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Abstract—The objective of this research is to simulate the inflow 
performance of multiple vertical wells producing from a closed 
reservoir of constant thickness under pseudo-steady state conditions. 
For this case we represent, like the method of imaginary sources, a 
closed reservoir as an element of unbounded doubly periodic array of 
wells and use the elliptic Weierstrass zeta- and sigma-functions to 
describe this inflow performance. This approach allows us to find the 
pressure distribution and the fluid velocity in any shape of reservoir; 
to calculate the productivity index (PI) and the Dietz’s shape factor 
(CA) for any shape of reservoir; to analyze the influence of a 
reservoir shape on the Dietz’s shape factor CA; to establish the multi-
well productivity matrix (MPM) for any shape of reservoir; to 
introduce the multi-well productivity index (MPI) and to find the 
optimal placement of producing wells in a closed reservoir, based on 
the maximum MPI condition.  

 
Keywords— Elliptic functions, oil recovery, productivity index, 

reservoir shape factor. 

I. INTRODUCTION 
LLIPTIC functions (single-valued doubly periodic 
functions of the complex variable z = x + iy, the only 

singularities on the complex z-plane are poles) are widely 
used in various applications of mechanics and physics. Thus, 
in solids mechanics elliptic functions are used for perforated 
plates and shells or plates and shells with a doubly periodic 
system of cracks [1]-[9] as well as in studies of screw 
dislocations motion in crystals [10]. In aero- and 
hydrodynamics, elliptic functions are used to describe the 
fluid flow through doubly periodic lattice profiles [11], the 
motion of doubly periodic systems of point vortices [12]-[17]. 

Unfortunately, the researches on the water flooding started 
in the 60s years of the 20th century by H.J. Morel-Seitoux 
[18], [19] and by R.T. Fazlyev [20] are not well developed. 
Therefore the purpose of the present work is to open the way 
to use the elliptic functions in the oil industry. As this takes 
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place, doubly periodic systems of oil wells have been selected 
as the object for the utilization of such functions. Simulation 
of the oil field recovery via elliptic functions is the main 
objective of the proposed research. 

II. ELLIPTIC WEIERSTRASS FUNCTION 
The main elliptic function is the Weierstrass P-function. It 

can be represented as follows [21], [22]: 
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where 1 2m nω ω ω= +  ( , 0, 1, 2,...)m n = ± ±  are the nodes of 
the period lattice L (Fig. 1). The prime in the sum (1) means 
that the summation is extended over all pairs of m and n, 
except m=n=0. The P-function defined in (1) has second-
order poles at all nodes of the periodic lattice. The main 
property of the P-function is its double periodicity 
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where ω1 and ω2 are the periods of the Weierstrass P-function. 
The derivatives of the P-function are also doubly periodic, 
and any elliptic function can be represented as a linear 
combination of the P-function and its derivatives. 

Integration of the P-function (1) can be written as [21], [22] 
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where ζ (z) is the Weierstrass zeta-function.  
Integration of the zeta-function (3) leads to the Weierstrass 

sigma-function σ(z) [21], [22] 
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In contrast to P(z), the functions ζ(z) and σ(z) do not 

possess the property of double periodicity. Instead of (2), they 
satisfy the following conditions of quasi-periodicity [21], [22]: 
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where 1 1( / 2)η ζ ω= , and ).2/( 22 ωζη =   

The values η1, η2, ω1 and ω2 are not independent but related 
by the Legendre identity [21], [22] 

 
1 2 2 1 .iη ω η ω π− =                                                                    (7) 
 
The values of the lattice periods ω1 and ω2 can be arbitrary 

complex numbers with the main restriction as Im(ω2/ω1) > 0. 
This lattice and its base element, which is called as the 
fundamental parallelogram of periods, are shown in Fig. 1.  

The fundamental parallelogram constructed on the basis of 
ω1 and ω2 has the following main parameters: 2 1/ ie θτ ω ω λ= =  
and 2

1 2 1Im( , ) sinω ω ω λ θ∆ = = (Fig. 1). Note that pairs (ω1, ω2), 

(ω1+ω2, ω2), (ω2, -ω1) and (ω1, ω2-ω1) define the same doubly 
periodic lattice L. Therefore, all the variety of lattices L can be 
characterized by a dimensionless parameter 12 /ωωτ =  
changing in a fundamental half-domain 

0' { : 0 Re 1/ 2, 1}D τ τ τ= ≤ ≤ ≥  (Fig. 2). 
 

