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Abstract— Train circulation is a random dynamic phenomenon 
and, according to the different frequencies of the loads it imposes, 
there exists the corresponding response of track superstructure. 
Random dynamic phenomena are generally approached through the 
probability of occurrence (for stochastic processes see [1]). The 
railway track is modeled as a continuous beam on elastic support. At 
the moment when an axle of a railway vehicle passes from the 
location of a support point of a rail, that is a sleeper, a random 
dynamic load is applied on the sleeper. The theoretical approach for 
the estimation of the dynamic loading of a sleeper demands the 
analysis of the total load acting on the sleeper to individual 
component loads-actions, which, in general, can be divided into: the 
static component of the load‚ and the relevant to it reaction/action per 
support point of the rail (sleeper), the semi-static component of the 
load, and the relevant to it reaction/action per support point of the rail 
(sleeper)  and the dynamic component of the load, and the relevant to 
it reaction/action per support point of the rail (sleeper). The motion of 
a railway vehicle on the rail running table –of the railway track– is 
described by formulas and it is illustrated through diagrams which 
have the form of a “signal”. It is a random/ stochastic dynamic 
phenomenon. The general equation that describes the motion is the 
second order differential equation (of motion). In the present paper 
the dynamic component of the Load and the relevant Action/ 
Reaction on each support point of the rail are investigated through a 
sensitivity analysis by variating parameters of the second order 
differential equation of motion of the Non Suspended Masses of the 
Vehicle ([2], [3]) and specifically the transient response of the 
reaction/ action on each support point (sleeper) of the rail.  

Keywords: Second Order Differential Equation of Motion, 
Railway Track, Railway Vehicle, Non Suspended Masses, Suspended 
Masses, Actions, Reactions, Dynamic Loads, Stiffness, Joints, 
Weldings. 

I. INTRODUCTION - BACKGROUND 
Train circulation is a random dynamic phenomenon and, 

according to the different frequencies of the loads it imposes, 
there exists the corresponding response of track 
superstructure. The theoretical approach for the estimation of 
the dynamic loading of a sleeper demands the analysis of the 
total load acting on the sleeper to individual component loads-
actions, which, in general, can be divided into: (a) the static 
component of the load‚ and the relevant to it reaction/action 
per support point of the rail (sleeper), (b)  the semi-static 

component of the load, and the relevant to it reaction/action 
per support point of the rail (sleeper)  and (c) the dynamic 
component of the load, and the relevant to it reaction/action 
per support point of the rail (sleeper). 

The static component of the load on a sleeper, in the 
classical sense, is the load undertaken by the sleeper when a 
vehicle axle at standstill is situated exactly above the location 
of the sleeper. At low frequencies, however, the load is 
essentially static. The semi-static reaction/action is mainly 
owed to cant or superelevation deficiency in curves ([3], [4]). 
The dynamic component of the load of the track depends on 
the mechanical properties (stiffness, damping) of the system 
“vehicle-track”, and on the excitation caused by the vehicle’s 
motion on the track (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 A three-axle bogie with the springs of the primary 
suspension inside the black elipse with continuous line and the 
springs of the secondary suspension in the black elipse with 
the dashed line. 

The response of the track to the aforementioned excitation 
results in the increase of the static and semistatic loads on the 
superstructure. The dynamic load is primarily caused by the 
motion of the vehicle’s Non-Suspended (Unsprung) Masses 
[2], which are excited by track geometry defects, and, to a 
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smaller degree, by the effect of the Suspended (Sprung) 
Masses [3]. In the Non Suspended Masses a section of the 
Track Mass that participates in their motion is also included as 
depicted in Fig. 1 [5]. In order to formulate the theoretical 
equations for the calculation of the dynamic component of the 
load, the statistical probability of occurrence -in real 
conditions- should be considered. The general equation that 
describes the motion is the second order differential equation 
(of motion) [6]. 

II. REAL SITUATION ON A RAILWAY TRACK 
The railway vehicles consist of (a) the car-body, (b) the 

primary and the secondary suspension with the bogie in 
between the axles, and (c) the wheels. The heaviest vehicles 
are the locomotives which are “motive units” and have electric 
motors on the axles and/or the frame of the bogie. In Fig. 2 an 
electric-locomotive with two-axle bogie is depicted while the 
two axle bogie with the springs of the primary and secondary 
suspensions is depicted in Fig. 3.  

