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Abstract – The problem of the collision of a ther-
moelastic rod with a heated rigid wall is considered
for the case of weak coupling between the strain and
temperature fields when the thermoelastic behavior
of the rod is described by the Green-Naghdy theory
without energy dissipation. The lateral surfaces and
free end of the rod are thermally insulated, and free
thermal exchange is established within the contact
domain with the wall. D’Alembert solution together
with the perturbation technique are utilized as the
method of solution. The proposed procedure allows
one to construct an analytical solution enabling to
study the influence of thermoelastic parameters on
the contact duration, as well as to obtain the stress,
velocity, temperature, and heat flow dependences of
time and coordinate.
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I. INTRODUCTION

The generalized D’Alembert solution to the prob-
lem of coupled thermoelasticity was presented in pio-
neering work of Hetnarski in 1967, but this paper was
unfairly forgotten. The solution was constructed for
a parabolic-hyperbolic set of equations and involved
both wave and diffusion terms. The coupling param-
eter was considered to be small, and the solution was
constructed via the expansion in terms of a small pa-
rameter. However, the solution constructed in [1] was
not applied for solving dynamic boundary-value prob-
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lems.
It seems likely that D’Alembert expansions have

not been used for solving boundary-value problems
of dynamic theory of thermoelasticity till 1998 when
the simplest problem for the Green-Naghdi hyperbolic
theory of thermoelasticity without energy dissipation
[2] has been considered [3], wherein the analytical so-
lution of the Danilovskayas problem on the heat shock
of a stress-free thermoelastic half-space has been de-
rived. However, the solution suggested in [3] is appli-
cable only for half-continuous media, since it does not
allow one to consider reflected and refracted waves
which occur in bodies of finite extent.

The solutions applicable for bodies of finite ex-
tent were proposed in [4, 5] for the collision of two
thermoelastic rods and for the impact of a thermoe-
lastic rod against a rigid heated barrier, respectively,
using the Green-Naghdy theory but without coupling
the temperature and strain fields. The procedure
suggested has enabled for the first time to construct
the longitudinal coordinate dependence of the desired
functions at any fixed instant of the time beginning
from the moment of the rods collision with the bar-
rier up to the moment of its rebound, i.e., to obtain
the analytical solution in the closed form for the main
functions showing the distribution of the thermoelas-
tic impact characteristics along the rod.

The procedure of the application of D’Alembert
method in dynamic problems of uncoupled and cou-
pled thermoelasticity is described in detail in [6].

In the present paper, the problem on impact of a
thermoelastic rod against a heated barrier is consid-
ered with due account for the small coupling between
the temperature and strain fields using the Green-
Naghdy theory via the D’Alembert-type solution.
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II. GOVERNING EQUATIONS AND THE
D’ALEMBERT-TYPE SOLUTION

The dynamic behavior of a thermoelastic rod
based on the Green-Naghdy theory of thermoelastic-
ity without energy dissipation [2] is described by the
following set of equations:

σ,x = ρv̇, (1)

σ̇ = Ev,x − γθ̇, (2)

q,x + cεθ̇ + T0γv,x = 0, (3)

q̇ = −æθ,x, (4)

where x is the coordinate, t is time, σ is the stress,
v is the velocity, ρ is the density, θ = T − T0 is
the relative temperature, T0 is the initial temperature,
E is the Young’s modulus, γ = Eα, α is the coef-
ficient of linear thermal expansion, cε is the specific
heat at constant strain, q is the quantity of heat flow-
ing through a rod cross-section area per a time unit,
æ = lim

τ→∞
(λτ−1), λ is the thermal conductivity of the

material, τ is the thermal relaxation time, overdot de-
notes the time-derivative, and an index after a comma
labels the derivative with respect to the coordinate.

Eliminating the stress σ from equation of motion
(1) and Duhamel-Neumann law (2) once differenti-
ated with respect to time, and the velocity of heat flow
q from the law of conservation of energy (3) and the
heat conduction law (4), we find

a2θ,xx − θ̈ =
1
α
εv̇,x, (5)

c2v,xx − v̈ = c2αθ̇,x, (6)

where a =
√

æc−1
ε is the velocity of the pure thermal

wave, c =
√
Eρ−1 is the velocity of the pure elastic

wave, ε = T0γ
2(cεE)−1 is a dimensionless parame-

ter defining the strain and temperature fields coupling,
which is a small value what is characteristic for such
materials as different metals and alloys [7].