 
Fig. 1. Doubly periodic lattice L with the periods ω1 and ω2  

and its fundamental parallelogram. 
 

 
Fig. 2. The fundamental domain D0 and half-domain D’

0   

for the modulus 2 1/ ie θτ ω ω λ= =  

III. STATEMENT OF THE PROBLEM 
Consider a plane non-stationary filtration of a viscous 

weakly compressible fluid in a closed reservoir, having the 
volume V=h∆, where ∆  is the square of the reservoir and h is 
its thickness. The fluid motion is described by the fluid 
continuity equation and Darcy's filtration law [23] 
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where ρ  and µ  are the density and the viscosity of the fluid, 
respectively, k and m are the permeability and the porosity of 
the reservoir, respectively, p is the reservoir pressure, νx and 
νy are the components of the fluid filtration velocity. 

 
In the case of quasi-state fluid filtration it is assumed that 

the function p(x,y,t) can be represented as the sum 
( , , ) ( ) ( , )p x y t p t p x yδ= +  (or / /p t d p dt∂ ∂ = ), where 
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and ( , )p x yδ  does not depend on the time (accordingly to the 

quasi-state condition). Then the value of m
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is the constant coefficient of the compressibility. From the 
condition of the overall material balance of a fluid in a closed 
reservoir of the volume V=h∆ with a producing well of the 
rate Q, it can be written as 
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As a result, the equation of material balance (10) together 

with the continuity equation (8), rewritten in the form 
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and the Darcy law equations (9) forms a complete system of 
four equations for four unknown functions ),( yxpδ , ( )p t , νx, 
and νy. These equations describe the process of quasi-steady 
fluid flow in closed reservoir of volume V=h∆ with a 
producing well of the fluid rate Q(t).  
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IV.  THE GENERAL SOLUTION OF THE PROBLEM 
The general solution of equations (9)–(11) in the quasi-state 

case is easily obtained if, instead of the variables x and y, the 
complex and complex conjugate variables z x iy= +  and 
z x iy= −  are introduced, as well as instead of the component 
of the velocity vector νx и νy, the complex x yV iυ υ= +  and 

complex conjugate x yV iυ υ= −  functions of flow rate are used. 

In this case, equations (9) and (11) take the form 
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Equations (12) and (13) allow one to represent the required 
functions of the complex velocity ( , )V z z  and the pressure 

( , )p z z  in the following form: 
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where F(z) is an unknown analytical function and C is an 
arbitrary constant. 

To find F(z), it is necessary to use the following boundary 
conditions: 
• the equality of the pressure p on the well contour with 
radius rw to downhole pressure pw 
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p pθ= =                                                                      (16)

  

 • the equality of the fluid flow through the well contour with 
radius rw to flow rate Q 
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 • the absence of fluid inflow through the reservoir boundary 
(the closed reservoir) 
 

0.nυ Γ =                                                                              (18)
  

 
The value of the normal component of the velocity vectorνn 

can be written as Im( ),nds Vdzυ =  where z = z(s) is the equation 
of the reservoir boundary in the complex variables. Then from 
the boundary conditions (16) and (17) (considering that the 
ratio of the well square πrw

2 to the reservoir square Δ is small) 
it is followed that the general form of the unknown function 
F(z) and the constant C are 
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Thus, in the case of a closed reservoir with the square of the 

drainage area ∆, boundary of drainage area Г and a single 
producing well of flow rate Q, placed at the origin z=0, the 
general solution of (9)–(11) in the complex variables will be 
as follows: 
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In the general solution (21)–(22) there is an unknown 
analytical function of complex variable F0(z). To find F0(z), it 
is necessary to use the boundary condition (18) , i.e., the 
condition of the absence of inflow through the outside 
reservoir boundary. For the known boundary of the reservoir 
z=z(s), the unknown function F0(z) is found by solving the 
following boundary value problem: 
 

0
2Im ( ) ( ) ( ),F s s sπ θ= Σ −
∆

                                                      (23)
  

 
where s is the arc length of a point P on the boundary Г, θ(s) 
is the polar angle of the point P, and Σ(s) is the square of the 
sector with the arc length s (Fig. 3).  