Electric motors are either suspended totally from the frame 
of the bogie or they are suspended on the frame of the bogie at 
one end and supported on the axle at the other end. In the 
second case the electric motor is semi-suspended and a part of 
it is considered as Non Suspended Mass [2].  
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Figure 2 An Electric-Locomotive of the Greek railways 
with two-axle bogies, on a railway track. The two-axle bogie 
is marked with the grey elipses. 

 

 

 

 

 

 

 

Figure 3 A two-axle bogie for the Electric-Locomotives 
with the springs of the primary suspension inside the black 
elipse with continuous line and the springs of the secondary 
suspension in the black elipse with the dashed line. 

If we try to approach mathematically the motion of a vehicle 
on a railway track, we will end up with the model shown in 
Fig. 4, where both the vehicle and the railway track are 
composed of an ensemble of masses, springs and dashpots. As 
we can observe, the car body is supported by the secondary 
suspension that includes two sets of “springs-dashpots”, seated 
on the frame of the bogie. The loads are transferred to the truss 
and the side frames of the bogie. Underneath the bogie there is 
the primary suspension, through which the bogie is seated 
onto the carrying axles and the wheels. Below the contact 
surface, between the wheel and the rail, the railway track also 
consists of a combination of masses-springs-dampers that 
simulates the rail, the sleepers, the elastic pad, the rail 
fastenings, the ballast and the ground. 

The masses of the railway vehicle located under the 
primary suspension (axles, wheels and a percentage of the 
electric motor weight in the case of locomotives) are the Non 
Suspended Masses (N.S.M.) of the Vehicle, that act directly 
on the railway track without any damping at all. Furthermore a 
section of the track mass (mTRACK) also participates in the 
motion of the vehicle’s Non Suspended Masses, which also 
highly aggravates the stressing on the railway track (and on 
the vehicle too). 

The remaining vehicle masses are called Suspended Masses 
(S.M.) or Sprung Masses: the car-body, the secondary 
suspension, the frame of the bogie, a part of the electric 
motor’s weight and the primary suspension. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Model of the Railway system “Vehicle –Track”, 
as an ensemble of springs and dashpots. 

III. THE LOADS ON A RAILWAY TRACK: STATIC, SEMI-STATIC 
AND DYNAMIC 

A. The Loads on Track  
The system operates based on the classical principles of 

physics: Action-Reaction between the vehicle and the track. It 
is a dynamic stressing of random, vertical form. 

The loading of the railway track from a moving vehicle 
consists of: 
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(a) the static load (static load of vehicle axle), as given by 
the rolling stock’s producer. 

(b) the semi-static load (cant/ superelevation deficiency at 
curves, which results in non-compensated lateral acceleration) 

(c) the load from the Non-Suspended Masses of the vehicle 
(the masses that are not damped by any suspension, because 
they are under the primary suspension of the vehicle) and 

(d) the load from the Suspended Masses of the vehicle, that 
is a damped force component of the total action on the railway 
track. 

For High Speed Lines (Vmax > 200 km/h), the component 
of the Load, due to the Non Suspended Masses, is of decisive 
importance for the Dynamic Load. In order to calculate the 
total Action/ Reaction on each support point of the rail (pair of 
fastenings on a sleeper) the static, the semistatic and the 
dynamic components should be added. The total dynamic 
component [(c)+(d)] is the square root of the second powers of 
the (c) and (d). 

B. The Deflection of the Railway Track  
The Load of the wheel of a railway vehicle is exerted on 

the railway track, at some point. Due to the elasticity 
(stiffness) of the track, the point subsides and the load is 
distributed along the track in many support points (sleepers). 
Thus the support point, under the acting load Qwheel,  
undertakes a pe

stat<1 [3], as depicted in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5 A railway vehicle on a railway track, which due 
to its elasticity (stiffness) subsides and distributes the load to 
the adjacent sleepers (support points of the rail). Consequantly 
the Action/ Reaction R < Qwheel, since  stat<1. 

C. The Static Component of the Load  
According to the equation –referred to as the Zimmermann 

theory or formula, based on Winkler– that examines the track 
as a continuous beam on an elastic support [7]: 

                                                                                                                                                                                               
(1) 

 

where y is the deflection of the rail, M is the moment that 
stresses the beam, J is the moment of inertia of the rail, and E 
is the modulus of elasticity of the rail. The general differential 
equation, according to Winkler is approached in [8], [9]. 