When ε = 0, i.e., for the uncoupled problem, the
general solution of the D’Alembert type was derived
by Rossikhin and Shitikova in the following form [5]:

θ0 = g0(x− at) + k0(x+ at), (7)

v0 = f0(x− ct) + l0(x+ ct)

+A [g0(x− at)− k0(x+ at)] , (8)

σ0 = ρc [−f0(x− ct) + l0(x+ ct)]

−ρaA [g0(x− at) + k0(x+ at)] , (9)

q0 = −æa−1 [−g0(x− at) + k0(x+ at)] , (10)

where A = ac2α
(
a2 − c2

)−1 is the coefficient defin-
ing the influence of thermal characteristics on the
velocity and stress fields, f0(x − ct), l0(x + ct),
g0(x− at), and k0(x+ at) are arbitrary functions.

In order to find the general solution of Eqs. (5)
and (6) within an accuracy of ε 6= 0, let us substitute
(8) into the right-hand side of Eq. (5). As a result we
have [8]

a2θ1,xx − θ̈1 =
1
α
ε [−cf0,ξξ + cl0,ηη

−Aag0,λλ −Aak0,µµ] , (11)

where indices after a comma denote the derivatives
with respect to ξ = x − ct, η = x + ct, λ = x − at,
and µ = x+ at.

The general solution of (11) has the form

θ1 = g1(x− at) + k1(x+ at)

+
Aε

caα2
[−f0(x− ct) + l0(x+ ct)]

+
Aε

2α
[−g0,λ(x− at) + k0,µ(x+ at)] t, (12)

where g1(x − at), and k1(x + at) are arbitrary func-
tions.

Substituting (12) into the right-hand side of
Eq. (6) yields

c2v1,xx − v̈1 = c2α [a (−g1,λλ + k1,µµ)

+
Aε

aα2
(f0,ξξ + l0,ηη) +

Aε

2α
(−g0,λλ + k0,µµ)

+
Aaε

2α
(g0,λλλ + k0,µµµ) t

]
. (13)

The general solution of (13) has the form

v1 = f1(x− ct) + l1(x+ ct)

+A [g1(x− at)− k1(x+ at)]

+ε
c2A

2

{
c2 + a2

(c2 − a2)2
[−g0(x− at)+k0(x+ at)]

+
1
caα

(f0,ξ− l0,η)t+
a

c2 − a2
(g0,λ+k0,µ)t

}
, (14)

where f1(x−ct), and l1(x+ct) are arbitrary functions.

INTERNATIONAL JOURNAL OF MECHANICS Volume 8, 2014

ISSN: 1998-4448 63



Knowing the functions θ1 and v1, from relation-
ships (2) and (4) we find

σ1 = ρc [−f1(x− ct) + l1(x+ ct)]

−ρaA [g1(x− at) + k1(x+ at)]

+ερc2
{

Aac2

(c2 − a2)2
[g0(x− at) + k0(x+ at)]

+
A

2caα
[f0(x− ct)− l0(x+ ct)]

− A

2aα
(f0,ξ+ l0,η)t+

Aa2

2(c2 − a2)
(−g0,λ+k0,µ)t

}
, (15)

q1 = −æ
{
a−1 [−g1(x− at) + k1(x+ at)]

+ε
A

c2aα2
[f0(x− ct) + l0(x+ ct)]

−ε A

2αa2
[−g0(x− at) + k0(x+ at)]

+ε
A

2αa
(g0,λ+k0,µ)t

}
. (16)

Thus, considering the zero-order (7)–(10) and
first-order (12) and (14)–(16) approximations, the so-
lution to be found could be written as

θ = θ0 + θ1 +O(ε2), (17)

v = v0 + v1 +O(ε2), (18)

σ = σ0 + σ1 +O(ε2), (19)

q = q0 + q1 +O(ε2). (20)

Relationships (17)–(20) allow one to solve dif-
ferent boundary-value dynamic problems of coupled
thermoelasticity.

III. THERMOELASTIC ROD IMPACT AGAINST A
HEATED BARRIER

Suppose that a thermoelastic rod of length L
moves with the constant velocity V0 along the x-axis
towards a rigid heated wall with the temperature Θ1.
The temperature of the moving rod is equal to zero for
simplicity. Impact occurs at t = 0 at the origin of co-
ordinates x = 0 (Figure 1a). The rod’s lateral surface
and its free end are heat-insulated, while at the impact
point free heat exchange between the striking rod and
the barrier takes place.

