method to control the chaotic 
vibration of friction driven oscillator for static and dynamic 
desired response. The effect of control parameters is also 
investigated on the effectiveness of the proposed control 
method and the amplitude of control input. 

 

II. PROCEDURE FOR PAPER SUBMISSION 
Fig. 1 shows the friction-driven oscillator supported by 

limited power DC motor. A block is connected to a fix frame 
by a nonlinear spring and a linear viscous damper.  The non-
linear spring force is given by 3

1 2kF k x k x  ; where, x is 
the block displacement with respect to equilibrium position.  

 

 
Fig. 1 Friction-driven oscillator 

 
Because of the interaction between the motor and the 

oscillating system, angular velocity of the motor isn’t 
constant. Characteristic curves of the energy source (DC 
motor) are assumed to be straight line [23]: 
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1 2( ) ( )T I u u     (1) 

 
Where, T is the mechanical torque,  is the motor’s speed, 

I  is the mass moment of inertia of the motor, 1u  is a control 

parameter depending on voltage and 2u  is the rotational 
damping coefficient of the motor.  

The equation of the motion of the block and motor can be 
written as: 

 
3

1 2 cos( )fr tMx k x k x Cx F F t       (2) 

 
And the equation of motion of motor angular position can 

be written as: 
 

1 2( ) ( )fr frI T rF I u u rF          (3) 

 
Where, tF  ,  , C  and frF  are the amplitude and 

frequency of external harmonic excitation, the coefficient of 
linear viscous damper, the friction force between the belt and 
the block respectively. Friction force follows Coulomb’s 
friction law. If the velocity of belt doesn’t equate the velocity 
of block, the friction force can be modeled as [24, 25]: 

 
If ( & )x r or x r xr          

sgn( )fr kF Mg r x     (4) 

 
And 
 
If ( & )x r x r      

3
1 2 1 2( ) cos( )t

fr
IM u u k x k x Cx F tF

M
     


   (5) 

 
Where, k  is the kinetic friction coefficient. 
The non-dimensional form of the equations of the block, 

liquid and the motor rotation can be written as: 
 

3
2 2

1 2 2

cos( )

( )

tfr
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f
n

FFx x x x
M M

rE E F
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(6) 

 
The prime denotes differentiation with respect to  ,  

and  
 

1 1
1
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The system parameters are fixed as: 
 

1 22.5, 1.5, 0.1, 0.01E E      ,  
 
Frequency response and bifurcation diagram of this system 

were plotted in [24, 25], and it was shown that the system has 
chaotic vibration for 1.2  . Time response of the block, 
excited by frequency 1.2   is plotted in Fig. 2 and the 
phase plane of the system is plotted in Fig.  3. As seen in this 
figures, time response and phase plane of the system are 
irregular which indicates the chaotic motion. 

To see the chaos clearly, Poincare map is plotted in Fig. 4. 
As seen in this figure, the Poincare´ section takes on an 
irregular pattern indicating the chaotic vibration.  

 

 
Fig.  2 Time history response of the system 

 

 
Fig.  3 Phase plane of the system 
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Fig. 4 Poincare Map  
 

III. CONTROL METHOD 

A. Adaptive Sliding Mode Control (ASMC) 
In this section, the adaptive sliding mode control is used to 

control the chaotic vibration. The controlled chaotic system 
can be rewritten as follows: 
 

3
2 2
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(7) 

 
For tracking control purpose, the error states are defined as 

 
1

2 1

( )
( )

e x t
e e x t



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     

 
 
(8) 

 
Where ( )t  is the desired system displacement and 

assume it to be twice differentiable with respect to time and its 
derivations are bounded as: 

 
( )
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t M
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(9) 

 

 
To ensure stability of the sliding mode, a switching surface 

( )s t  is defined as follows: 
 

1 2( ) ( ) ( )s t e t e t   (10) 

 
When the system operates in the sliding mode, it satisfies 

the following equations [26, 27]. 

 
( ) ( ) 0s t s t   (11) 
 
Sliding mode dynamics can be written as: 
 

1 2 1e e e    
3
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(12) 

 
Following functions are defined: 
 

3 2 2
1 1 1 1 1 1 2
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(13) 

 

Using (13), (12) can be rewritten as: 
 

2 1 2( , , ) ( , , )e f e e g u        (14) 

 
Using (9), we have 
 

3
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(15) 

 
The controller is designed as [22]: 
 

sgn( ( ))u s t   (16) 
 
Where, 1 2 2| ( , , ) | | |f e e e      and the adaptive law 

for parameter   is proposed as: 
 

, 1        (17) 
 
The proposed adaptive control scheme will guarantee the 

globally asymptotical stability for the error, and is proven in 
the following. 

 

B. Stability analysis 
In this section, we analyze the stability of the sliding mode 

dynamics based on the Lyapunov stability theory. For this 
purpose, the Lyapunov function is defined as 

2 21( ) ( )
2

V t s   . 

which yields to: 
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(18) 

 
By solving (17) we have: te    , where  is 

positive constant. By te     substituting in (18) we 
have:  

 
2 2| | (1 ) ( ) 0t t tV s e e e              (19) 

 
If we define 
 
 2 2( ) | | (1 ) ( )x x xw t s e e e             
 
 And integrating the above equation from zero to t, it leads 

to following equation.  
 