Solving the differential equation of the formula (1) it is 
derived that the action/ reaction Rstatic, on each support point of 
the rail (sleeper), is: 

 

                                                                                    (2) 

  

where Qwheel the static wheel load, ℓ the distance among 
the support points of the rail (sleepers), E and J the modulus of 
elasticity and the moment of inertia of the rail, Rstat the static 
action/reaction on the sleeper, ρ reaction coefficient of the 
sleeper which is defined as: ρ=R/y, and is a quasi-coefficient 
of track elasticity (stiffness) or a spring 

stat < 1 (fluctuating 
between 0,30 and 0,70 normally) equals to Rstat/Qwheel, that is 
the percentage of the acting (static) load of the wheel that each 
support point of the rail undertakes as (static) reaction. 

In reality, the track consists of a sequence of materials –in 
the vertical axis, up to down– (rail, elastic pad of the 
fastening, sleeper, ballast, substructure), that are characterized 
by their individual coefficients of elasticity (static stiffness 
coefficients) ρi (Fig. 6).  

Hence, for each material: 

   

 

   

                                                                                       (3)  

                                                                                       

where ν is the number of various layers of materials that 
exist:  rail,  elastic pad of the fastening, sleeper, ballast, 
substructure. 

The ρpad and the ρsubstructure are of crucial importance 
and influence for the magnitude of the total static stiffness 
coefficient of the track ρtotal, since they contribute over 85% to 
the total static stiffness coefficient of the track and the final 
values of actions/reactions [10]. 

D. The Semi-Static Component of the Load  
This load is produced by the centrifugal acceleration 

exerted on the wheels of a vehicle that is running in a curve 
with cant (superelevation) deficiency. Cant deficiency or 
unbalanced superelevation ([11], p. 604) is defined as the 
difference (deficit or excess in mm) of the designed 
superelevation in a curve, from the theoretic one that is needed 
to fully counterbalance the centrifugal/ centripetal acceleration 
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in the cross section of a track on a curve.  In a curve there is 
always need to achieve a superelevation α (Fig. 7), in order to 
(Fig. 7): 

   

 

Since in real conditions both passenger high speed trains 
and freight trains, much slower in speed, are running, 
consequently there is a superelevation (cant) deficiency or 
excess dα. The following equation: 

 

                                                                                      (4)   

 

provides the increase Qα of the vertical static load Qwheel of 
the wheel, at curves with cant deficiency/ excess. In the above 
equation dα is the cant deficiency, hCG the height of the center 
of gravity of the vehicle from the rail head, e the track gauge. 

 It is not, however, a dynamic load in the sense of the load 
referred to in the next paragraph. Therefore, it is often 
considered to be a semi-static load. The following equation [3, 
12, 13]: 

The semi-static reaction of the sleeper is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 (2) The cross-section of a railway track with 
monoblock sleepers with terminology according to U.I.C. 
(upper illustration) and its simulation as an ensemble of 
springs and dashpots (lower illustration). The characteristic 
values of the static stiffness coefficients of the layers ρi are 
depicted.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 A railway vehicle on a curve. The weight W and 
the centrifugal/ centripetal force are depicted. 

E.  Differential Equation for Railway Track 
The railway track is an infinite beam on elastic foundation, 

and the elastic foundation can be simulated by a large number 
of closely spaced translational springs [16]: 

 

 
when there is no external force, or [13]: 

      

 

In these equations z is the deflection of the beam, ρ1 is the 
mass of the track participating in the motion, k1 the viscous 
damping of the track, E, I, the elasticity modulus and the 
moment of inertia of the rail and Q the force/ load from the 
wheel (when the force is present). 

The solution of these equations becomes challenging if we 
want to take into account all the parameters [3]. However, if we 
make some simplifying hypotheses we will be able to 
approximate the influence of certain parameters provided that 
we will verify the theoretical results with experimental 
measurements.      

In real conditions the increase of the dynamic component of 
the load due to the Non Suspended Masses of the Vehicle plus 
the track mass participating in their motion is given by the 
equation (6) above. 

