
  
Abstract—The goal of this work is to create numerical model, 

which will be used for design and optimization of a rubber bushing 
of stabilizer bar. Thanks this model we are able to predict the 
mechanical behavior of the bushing. To get material constants for the 
model, the material of bushing (rubber) was tested in special 
deformations modes. A hyperelastic material model was set and it 
was implemented into the numerical model of the bushing. Critical 
points in the construction of bushing were reveled by the analysis of 
the numerical model. 
 

Keywords— bushing, hyperelasticity, numerical model, stabilizer 
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I. INTRODUCTION 
HE stabilizer bar (Fig. 1) is an important part of a car 
suspension. It is intended to force each side of the vehicle 

to lower, or rise, to similar heights, to reduce the sideways 
tilting of the vehicle on curves, sharp corners, or large bumps. 
One of the factors which influence the function and behavior 
of the stabilizer bar is a way in which it is connected with the 
car frame. This connection must be able to absorb quite large 
deformation of the stabilizer bar. Therefore the rubber 
bushings are commonly used to clamp stabilizer bar and to 
fasten it to the car frame (Fig. 2). To design stabilizer bar 
bushing properly we need to predict the bushing behavior 
accurately. The numerical model [1]-[19] of the bushing was 
created and the analysis of its behavior is described in this 
paper. Main goal of the work was to analyze the radial 
stiffness of the bushing.  
 

 
 

Fig. 1 car stabilizer bar [20] 
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II. MATERIAL AND METHODS 

A. Geometry of Bushing 
The scheme of half cut stabilizer bar bushing is shown in 

the Fig. 3. The bushing consists of three main parts: two 
rubber parts (a) and (b), and steel bracket (c). Rubber parts are 
mounted on the stabilizer bar (d) and then together with the 
stabilizer bar they are fixed by the steel bracket (c) to the car 
frame. Both rubber parts of the bushing are reinforced by the 
aluminum core (e). There are eight holes in each core plate for 
better fixation in the elastomer (Fig. 4).  
 

 
 

Fig. 2 stabilizer bar attachment [21] 
 

B. Material 
We need to characterize two materials of bushing: 
- material of elastomer:   NR 60±3 Sh A 
- material of bushing core:  EN AW-AlMg3-H46. 
Material of the core (EN AW-AlMg3-H46) is standardized 

type of aluminum alloy and we can get data from common 
material databases. Young modulus of this material is 
E=70000 MPa and Poisson ratio μ=0.3. Contrary to the core, 
to characterize the rubber, from which the elastomer part of 
the bushing is made, we need to test the mechanical properties 
of this material. This material was tested in three basic 
deformation modes that are used to characterize a hyperelastic 
material [22]-[29]. These tests are: uniaxial tension, 
equibiaxial tension and pure shear (Fig. 5). 
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Fig. 3 half cut scheme of the stabilizer bar bushing 
 

 
 

Fig. 4 shape of the bushing core 
 

Uniaxial tension test of elastomer 
Uniaxial tension tests of elastomer [30], according ISO 37 

standard, was performed to determine the hyperelastic 
material parameters. The test was performed on an universal 
tensile testing machine. A 1.5 mm thick dumb-bell shaped 
specimen (type 1A – ISO 37) was used (Fig. 6). Stress/strain 
curve was measured during the whole range of loading. 
Specimens were loaded up to deformation of ε=1.5. 
 

Equibiaxial tension test of elastomer 
A bubble inflation technique was used to characterize the 

elastomer in the equibiaxial tension [31]-[36]. 
The bubble inflation technique involves a uniform circular 

specimen clamped at the rim and inflated by increasing the air 
pressure on one side. The specimen deforms into the shape of 
a bubble (Fig. 7 and 8). The inflation of the specimen results 

in an equibiaxial stretching near the pole of the bubble and a 
planar tension near the rim. 
 