In this problem, at the zero-order approximation
the unknown functionsf0, l0, g0, and k0 entering in

Eqs. (7)–(10) are determined from the following ini-
tial and boundary conditions:

v0(x, 0) = −V0, σ0(x, 0) = 0,

θ0(x, 0) = 0, q0(x, 0) = 0 (0 ≤ x ≤ L), (21)

v0(0, t) = 0, q0(0, t) = −h(θ0 −Θ1), (22)

σ0(L, t) = 0, q0(L, t) = 0, (23)

where h is the heat transfer coefficient.
Substituting (7)–(10) in (21)-(23) and assuming

that c < a < 2c, we obtain

k0(x) = g0(x) = 0,

f0(x) = l0(x) = − V0

2
(0 ≤ x < L) , (24)

f0(−ct) =
2Aah

æ + ah
k0(at)− l0(ct)− Aah

æ + ah
Θ1,

g0(−at) =
æ− ah
æ + ah

k0(at) +
ah

æ + ah
Θ1, (25)

l0(L+ ct) = f0(L− ct) +
2Aa
c

g0(L− at),

k0(L+ at) = g0(L− at). (26)

At the first-order approximation, to find the un-
known functions f1, l1, g1, and k1 entering in
Eqs. (12) and (14)–(16), it is necessary to utilize the
zero initial conditions

v1(x, 0) = 0, σ1(x, 0) = 0,

θ1(x, 0) = 0, q1(x, 0) = 0 (0 ≤ x ≤ L), (27)

as well as the following boundary conditions

v1(0, t) = 0, q1(0, t) = −hθ1, (28)

σ1(L, t) = 0, q1(L, t) = 0, (29)

Substituting (12) and (14)–(16) in (27)-(29) with
due accounf for (24)-(26), we obtain

−k1(x) = g1(x) =
V0

2A
s,

f1(x) = l1(x) = − V0

2
(0 ≤ x < L) ; (30)

f1(−ct) = −
(

2b1
δ

+ 1
)
l1(ct)+

2Ab2
δ

k1(at)+
Θ1

δ
,
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Ag1(−at) =
2b1
δ
l1(ct)−

(
2b2
δ
− 1

)
Ak1(t)− Θ1

δ
,

(31)

l1(L+ ct) = (1 + sg)f1(L− ct) + 2gA g1(L− at),

Ak1(L+at) = 2s f1(L−ct)+(1+sg)Ag1(L−at),
(32)

where δ = b2(1 + d2)− b1(1 + d1),

d1 =
æ
ch
, d2 =

æ
ah
, g =

a

c
, b1 = ε

c

α(aα2 − c2)
,

b2 = − 1
αac2

[
a2 − c2 + ε

c2(a2 + c2)
2(a2 − c2)

]
,

and the parameter s involving the small coupling pa-
rameter ε takes the form

s = −ε a2c2

(a2 − c2)2
. (33)

Formulas (24)-(26) and (30)-(32) allow one to
find all desired functions of the problem under con-
sideration (17)-(20) for any magnitude of the coor-
dinate 0 ≤ x ≤ L and for arbitrary instant of time
0 ≤ t ≤ tcont, where tcont is the duration of contact.
Really, substituting (24)-(26) in (7)-(10) and (30)-(32)
in (12) and (14)–(16), putting t2/t1 = 3/2, where
t1 = 2La−1 and t2 = 2Lc−1, we could find the de-
sired functions at the characteristic instants of time:

I: at t = 1
2 t1 the faster wave, i.e., thermal wave Σ1

traveling with the velocity a, reaches the free end of
the rod:

I a) 0 < x < 2
3L

v = 0,

σ = −ρcV0 −
γΘ1

(1 + g−1)(1 + d2)

+ sρaV0

(
1− g−1

) (d2 + g−1)
(1 + d2)

,

θ =
Θ1

1 + d2

− s

1 + d2

[
Θ1g

−1 + V0d2

(
1− g−1

)a2 − c2

αac2

]
,

q =
Θ1d2h

1 + d2

− s
d2h

1 + d2

[
Θ1 − V0

(
1− g−1

)a2 − c2

αac2

]
; (34)

I b) 2
3L < x < L

v = −V0 +
AΘ1

1 + d2
− sV0

d2 + g−1

1 + d2
,

σ = − γΘ1

(1− g−2)(1 + d2)
+ sρaV0

d2 + g−1

1 + d2
,

θ =
Θ1

1 + d2
− sV0

(d2 + g−1)(a2 − c2)
(1 + d2)αac2

,

q =
d2Θ1h

1 + d2

+ sV0hd2
(d2 + g−1)(a2 − c2)

(1 + d2)αac2
; (35)

II: at t = 1
2 t2 the slower wave, i.e., elastic wave Σ2

traveling with the velocity c, reaches the free end of
the rod:

II a) 0 < x < 1
2L

Within this segment, the solution coincides with
that in the case Ia, i.e., it has the form of (34).