F. The Dynamic Component of the Load  
The Suspended (Sprung) Masses of the vehicle –masses 

situated above the primary suspension (Fig. 4)– create forces 
with very small influence on the wheel’s trajectory and on the 
system’s excitation.  This enables the simulation of the track 
as an elastic media with damping as shown in Fig. 8, depicting 
the rolling wheel on the rail running table [14]. Forced 
oscillation is caused by the irregularities of the rail running 
table (like an input random signal) –which are represented by 
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n–, in a gravitational field with acceleration g. There are two 
suspensions on the vehicle for passenger comfort purposes: 
primary and secondary suspension. Moreover, a section of the 
mass of the railway track participates in the motion of the 
Non-Suspended (Unsprung) Masses of the vehicle. These 
Masses are situated under the primary suspension of the 
vehicle. 

If the random excitation (track irregularities) is given, it is 
difficult to derive the response, unless the system is linear and 
invariable. In this case the input signal can be defined by its 
spectral density and from this we can calculate the spectral 
density of the response (see relevantly [5], [2]). The 
theoretical results confirm and explain the experimental 
verifications ([13], p. 39, 71). 

The equation for the interaction between the vehicle’s axle 
and the track becomes ([7], [6]): 

 

 

                                                                                        

                                                                                      (6) 

 
where: mNSM the Non-Suspended Masses of the vehicle, 

mTRACK the mass of the track that participates in the motion, 
mSM the Suspended Masses of the vehicle that are cited above 
the primary suspension of the vehicle, Γ damping constant of 
the track, hTRACK the total dynamic stiffness coefficient of the 
track (for its calculation see [6]), n the fault ordinate of the rail 
running table and y the total deflection of the track. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8 (3) Model of a rolling wheel on the rail running 
table. The acting Loads due to the Suspended Masses and the 
Non Suspended Masses of the Railway Vehicle are depicted as 
well as the Track Mass participating in the motion of NSM. 

The phenomena of the wheel-rail contact and of the wheel 
hunting, particularly the equivalent conicity of the wheel and 
the forces of pseudo-glide, are non-linear. In any case the use 
of the linear system’s approach is valid for speeds lower than 
the Vcritical≈500 km/h. The integration for the non-linear 
model (wheel-rail contact, wheel-hunting and pseudoglide 
forces) is performed through the Runge Kutta method ([13], 
p.94-95, 80, see also [15], p. 171, 351). 

The solution of this second order differential equation of 
motion (forced damped vibration)  gives the increase of the 
Rstat+ Rsemi-stat of the equations (2) and (5), by the dynamic 
component of the Load due to the Non Suspended and the 
Suspended Masses of the Vehicle, mainly based on the steady-
state solution. The solution for the dynamic component due to 
the Non Suspended Masses and its verification through 
measurements is cited in [2] and [5]. 

The solution for the Suspended Masses is cited in [5] and 
[17]. In the next paragraphs, a sensitivity analysis by variating 
parameters of the transient component of the general solution 
of the equation (6), is attempted. 

In high frequencies, as in the case of High Speeds, the 
response of the superstructure is negligible due to its low 
eigenfrequency, therefore, it has been proposed by the author 
and has been verified on track, that dynamic loads (semi-
statics due to cant deficiency are also included) are not 
distributed to the adjacent sleepers, in contrast to static loads. 
Thus the Action/ Reaction Rdynamic due to the Dynamic 
Component of the Load (Qdynamic) is equal to ([7], [3]): 

 

and not reduced as the Actions/ Reactions due to the Static 
and the Semi-Static Components (see more analytically in 
[3]). The standard deviation of the dynamic component of the 
Load is given by ([7], [3]):   

 

IV. THE SECOND ORDER DIFFERENTIAL EQUATION OF 
MOTION AND THE  TRANSIENT TERM OF ITS SOLUTION  

A. Defects of Trigonometric Form  
The theoretical analysis for the additional –to the static and 

semi-static component– dynamic component of the load due to 
the Non Suspended Masses and the Suspended Masses of the 
vehicle, lead to the examination of the influence of the Non 
Suspended Masses only, since the frequency of oscillation of 
the Suspended Masses is much smaller than the frequency of 
the Non Suspended Masses. If mNSM represents the Non 
Suspended Mass, mSM the Suspended Mass and mTRACK the 
Track Mass participating in the motion of the Non Suspended 
Masses of the vehicle, the differential equation is: 

 

                                                                                       (7a)  

 

Where: g the acceleration of gravity and the dynamic track 
stiffness coefficient hTRACK: 
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                                                                                         (8) 

ρtotal the total static stiffness coefficient of the track, ℓ the 
distance among the sleepers, E, J the modulus of elasticity and 
the moment of inertia of the rail. 