 
 

Fig. 5 three basic deformation modes of elastomer tests 
 

 
 

Fig. 6 1A type of uniaxial tension test specimen (ISO 37) 
 

Due to the spherical symmetry at the bubble pole, where σ 
represents the hoop stress σθθ=σφφ. Then the Cauchy stress 
tensor can be expressed as 
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As the thickness t of the inflated specimen is small 

compared with its radius of curvature r, the thin shell 
assumption is appropriate, allowing us to neglect the radial 
stress σrr in comparison with the stress σθθ. In addition we 
equate σθθ to the thickness-averaged hoop stress, which leads 
to 
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t
pr
2

=θθσ , (2) 

 
where p is the differential inflation pressure inside the bubble, 
r is radius of curvature of the specimen and t is the specimen 
thickness (Fig. 7). 
 

 
 

Fig. 7 the bubble inflation technique 
 

 
 

Fig. 8 inflated equibiaxial specimen with white stripes 
 

Considering the material incompressibility, the thickness of 
the inflated specimen can be expressed as 
 

2
0

θθλ
tt = , (3) 

 
where t0 is the initial specimen thickness (unloaded state). The 
stretch λθθ at the pole of the inflated specimen must be 
measured. Generally, the stretch λ is the ratio between the 
actual length l and the initial length l0, or 
 

λ= l
l0

. (4) 

 
Using a video camera, the stretch λθθ and the radius of 

curvature r were measured. 
Substituting equation (3) into the equation (2) the hoop 

stress becomes 
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To compute the hoop stress σθθ from the (5) the pressure p 

inside the bubble, the radius of curvature of the bubble r, and 
the stretch λθθ at the bubble pole must be measured during the 
inflation. To characterize the hyperelastic material behavior, 
knowledge of the entire stress/strain curve is necessary (Fig. 
9). Thus, the above mentioned parameters were recorded 
continuously during the whole test. 
 

 
 

Fig. 9 results of tests of bushing elastomer 
 

Specimens with thickness t0=1.5 mm were tested, and 
diameter of the hole through which the bubble is inflated was 
50 mm. Pressure was measured using a digital manometer. 
The inflation of the specimen was recorded using a video 
camera and the stretch and bubble radius were obtained by 
analyzing the resulting video. Finally, the manometer display 
appeared in the video images, so relating the pressure to every 
stretch or radius value was simple and reliable. 

To determine the bubble radius and stretch from the video 
images, two stripes were drawn on the specimen surface, 
identifying two points on the bubble silhouette. Tracing an arc 
through these points and the pole of the bubble allows the 
determination of the radius and the length of the arc (Fig. 8). 
 

Pure shear test of elastomer 
In this test, the specimen is loaded by tension similarly like 

in the uniaxial tension test. Important difference is in the 
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boundary conditions during the test. Cross-section area of the 
uniaxial specimen (Fig. 3a) is not constrained and it can freely 
contract in its both dimensions during the loading. Contrary 
uniaxial tension, pure shear specimen can change only its 
thickness during the test. Its width will remain constant during 
the whole range of loading (Fig. 3c). To fulfill this condition it 
is necessary that the height of the sample is substantially 
smaller than its width and that both longitudinal edges of 
specimen are firmly clamped in the long clamps which 
prevent change of the specimen width (Fig. 10). 
 

 
 

Fig. 10 pure shear test specimen in long clamps [37] 
 

C. Hyperelasticity 
A hyperelastic material constants were set up from results 

of tests presented above. Currently a number of hyperelastic 
material models are available they vary in defining the strain 
energy density function W [38]-[43]. W is a function of a 
deformation tensor, whose derivative with respect to a strain 
component determines the corresponding stress component. 
Explicitly,  
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where Sij are components of the 2nd Piola Kirchhoff stress 
tensor and Cij are components of the right Cauchy-Green 
deformation tensor [44], that will be as follows 
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Hyperelastic models are usually named after their authors. 

Some of the best known and most used models are: Neo-
Hookean, Mooney-Rivlin, Yeoh, Second Order Invariant, 
James-Green-Simpson, Ogden, Gent, Arruda-Boyce [45]-[51]. 