0 0

0

( ) (0) ( ) (0) ( ) ( )

( ) (0)

t t
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V t V w d V V t w d

w d V
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 
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(20) 

 
Taking the limit as t   on both side of (20) gives 
 

0

lim ( ) (0)
t

t
w d V 


    

(21) 

 
Now the Barbalat’s lemma is given below. 
 
Lemma . (Barbalat’s lemma [28]). If :w R R  is a 

uniformly continuous function for 0t   and if  

0

lim | ( ) | (0)
t

t
w t dt V


   exists and is finite, then 

lim ( ) 0
t

w t


 . 

Thus according to Barbalat’s lemma (see Lemma 1), it is 
obtained that 

 
2 2lim ( ) lim(| | (1 ) ( )) 0x x x

t t
w t s e e e      

 
      

 

(22) 
 

Since lim 0t

t
e


 , 0   and 1   implies ( ) 0s t  as 

t  . 
Thus the system works in the sliding mode and the stability 

of 1e and 2e  is surely guaranteed using (12), therefore 

1 2( ( ), ( ))e t e t converge to zero.  
 

IV. NUMERICAL SIMULATIONS 
Here the numerical results are given to confirm the validity 

of the proposed method. In the numerical simulations the 

desired response is set as ( ) 0t   and the control 
parameters,   and   are set as: 1.1   and 1  . 

Fig. 5 and Fig. 6 depict the synchronization error of the 
state variables. 

 
 

 
Fig. 5 Time response of first error state, 0  . 

 

 
Fig. 6 Time response of second error state, 0  . 

 
Fig. 7 shows time response of the switching function s(t).  
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 Fig. 7 Time response of the switching function, 0  . 

 
 
 

As seen in this figures, state variables converge to desired 
values and the switching function converges to zero in a short 
time. 

The control effort is plotted in Fig. 8.  
 

 
Fig. 8 Time response of control effort for 1and 1.1   . 

 
For investigation the effect of control parameters on the 

control effectiveness, we plot the time history of switching 
function for three values of    and  . 

Time history of switching function is plotted in Fig. 9 for 
1.1,5and10  . 

 

 
Fig. 9 Time response of the switching function for 1.1,5and10   

 
As seen in Fig. 9, by increasing , control effectiveness 

increases and the convergence time of switching function 
decreases.   

To show the effect of  on the effectiveness of proposed 
method, switching function is plotted for 0.1,5and10  in 
Fig. 10. 

 
Fig. 10 Time response of the switching function for 

0.1,5and10   
 

From Fig. 10, it is obvious that the effect of   is the same 
as  . And the large values of   leads to small time 
convergence than small values of  . 

From (16), it is clear that the large values of   and   lead 
to more control input. To show this numerically, control input 
is plotted in Fig. 11 for 1and 5    and 

0.1and 1.1   in Fig. 12. 
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Fig. 11 Time response of control effort for 1and 5   . 

 

 
Fig. 12 Time response of control effort for 0.1and 1.1   . 
 
Comparison of Fig. 11 and Fig. 12 with Fig. 8 shows that 

increasing control parameters increase the control input. 
For evaluation the proposed control law in tracking the 

dynamic desired response, desired response is considered as
( ) 0.3sin(5 )t  . Time responses of errors are plotted in Fig. 

13 and Fig. 14. The control parameters,   and   are set as: 
1.1   and 1  . 

 

 
Fig. 13 Time response of first error state, 0.3sin(5 )   

 

 
Fig. 14 Time response of first error state, 0.3sin(5 )   

 
Time response of state variables plotted in Fig. 15 and Fig. 

16. 
 

 
Fig. 15 Time response of first error state, 0.3sin(5 )   
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Fig. 16 Time response of first error state, 0.3sin(5 )   

 
Fig. 17 shows the Time response of the switching function 

which indicates that the system has been controlled to 
harmonic desired response in short time.   

 

 
Fig. 17 Time response of block displacement, 0.3sin(5 )  . 

 
From the simulation results, it shows the proposed ASMC 

works well and the system error states are regulated to zero 
asymptotically. 

 

V. CONCLUSION 
In this paper, the chaotic vibration of a block-on-belt 

system subjected to an external excitation and supported by a 
limited energy supply was controlled using adaptive sliding 
mode control. Using the sliding mode control technique based 
on Lyapunov stability theory, an adaptive control law was 
established which stabilizes the chaotic response of the system 
to desired response. Numerical results have verified the 
effectiveness of the proposed method to control the chaotic 
vibration of friction driven oscillator for two different static 
and dynamic desired responses. The effect of control 
parameters which defined in control law is analyzed and it 

shown that increasing the control parameters decreases the 
switching function settling time but it needs more control 
inputs. 
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