II b) 1
2L < x < 2

3L

v = − AΘ1

1 + d2
+ s

[
−2AΘ1g

1 + d2
+ V0

d2 + g−1

1 + d2

]
,

σ = −ρcV0 −
γ(2− g−1)Θ1

(1− g−2)(1 + d2)

− sρc

[
2AΘ1g

2

1 + d2
− V0

(d2 + g−1)(2g−1 − 1)
1 + d2

]
,

θ =
2Θ1

1 + d2
+ s

[
Θ1(2g2 − 1)g−1

1 + d2

− V0
a2 − c2

αac2

(
2(d2 + g−1)

1 + d2
− g−1

)]
,

q = −shd2

[
V0
a2 − c2

αac2
+

Θ1(1 + 2g)
1 + d2

]
; (36)

II c) 2
3L < x < L

v =
A(2g − 1)Θ1

1 + d2
+ s

[
2AΘ1g(g − 1)

1 + d2

− V0
(d2 + g−1)(2g − 1)

1 + d2

]
,

σ = −ρcV0 +
g−1γΘ1

(1− g−2)(1 + d2)

− sρcV0
d2 + g−1

1 + d2
,

INTERNATIONAL JOURNAL OF MECHANICS Volume 8, 2014

ISSN: 1998-4448 65



θ =
2Θ1

1 + d2
+ s

[
θ1g
−1

1 + d2

(
2g2 − 2g − 1

)
− V0

a2 − c2

αac2

(
2(d2 + g−1)

1 + d2
− g−1

)]
,

q = shd2

[
V0
a2 − c2

αac2
− Θ1

1 + d2

]
; (37)

III: at t = 7
8 t1 the reflected thermal wave Σ1

1, which
is generated when the incident thermal wave Σ1 is
reflected from the rod’s free end, is approaching the
place of contact:

III a) 0 < x < 1
4L

Within this segment, the solution coincides with
those in the cases Ia and IIa, i.e., it has the form of
(34).

III b) 1
4L < x < 1

2L
Within this segment, the solution coincides with

that in the case IIb, i.e., it has the form of (36).
III c) 1

2L < x < 3
4L

Within this segment, the solution coincides with
that in the case IIc, i.e., it has the form of (37).

III d) 3
4L < x < 5

6L

v =
A(2g − 1)Θ1

1 + d2
+ s

[
2AΘ1

1 + d2

(
1− g + g2

)
− V0

(
(d2 + g−1)(2g − 1)

1 + d2
+ 2

)]
,

σ = −ρcV0 +
ca−1γΘ1

(1− g−2)(1 + d2)

+ sρc

[
2AΘ1g

1 + d2
+ V0

(
d2 + g−1

1 + d2
− 2g

)]
,

θ =
2Θ1

1 + d2
− s

{
Θ1g

−1

1 + d2

(
1 + 4g − 2g2

)
+ V0

a2 − c2

αac2

[
2(d2 + g−1)

1 + d2
−
(
2 + g−1

)]}
,

q = shd2

[
Θ1

1 + d2

+ V0
a2 − c2

αac2

(
1 +

d2 + g−1

1 + d2

)]
; (38)

III e) 5
6L < x < L

v = V0 +
2A(g − 1)Θ1

1 + d2

+
2s

1 + d2
(g − 1)2

[
AΘ1 + V0g

−1
]
,

σ = 0,

θ =
2Θ1

1 + d2
+

2s
1 + d2

[Θ1(g − 2)

+ V0
(a2 − c2)(1− g−1)

αac2

]
,

q = 0; (39)

IV: at t = 9
8 t1 the reflected thermal wave Σ1

2, which
is generated when the incident elastic wave Σ2 is re-
flected from the rod’s free end, and elastic wave Σ2

1,
which is generated when the incident thermal wave
Σ1 is reflected from the rod’s free end, are approach-
ing the place of contact:

IV a) 0 < x < 1
6L

v = 0,

σ = −ρcV0 −
[
1 + g−1 + d2(3− g−1)

]
γΘ1

(1− g−2)(1 + d2)2

− sρc
4AΘ1g

2(d2 + g−1)
(1 + d2)2

+ sρcV0
g(d2 + g−1)

[
1 + g−1 + d2(3− g−1)

]
(1 + d2)2

,

θ =
Θ1(1 + 3d2)

(1 + d2)2

− sV0
a2 − c2

αac2

[
(d2 + g−1)(1 + 3d2)

(1 + d2)2
− g−1

]
,

+ s
Θ1

1 + d2

[
2d2

1 + d2
(2g − 1)− g−1

]

q =
Θ1hd2(d2 − 1)

(1 + d2)2

− shd2V0
a2 − c2

αac2

[
(d2 + g−1)(d2 − 1)

(1 + d2)2
− 1

]

− shd2
Θ1(d2 − 1 + 4g)

(1 + d2)2
; (40)

IV b) 1
6L < x < 1

4L

v =
2A(g − 1 + d2g)Θ1

(1 + d2)2
+ s

2Ag(g − 2 + d2g)Θ1

(1 + d2)2

− sV0

[
2(d2 + g−1)(g − 1 + d2g)

(1 + d2)2
− 1− g−1

1 + d2

]
,

σ = −ρcV0 +
[
1 + g−1 − d2(1− g−1)

]
γΘ1

(1− g−2)(1 + d2)2

+ sρc
2Ag2(1− d2)Θ1

(1 + d2)2

INTERNATIONAL JOURNAL OF MECHANICS Volume 8, 2014

ISSN: 1998-4448 66



− sρcV0
g(d2 + g−1)

[
1 + g−1 − d2(1− g−1)

]
(1 + d2)2

,

θ =
Θ1(1 + 3d2)

(1 + d2)2
+ s

Θ1

1 + d2

[
4gd2

1 + d2
− g−1 − 2

]
− sV0

a2 − c2

αac2

[
(d2 + g−1)(1 + 3d3)

(1 + d2)2
− g−1

]
,

q =
Θ1hd2(d2 − 1)

(1 + d2)2
+ s

Θ1hd2

1 + d2

[
2g(d2 − 1)

1 + d2
− 1

]
− shd2V0

a2 − c2

αac2

[
(d2 + g−1)(d2 − 1)

(1 + d2)2
−1

]
; (41)

IV c) 1
4L < x < 1

2L
Within this segment, the solution coincides with

that in the case IIId, i.e., it has the form of (38).
IV d) 1

2L < x < L
Within this segment, the solution coincides with

that in the case IIIe, i.e., it has the form of (39).

V: at t = 11
8 t1 the reflected elastic wave Σ2

2, which is
generated when the incident elastic wave Σ2 reached
the rod’s free end, is approaching the place of contact:

V a) 0 < x < 1
6L

v = 0,

σ = −ρcV0 +
γ[3− g−1 + d2(1 + g−1)]Θ1

(1− g−2)(1 + d2)2

+ sρc
2AΘ1

(1 + d2)2
[2g(1 + d2) + (g − 1)(g − 4)]

− sρcV0
g(d2 + g−1)

(1 + d2)2
[
3− g−1 + d2(1 + g−1)

]
+ 4sρcV0

g − 1
1 + d2

,

θ =
Θ1(1 + 3d2)

(1 + d2)2

− s
Θ1

1 + d2

[
2d2

1 + d2

(
5− 2g−1

)
+

1
g

]
− sV0

a2 − c2

αac2

[
(d2 + g−1)(1 + 3d2)

(1 + d2)2

− g−1
(

1 +
4d2g

1 + d2

)]
,

q =
Θ1hd2(d2 − 1)

(1 + d2)2

− s
Θ1hd2 [d2 − 1 + 4(g − 2)]

(1 + d2)2

− shd2V0
a2 − c2

αac2

[
3− d2

1 + d2

+
(d2 + g−1)(d2 − 1)

(1 + d2)2

]
; (42)

V b) 1
6L < x < 1

4L

v = V0 +
A(2g − 1)Θ1

1 + d2

+ s
2AΘ1

(1 + d2)2
[g(g − 1)(1 + d2) + 4]

− sV0

[
(d2 + g−1)(2g − 1)