The theoretic calculation of mTRACK gives as result ([2], 
[16]): 

                                                                                         (9) 

                                                                                                                                            

 The equation (7a) is transformed: 

 

                                                                                       (7b)   

For a comparison of the theoretical track mass to 
measurements’ results see [2] and [16]. The particular solution 
of the differential equation (8b) corresponds to the static 
action of the weight of the wheel: 

 

                                                                                      (10) 

 

Let’s suppose that the rolling wheel run over an isolated 
sinusoidal defect of length λ of the form: 

 

                                                                                      (11) 

 

Where n is the ordinate of the defect, consequently the 
ordinate of the trajectory of the center of inertia of the wheel is 
n+z. If we name τ1 the time needed for the overpassing of the 
defect by the wheel rolling at a speed V: 

                                                                                    (12) 

 

The differential equation of the motion of the wheel is: 

   

 

 

       

                                                                                    (13) 

 

B. Battered Rail-Joints or a Bent or Deformed Welding  
The rail-joints during their Life-Cycle are battered and 
consequently the rail edges present deformations and bends. In 
Fig. 9, a wheel passes a deformed, bent joint between two 
consecutive rails jointed through fishplates and bolts. 
 

The weldings, in the Continuously Welded Rails (CWR), 
due to non-correct execution of the welding procedure (mainly 
poor alignment) or “softer” material in the area of welding, 
could present also the same situation. In Fig. 10 a wheel 
passes a deformed, bent welding. 

We can approach the matter beginning with a discontinuity 
of the rail running table –a change in the inclination of the rail 
running table along the track– in the form of one angle (as in 
Fig. 11-upper illustration), instead of two parabolic arcs (as in 
Fig. 10). We use the “mass-spring-damper” model as depicted 
in Fig. 8. 

 

  

 

                                                                 

 

 
 

 

 

 

Figure 9 (4) Battered rail joint between two consecutive 
rails jointed through fishplates and bolts. 

The equation of the form of the defect is: 

                                                                                        (14) 

where α is the angle in rad and V the speed, for x>0 or t>0.   

 

 

 

 

 

 

 

 

 

 

Figure 10 (5) Deformed, bent rail welding between two 
successive welded rails. 

At this point we have to remember the delta (or Dirac) 
function δ(x), and the unit step (Heaviside’s) function H(t). 
The delta function is usually defined as follows ([18, p. 270] 
and [19, p. 74]): 
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Figure 11 (6) Battered rail joint or welding between two 
adjacent rails. The rail running tables are considered linear 
forming an angle π-φ between them (upper illustration) with 
the mathematical formula given by the equation (14). The first 
derivative of the equation (14) in the middle and the second 
derivative in the lower illustration. 

  

                                                                                        (15) 

 

The unit step function ([18], p. 38] and [19, p. 61]) is 
defined: 

 

                                                                                         

                                                                                      (16)    

   

 

Where the sign function is defined ([19, p. 65]): 

 

                            (17)                                                                                                                                        

 

The delta function or Dirac Impulse is depicted in Fig. 12 
and comparing Fig. 12 to Figure 11-lower illustration, we 
conclude that they have similar form. 

The unit step function of Heaviside is depicted in Fig. 13 
and comparing Fig. 13 to Figure 11-middle illustration, we 
conclude that they have similar form. 

Differentiating in relation to time t the equations (7a, 7b) 
we can derive: 

                                                                                       (18) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 The Dirac Impulse or Dirac function . 

 

 

 

 

 

 

 

 

 

Figure 13 (7) The unit step function of Heaviside. 

 

In Figure 11-middle illustration the first derivative n′ is 
depicted. From the properties of the delta function and the unit 
step function we know that ([19], p. 98, and [20], p. 42), the 
first derivative of the unit step function H′(t), is the Dirac’s 
delta function δ(t), consequently:   

 

                                                                                      (19) 

   

In Figure 11-lower illustration the second derivative n′′ is 
depicted. From the equations (7a, 7b), replacing the second 
term of the forcing external load due to the angle on the rail 
running table, and adding the term for damping, we derive, 
from equation (6): 
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V. THE SOLUTION OF THE SECOND ORDER DIFFERENTIAL 
EQUATION OF MOTION  

For the free oscillation (without external force) the 
equation is: 

 

 

                                                                                       (21)                                                                    
         