D. Numerical Model of the Bushing 
An advanced nonlinear "Finite Element Method" (FEM) 

system was used for numerical model creation and for the 
analysis. With regard to the symmetric shape of the bushing 
and to the symmetry of loads and boundary conditions (which 
will be described bellow) we can reduce the geometry of the 
numerical model to one quarter of original shape (Fig. 11). 
First plane of symmetry is normal to the axis of stabilizer bar 
and it is placed in the center of the bushing. Second symmetry 
plane coincides with the stabilizer bar axis and is 
perpendicular to the first plane (Fig. 11). Quarter model has 
four parts: bottom bushing part, top bushing part, stabilizer 
bar and bracket. Aluminum cores are positioned inside the top 
and bottom bushing parts (they are not shown in the Fig. 11). 
 

 
 

Fig. 11 geometry of the numerical (quarter) model 
 

In the model, the rubber parts and aluminum core were 
created of the "Four Node Tetrahedron Finite Elements" [52]. 
The stabilizer bar and bracket are created as rigid bodies. 
Elastomer and core share nodes on their boundaries and 
therefore they are fixed together. 

Material constants of aluminum are given above. For 
elastomer an appropriate hyperelastic material model had to be 
set. Using results from uniaxial tension, equibiaxial tension 
and pure shear tests of elastomer, material constants of above 
mentioned hyperelastic models were computed. The closest 
agreement with experimental data (i.e. minimal error) showed 
a "2nd Order Invariant" hyperelastic model [53]. The strain 
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energy density function W of this model is as follows: 
 
W = c10(I1−3) + c01(I2−3) + c11(I1−3)(I2−3) + c20(I1−3)2 (8) 
 
where I1 and I2 are first and second invariants of right Cauchy-
Green deformation tensor defined as (7). There is the 
comparison of this model and experiment in the Fig. 12. 
Computed material constants of this model are: c10=0.23264 
MPa, c01=0.16711 MPa, c11=−0.0060978 MPa and 
c20=0.01475 MPa. 
 

 
 
Fig. 12 comparison of experimental data and the 2nd Order Invariant 

hyperelastic model 
 

E. Loads and boundary conditions 
To be as close as possible to reality, the loads are applied in 

two steps. The first step can be considered as a "Mounting of 
bushing on the stabilizer bar". During this step some 
deformation and stress of the bushing occurs and the model is 
in the state of initial "preload" at the end of the first step. 
During the second step required load is applied to the 
stabilizer bar. 
 

First load step 
There is partially cut scheme of a real actuator bushing 

shown in Fig. 13. Contrary the presented numerical model 
there is a polyamide support. The bottom part of elastomer is 
fixed in this support and the support together with the bracket 
is fixed to the car frame. It means that the support can be 
replaced by the null displacement boundary condition on the 
surfaces of bottom elastomer in the numerical model. 
Therefore all three degrees of freedom of displacement were 
constrained on surfaces of bottom part of elastomer. These 
surfaces are shown in Fig. 14. 

A symmetry conditions are set on the symmetry planes 
(shown in Fig. 11) as a null displacement in planes normal 
directions. There is a contact defined between two rubber 
parts of bushing, between these parts and the stabilizer bar, 
and between these parts and bracket. No friction is defined 

between contact bodies. 
The bushing mounting is done by the displacement of the 

bracket. The bracket moves down against to bottom part of 
bushing (i.e. radial direction). During this motion the bracket 
touch the top part of bushing first, and then shift it to the 
stabilizer bar. Stabilizer bar can move only vertically (other 
two displacements are not allowed), and thus it is pushed into 
the bottom part of bushing and is clamped from the top by 
other part of bushing and by bracket. 
 

 
 

Fig. 13 scheme of the bushing with the support 
 

 
 

Fig. 14 surfaces of bushing bottom part with null displacement 
 

Second load step 
At the beginning of this step, "glue" contact type is defined 

between rubber parts and the rigid stabilizer bar. It means that 
stabilizer bar is fixed on the surfaces of the bushing during 
whole second step. It should be in accordance with reality 
when bushing is fastened on stabilizer bar. Vertical radial 
force F=2000 N is gradually applied on the stabilizer bar 
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during second step (Fig. 15). It should be remembered that 
this force is applied only to quarter model and thus the load of 
full model is four times larger (8000 N). Rigid bracket will 
remain in its final position from the first step and will not 
move during the second step. 
 