1 + d2
+

4 + d2

1 + d2
− 2g

]
,

σ =
γ
(
1− 2g−1 − d2

)
Θ1

(1− g−2)(1 + d2)2

− sρa
2AΘ1

(1 + d2)2
[(g−1)(1+d2)−2(g−1)+4]

− sρaV0

[
(1−2g−1−d2)(d2+g−1)

(1 + d2)2
− 1−d2

1+d2

]
,

θ =
Θ1(1 + 3d2)

(1 + d2)2

+ s
2Θ1

1 + d2

[
4− 2g + g−1

1 + d2
+ 2g − 3

]

− sV0
a2 − c2

αac2

[
(d2 + g−1)(1 + 3d2)

(1 + d2)2
− 4d2

1 + d2

]
,

q =
Θ1hd2(d2 − 1)

(1 + d2)2

+ s
2Θ1hd2 [(d2 + 1)(g − 1) + 5− 2g]

(1 + d2)2

− shd2V0
a2 − c2

αac2

[
(d2 + g−1)

1 + d2
− 2

]
d2 − 1
1 + d2

;(43)

V c) 1
4L < x < 1

2L

v = V0 +
A(2g − 1)Θ1

1 + d2
− s 2AΘ1

1 + d2

(
g2+g−1

)
− sV0

[
(d2 + g−1)(2g − 1)

1 + d2
− 2(g − 1)

]
,

σ =
γ
(
1− 2g−1 − d

)
Θ1

(1− g−2)(1 + d2)2
(1 + 2sg)

− sρaV0

[
(1− 2g−1 − d2)(d2 + g−1)

(1 + d2)2
+ 1

]
,

θ =
Θ1(1+3d2)
(1 + d2)2

+s
2Θ1

1 + d

[
2(g−1)− 2g−g−1

1 + d

]

− sV0
a2−c2

αac2

[
(d2 + g−1)(1 + 3d2)

(1 + d2)2
− 3

]
,
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q =
Θ1hd2(d2 − 1)
(1 + d− 2)2

+ s
2Θ1hd2(d2 − 1 + 2g)

(1 + d2)2

− shd2V0
a2−c2

αac2

[
(d2+g−1)(d2−1)

(1 + d2)2
−2

]
;(44)

V d) 1
2L < x < 3

4L

v = V0 +
A[2g − 3 + d2(2g − 1)]Θ1

(1 + d2)2

− s
2AΘ1

1 + d2

(
g2 − g + 1 +

2g
1 + d2

)
+ sV0 [2(g − 1)

− (d2 + g−1)[2g − 3 + d2(2g−1 − 1)]
(1 + d2)2

]
,

σ =
γ (1− d2) Θ1

(1− g−2)(1 + d2)2
(1 + 2sg)

− sρcV0

[
g (1− d2) (d2 + g−1)

(1 + d2)2

+
2
(
1− g−1

)
1 + d2

]
,

θ =
Θ1(1 + 3d2)

(1 + d2)2

+ s
4Θ1g

[
d2(1− g−1)− g−1

]
(1 + d2)2

− sV0
a2 − c2

αac2

[
(d2 + g−1)(1 + 3d2)

(1 + d2)2
− 2

]
,

q =
Θ1hd2(d2 − 1)

(1 + d2)2
(1 + 2sg)

+ shd2V0
a2 − c2

αac2
[2(1 + g)

− (d2 + g−1)(d2 − 1)
(1 + d2)2

]
; (45)

V e) 3
4L < x < L

Within this segment, the solution coincides with
that in the case IIIe, i.e., it has the form of (39).

VI: at t = 3
2 t1 = t2, the reflected quasi-elastic wave

Σ2
2 arrives at the place of contact.

VI a) 0 < x < 1
3L

v = V0 −
AΘ1

1 + d2
(1 + 2sg)

+ sV0

[
d2 + g−1

1 + d2
+ 2g

]
,

σ =
γ
(
3− 2g−1 + d2

)
Θ1

(1− g−2)(1 + d2)2

+ sρa
2AΘ1

(1 + d2)2
[
1 + d2 + 2(1− g−1)(g − 2)

]
− sρaV0

[
(3− 2g−1 + d2)(d2 + g−1)

(1 + d2)2

− 4(1− g−1)
1 + d2

+ 2

]
,

θ =
Θ1(1 + 3d2)

(1 + d2)2

+ s
2Θ1

1 + d2

[
2g − 3 +

g−1 − 2(g − 2)
1 + d2

]

− sV0
a2 − c2

αac2

[
(d2 + g−1)(1 + 3d2)