The general solution is [4]: 

 

 

      (22)  

                                                                                    (22)                                                                     

Where: 

 

                                                                                    (23)                                                                      

 

If we pass to the damped harmonic oscillation of the form: 

   

 

   

     

                                                                                     (24) 

 

where: 

 

                                                                                    (25)                                                                                   
                                                                                                                                          

 The particular solution of the linear second order 
differential equation (24) is of the form: 

 

 

   

 

                                                                                     (26)                                           

 

Substituting eq. (26) to eq. (24) and after the mathematical 
procedure we derive ([7], p.110, [21]): 

                                                                                                                                      

 

 

 

 

                                                                             (27) 

 

For the equation (27) to be valid for every t, the 
coefficients of the sine and cosine terms of the equation must 
be equal and finally solving a two equations system, we 
derive: 

 

 

                                                                                     (28a) 

 

 

 

 

                                                                                (28b) 

 

 

The complete solution, for the equation (24), is the 
addition of the solution (22) and of the solution of the equation 
(24) combined with the equations (28a) and (28b): 
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                                                                                  (29b) 

 

In the case of equation (20), we have a constant external 
force and ω=0, consequently sin(ωt)=0 and D=0. There is no 
steady state term in the solution, but only transient term. The 
equation (29a) is transformed to: 
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                                                                                      (30)  

 

which is the transient term of the solution of the second 
order differential equation of motion.    

VI. SENSITIVITY ANALYSIS FOR THE TRANSIENT TERM OF 
THE SOLUTION OF THE SECOND ORDER DIFFERENTIAL 

EQUATION OF MOTION  
Equation (30) can be written (choosing appropriately the 

sine form function and not the cosine, since for t=0 the value 
of z=0) also in the form of polar coordinates ([22], p. 28 and 
[23], p. 22, 24): 

   

   

       
              

                                                                                       (31)                                                                                      

                                                                                                                                                                             

Where p0=α·V, θ=0 since there is no phase difference 
between the external force and the eigenfrequency. We have 
for t=0, then z(0)=0 as depicted in Fig. 11: 

                                                                                                                                           

  

                                                                                      (32) 

 

 

 

Since the action and the deflection take simultaneously 
their maximum values at the support point of the rail (sleeper), 
then the maximum increase of the total action/ reaction, due to 
the dynamic component owed to the defect, is observed for: 

 

                                                                                     (33) 

                                                                                                                                                                                                                               

at a remote point -from the defect’s peak- and so more 
remote as the ωn is small this means that in cases of very soft 
prepared subgrade (or platform). 

The dynamic increase of the load, due to a deformed, bent 
joint or welding is equal to: 
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Since:  

  

 

 

The equation (36) is transformed: 

  

  

                                                                                                                                 

                                                                                  (35a) 

 

where: 

 

 

                                                                                 (35b) 

 

The dynamic increase of the load is proportional to the 
speed V and to the square root of the product of the Non 
Suspended Mass mNSM times the dynamic stiffness coefficient 
of track hTRACK. Furthermore the dynamic component of the 
load due to a deformed, bent joint or welding, Qdynamic 
decreases when the damping coefficient ζ increases and the 
relation between ζ and k is given in the table 1 below: 

Table 1: solution of a cosine form differential equation 

ζ= 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 
k= 5,43 2,31 1,30 0,82 0,55 0,38 0,26 0,19 0,13 0,09 

 

The equation (31) could take the form of a sinusoidal 
solution of the form (with appropriate choice of the initial 
conditions): 

 

                                                                        (36a) 

 

In this solution the relation between ζ and k is (the arc is 
equal to π/2): 

 

                                                                    (36b) 

 

and the Table 2 depicts the relation between ζ and k. 

 

Table 2: solution of a sine form differential equation  

ζ= 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 
k= 0,93 0,86 0,80 0,74 0,69 0,64 0,59 0,55 0,51 0,46 
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From both Tables 1 and 2 we derive the necessity that the 
joints should be maintained in a very soft support (low 
stiffness coefficient of track) and simultaneously an increased 
damping coefficient. This implication leads towards very 
“soft” fastenings, with low static stiffness coefficient, in order 
to achieve a very low total static stiffness coefficient of the 
track. This is a special demand for the high speed railway 
tracks. 