 
 

Fig. 15 stabilizer bar loading during the second load step 
 

III. RESULTS AND DISCUSSION 
The main result is "Radial Stiffness" of the bushing. To 

compute this parameter the "loading radial force / radial 
displacement of stabilizer bar" relation was monitored (Fig. 
16). The stiffness was determined in the range of loading from 
F=4000 N to F=8000 N (as well as in the practical tests of a 
real bushing). Values of force above are given for the whole 
bushing (i.e. 1000 N and 2000 N for the quarter numerical 
model). The final value of the Radial Stiffness of the model is 
11168 N/mm. Average value from the tests of a real bushing 
is 11190 N/mm.  
 

 
 

Fig. 16 force/displacement curve of numerical model analysis 
 

There is a Von Mises equivalent of strain in the model 
shown in the Fig. 17. The deformation of the bushing at the 
end of the first load step (time=1.0) is shown in the first 
picture (Fig. 17a) and the deformation under the final radial 
loading of F=8000 N at the end of the second load step 
(time=2.0) is shown in the second picture (Fig. 17b). We can 
see critical point with the maximum strain of ε=1.06 at the end 
of second step (maximum at the end of first step was ε=0.71). 
This point is shown in the detail in the Fig. 18. 
 

 
 

Fig. 17 Von Mises equivalent of strain in the model 
 

 
 

Fig. 18 maximum of Von Mises equivalent of strain in the model 
 

Contrary the strain, the stress distribution is absolutely 
different. Stress is concentrated on the aluminum core and in 
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its vicinity (Fig. 19 and 20). There is shown bushing including 
core in Fig. 19, and the only rubber part of the bushing in the 
Fig. 20. Because the stresses in the aluminum core do not 
reach the strength (stress limit) of the material, the core is not 
studied more. 
 

 
 

Fig. 19 Von Mises equivalent of stress [MPa] 
 

 
 

Fig. 20 Von Mises equivalent of stress [MPa] - only in elastomer 
 

We can see that the extreme stresses in the rubber part are 
located in the spaces of the core holes and that the stress 
values are very high here even at the end of first load step in 
time=1.0 (Fig. 21) and they reach their maximum at the end of 
the second load step (Fig. 22). The reason of this is that the 
elastomer has no space where to run out during the loading (it 
is closed in the core hole). Similar situation occurs on the core 
surfaces where the deformation of the elastomer is constrained 
by the aluminum core. It means that the critical point of the 
bushing is the surface of the core (especially in the holes) 
where the stress is concentrated during the loading, and 
therefore there is a high risk of tearing off the rubber from the 
core. Next risk, resulting from this issue, is the fact that this 
defect of bushing is closed inside the device and can not be 

observed from outside. Thus we need special diagnostic 
methods to find such failings. 
 

 
 

Fig. 21 maximum of Von Mises equivalent of stress [MPa] in 
elastomer at the end of first load step 

 

 
 

Fig. 22 maximum of Von Mises equivalent of stress [MPa] in 
elastomer at the end of second load step 

 

IV. CONCLUSION 
Based on the tests of material the appropriate hyperelastic 

model of elastomer was determined and the material constants 
were computed. Using this model, we are able to predict the 
behavior of the bushing under the radial loading. Even next 
modes of loading can be analyzed by this model and these 
analyses were carried out but they are outside the scope of this 
article and they will be published later. The suitability of the 
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numerical model was approved by close agreement with the 
experiment of real bushing. Analysis of the model revealed 
the critical points of the bushing and its results will be used to 
future shape optimization of the product. This optimization 
should minimize the risk of the tearing of rubber from 
aluminum core which will lead to extension of the bushing 
working life.  
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