(1 + d2)2

− 4d2

1 + d2

]
,

q =
Θ1hd2(d2 − 1)

(1 + d2)2

− shd2V0
a2 − c2

αac2

[
(d2 + g−1)(d2 − 1)

(1 + d2)2
− 1

]

− s
2Θ1hd2(d2 − 4 + g)

(1 + d2)2
; (46)

VI b) 1
3L < x < 1

2L
Within this segment, the solution coincides with

that in the case Vb, i.e., it has the form of (43).
VI c) 1

2L < x < 2
3L

Within this segment, the solution coincides with
that in the case Vc, i.e., it has the form of (44).

VI d) 2
3L < x < L

Within this segment, the solution coincides with
that in the case Vd, i.e., it has the form of (45).

To find the duration of contact tcont, let us in-
vestigate the time-dependence of the contact stress
σ(0, t) putting x = 0 in (19), i.e., considering (9) and
(15) at x = 0,

σ(0, t) = ρ[−cf0(−ct) + cl0(ct)
− Aag0(−at)−Aak0(at)]
+ ρ[−cf1(−ct) + cl1(ct)
− Aag1(−at)−Aak1(at)]

+ ερc2
{

Aac2

(c2 − a2)2
[g0(−at) + k0(at)]

+
A

2caα
[f0(−ct)− l0(ct)]

− A

2aα
(f0,ξ+ l0,η)t

+
Aa2

2(c2 − a2)
(−g0,λ+k0,µ)t

}
. (47)
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Considering (24)-(26) and (30)-(46), in the case
of small coupling between the strain and temperature
fields we find from (47)

σ = −ρcV0 −
γΘ1

(1 + g−1)(1 + d2)

+ sρaV0(1− g−1)
(d2 + g−1)
(1 + d2)

< 0 (0 < t < t1),

σ = −ρcV0 −
[1 + g−1 + d2(3− g−1)]γΘ1

(1− g−2)(1 + d2)2

+ sρa
(d2 + g−1)
(1 + d2)2

[
V0

(
1 + g−1 + d2(3− g−1)

)
− 4AΘ1g] < 0

(
t1 < t <

1
2
t1 +

1
2
t2

)
,

σ = −ρcV0 +
γ
[
3− g−1 + d2(1 + g−1)

]
Θ1

(1− g−2)(1 + d2)2

+ sρc
2AΘ1

(1 + d2)2
[2g(1 + d2) + (g − 1) (g − 4)]

− sρaV0

[
(d2 + g−1)
(1 + d2)2

[
3− g−1 + d2(1 + g−1)

]
− 4(1− g−1)

1 + d

] (
1
2
t1 +

1
2
t2 < t < t2

)
,

σ =
γ(3− 2g−1 + d2)Θ1

(1− g−2)(1 + d2)2

+ sρa
2AΘ1

(1 + d2)2
[
1 + d2 + 2(1− g−1)(g − 2)

]
− sρaV0

[
(d2 + g−1)(3− 2g−1 + d2)

(1 + d2)2

− 4(1− g−1)
1 + d2

+ 2

]
> 0 (t = t2). (48)

Reference to (48) shows that the rod’s rebound
from the rigid wall can occur in two cases: when
t = 1

2 t1+ 1
2 t2, if the thermoelastic parameters entering

into the relationship for the contact stress vanish it, or
when t = t2. At the moment t = 1

2 t1 + 1
2 t2, as dis-

tinct from the uncoupled case [5], two reflected waves
return at a time to the impact point, namely: the quasi-
elastic waveΣ2

1 and quasi-thermal wave Σ1
2, which are

generated as a result of the action at the rod’s free
end of the incident quasi-thermal Σ1 and quasi-elastic
Σ2waves, respectively. If the rebound does not occur
at this moment of time, then the collision will termi-
nate necessarily at time of t = t2, i.e., when the slow-
est reflected quasi-elastic wave Σ2

2 reaches the place
of contact.

If we neglect coupling, i.e., put s = 0, then for-
mulas (48) go over into formulas (41) and (43) of [5].

IV. NUMERICAL EXAMPLE

For illustrating the above analysis of the motion
of incident and reflected waves, the schemes of the
wave fronts’ location are presented in Figures 1a-g at
the instants of time when the surfaces of discontinu-
ities during their propagation reach the free end of the
colliding rod or come in close proximity to the place
of contact. Solid and dashed lines in all diagrams refer
to the cases of uncoupled and coupled thermoelastic-
ity, respectively.