VII. A BATTERED/ BENT  JOINT BETWEEN TWO RAILS WITH 
DEFORMED EDGES OF PARABOLIC FORM  

We consider the case of a joint (or welding), which is 
consisted of two parabolic curves formed by the ends of two 
consecutive rails, as in Figs. 14a and 14b. 

The total depth of the defect is α and the total length of the 
deformed edges of the rails ℓ. In order to approach the issue 
we examine mathematically two parabolic arcs as in Fig. 15a. 

The line JD has its D edge on the directrix (not designed here) 
of the parabola and intersects the horizontal axis (xx) at the 
point A. Since F is the focus of the parabola then FB=BD and 
the points D and F have the equal y-coordinates but of 
opposite sign. Moreover JD=JF, since the point D is on the 
directrix. Besides that the angles FĴB and BĴD are equal. The 
x-coordinate of B is the jalf of the x-coordinates of the points 
J, A, D. Consequently AB=BC=ℓ/4. 

 

 

 

 

 

 

 

 

 

Figure 14a (8a) A Joint between two successive rails, with 
deformations of their ends in a parabolic form, with saggitta of 
the defect α. 

 

 

 

 

 

 

 

 

Figure 14b (8b) A Joint between two consecutive rails, 
with deformations of their ends in a parabolic form, and the 
tangents of the parabolas at the joint, forming an angle φ. 

 

 

 

 

 

 

 

 

 

 

Figure 15a (9α) Two parabolas (of the same mathematical 
equation) intersecting each other at a random point. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15b Two parabolas (of the same mathematical 
equation) intersecting each other at a random point, with the 
relations among the angles. 

 

The inclination of BJ=α/(ℓ/4)=4α/ℓ. The angle BĴE is 4α/ℓ 
rad. The angle HĴB between the two tangents of the two 
parabolas at the point J is equal to (see Fig. 15b): 

HĴB  = π – 2*(BĴE)= -2*(BĴE) = 8α/ℓ          (36) 

in absolute values. 

Consequently, if we consider a damping ζ=0, then the term 
k=1 of the equations (35b) and (36b) and the term α in the 
equations (35a) and (35b) is equal to  the angle HĴB of the 
equation (36). Therefore:  

   

                                                                     (37) 

The equation (37) will not be valid, if the speed of the 
railway vehicle is higher than a critical value of VCritical, for 
which Qdynamic overpasses a Qdynamic-max.  

From equation (37) we derive: 

 

8
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                                                                                      (38) 

 

per mm of depth at the joint (that is for z = 1 mm) and for 
an angle α=0,5 rad. 

For a track equipped with rail UIC60, monoblock sleepers 
of prestressed concrete B70, fastening W14, ballast two years 
old on track and subgrade of NBS1 type (ρsubgrade=100 
kN/mm), then a rigidity hTRACK= 85 kN/mm is derived and 
supposing mNSM=1,5+0,3 t = 1800/9,81 kg-mass, then: 

 

 

 

 

 

 

  

 

                                                                                      (39) 

 

Where ℓ in [m] and VCritical in [m/sec]. For a joint of 2 m 
length, then VCritical= 387,5 km/h is calculated. 

For a more general approach about the Energy-Efficient 
Train Control and Speed Constraints, see [24]. An approach 
from a more mathematical point of view is cited in [25]. 

VIII. THE CASES OF UNDULATORY WEAR AND OF AN 
ISOLATED DEFECT OF TRACK 

Besides the analysis in the case of a bent joint or welding 
on track, a detailed analysis of the  actions on a railway track, 
due to an isolated defect along the track derived from the 
differential equation (6), is presented in [26]. An analysis for 
the case of undulatory wear as well as for defects of  random 
form are presented in [2], as derived also from the differential 
equation (6). 

IX. CONCLUSIONS 
In the present paper the dynamic component of the acting load 
on a railway track is investigated through the second order 
differential equation of motion of the Non Suspended Masses 
of the Vehicle and specifically through the transient term of 
the solution. The reaction/ action on each support point 
(sleeper) of the rail is also calculated for a bent or battered 
joint or welding of the rail. The case of a deformed or bent 
joint or welding is theoretically analyzed through the second 
order differential equation of motion and the solution is 

investigated. The necessity that the joints –and consequently 
the railway track– should present a very low static stiffness 
coefficient and simultaneously an increased damping 
coefficient, is derived by the analysis. This can be mainly 
achieved through the development of very “soft” fastenings 
and elastic pads. 
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