For the numerical analysis, it is convenient to
rewrite the longitudinal coordinate dependence of the
velocity, stress, temperature, and heat flowing (34)-
(46) in the dimensionless form introducing the follow-
ing dimensionless values:

x∗ =
x

L
, t∗ =

t

t1
v∗ =

v

V0

σ∗ =
σ

ρcV0
, θ∗ =

θ

Θ1
, q∗ =

q

Θ1h

Calculations according to relationships (34)-(48)
written in the dimensionless form have been carried
out at the following magnitudes of the dimensionless
values: αΘ1c/V0 = 0.1 and d2 = 1. Then the wave
surface Σ1 will be the first to reach the free end x = L
at the moment t = 1

2 t1. As this takes place, two re-
flected waves Σ1

1 (thermal from thermal) and Σ2
1 (elas-

tic from thermal) are generated at a time.
Reference to numerical investigation shows that

the contact stress remains its sign at t = t1, i.e., at the
moment of arrival at the contact point of the reflected
thermal wave Σ1

1, which is generated when the inci-
dent thermal wave Σ1 arrives at the free rod’s end. At
time of t = 1

2 t1 + 1
2 t2, the reflected elastic wave Σ2

1,
which is generated at the free rod’s end from the inci-
dent thermal wave Σ1, returns to the impact point. At
this instant the sign of the contact stress is determined
by the magnitude of δ = ρcV0(γΘ1)−1: if δ ≤ ν,
where ν = (1−c2a−2)−1(1+d2)−2[3− ca−1+d2(1+
ca−1)], then the contact stress vanishes to zero or be-
comes positive, resulting in the rebound of the rod
from the rigid heated wall, but if δ > ν, then the colli-
sion terminates at time of t = t2 (the instant of arrival
at the contact point of the elastic wave Σ2

2 reflected
from the free end when the incident elastic wave Σ2

reaches it).
Reference to Figure 1d shows that in the case of

coupling thermoelasticity, a new wave of small am-
plitude generates when the elastic wave Σ2 reaches
the free end of the rod, namely: the reflected thermal
wave Σ1

2, which occurrence is connected by variation
in the rod’s temperature during its deformation in the
case of weak coupling between the strain and tem-
perature fields. This wave disappears if coupling is
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Fig. 1 Schemes of the wave fronts’ location and the longi-
tudinal coordinate dependence of the velocity, stress, tem-
perature, and heat flowing at the characteristic instants of
time
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Fig. 1 Continued

Fig.2 The dimensionless time dependence of the dimen-
sionless contact stress

neglected. The wave Σ1
2 arriving at the place of con-

tact generates, in its turn, two another wave surfaces
of small discontinuity of the order of ε, which reflect
from the rigid wall: the thermal wave Σ11

2 and elastic
wave Σ12

2 .
From Figures 1b-1g it is evident that all other in-

cident and reflected waves are the same as in the un-
coupled case, while coupling weakly influences the
magnitudes of discontinuities of the values under con-
sideration on these wave fronts either slightly increas-
ing or decreasing their amounts as compared with the
uncoupled case.

From Figure 2 illustrating the time dependence of
the contact stress, it is seen that in the given example
the rod’s rebound occurs at tcont = t2.
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V. CONCLUSION

Thus, it has been shown how the D’Alembert
method could be used for solving dynamic boundary-
value problems of coupled generalized thermoelas-
ticity with due account for weak coupling between
the temperature and strain fields. The solution of
D’Alembert’s type involving four arbitrary functions
is found for the set of equations describing the dy-
namic behavior of a thermoelastic rod using Green-
Naghdy theory. This solution is used for solving the
problem of impact of a thermoelastic rod against a
heated rigid wall, but it could be generalized also for
the case of the collision of two thermoelastic rods.

The procedure proposed enables one to construct
the longitudinal coordinate dependence of the desired
functions at any fixed instant of the time beginning
from the moment of the rod’s collision with the wall
up to the moment of its rebound, i.e., to obtain the an-
alytical solution in the closed form for the main func-
tions showing the distribution of the thermoelastic im-
pact characteristics along the rod.

Based on the detailed analytical treatment, it has
been shown that small coupling between the strain and
temperature fields results in the generation of a new
shock wave of small amplitude Σ1

2, namely, the ther-
mal wave reflected from the incident elastic wave at
the free rod’s end.
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