Methods for solving equation (23) for different types of 
boundaries are well known [24]. 

 
 

 
 

Fig. 3. Closed reservoir with the boundary Г and producing well  
with the radius rw. in the origin. 
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V. THE MAIN SOLUTION IN THE CASE OF A DOUBLY PERIODIC 
SYSTEM OF WELLS 

The solution, presented in (21)-(22), applies to the case 
where a single well is placed in a closed reservoir with the 
known boundary of reservoir. In multi-well field systems of 
oil development, the drainage area for each well depends on 
the relative positions of wells, and the magnitude of their flow 
rates (drill-hole interference [23]).  

In order to generalize the constructed solution (21)-(22) for 
multi-well systems with an unknown drainage area of each 
well, consider the case when the field is developing by a 
system of producing wells with the equal flow rates Q for all 
wells, placed at the nodes of the doubly periodic lattice L (Fig. 
1). In this case, the function ( )F z′  in (14), which determines 
the nature of the fluid flow to the wells, should have at all 
nodes of the lattice L the first-order poles with the equal flow 
rates Q of the each well. Mathematically, this means that near 
the every node 1 2m nω ω ω= +  on the complex z-plane the 
desired function ( )F z′  must have the form 
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The representation (24) should be considered together with 

the  condition of repeatability of the fluid flow in the vicinity 
of the each well, i.e., the condition of double periodicity of the 
function ( )F z′ . Such function was constructed in [25] and was 
written as follows: 
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where ( )2 ( / 2) /α βω ζ ω ω= − , and /β π= ∆ . In view of the 

Legendre identity (7), the parameter α is independent of m 
and n and can be computed for 1ω ω=  only. 

Thus, the nature of the fluid flow in a doubly periodic 
system of wells located at the nodes of the lattice L is defined 
by the following function [25]: 
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The distribution of pressure in the reservoir with the doubly 
periodic system of wells is determined by the following 
relationship [26]: 
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In view of the dual periodicity and oddness of the function 
( , )V z z , this function is equal to zero at the points of half-

periods ω1/2, ω2/2, (ω1+ω2)/2. These points are often called 
"critical," because the both components of the velocity vector 
νx и νy are equal to zero. These points define the shape of the 

drainage boundary for every well. Figures 4-8 show the 
streamlines of fluid flow to the wells in their drainage area for 
the every well of rhombic lattice with a different angle θ (Fig. 
1) changing from π/2 to π/6.  

Critical points on the Figs 4-8 are marked by crosses in the 
circles with a dark brown border. Dark circles represent 
producing wells located at the nodes of the lattice L, the dotted 
line shows the boundaries of the fundamental parallelograms, 
and the solid lines label the contours of the drainage areas.  

Reference to Figs 4-8 shows also how the drainage area is 
transformed when the angle θ changes from θ=π/2 (the square 
drainage area) to θ=π/3 (the regular hexagonal drainage area), 
and then with a further decrease of the angle θ, to the 
rectangular drainage area with the ratio of drainage sides as 
cosθ/sinθ. 
 

 
Fig. 4. The nature of fluid flow in a square drainage area for θ=π/2. 

 
 

 
Fig. 5. The nature of fluid flow in a rhombic lattice for θ=5π/12. 
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Fig. 6. The nature of fluid flow in a rhombic lattice for θ=π/3. 

 

 
Fig. 7. The nature of fluid flow in a rhombic lattice for θ=π/4. 

 

 
Fig. 8. The nature of fluid flow in a rhombic lattice for θ=π/6. 

Using expression (27) for the pressure distribution, the 
average pressure ( )p t  in the fundamental parallelogram could 
be calculated, which, considering the doubly periodicity of the 
function p(x,y,t), coincides with the average reservoir 
pressure. The average pressure ( )p t  takes the following form 
[26]: 
 

( )ln ln ,
2w w
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where R is the reduced radius of the well drainage area, i.e. 
the radius of an equivalent circular closed drainage area of a 
well, when the same flow rate Q  is achieved at the same 
pressure depression ( ) wp t p− .  

The reduced radius R has been defined in [26] as follows: 
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where 2 1/ ie θτ ω ω λ= = , iq e πτ= , and /
1

iq e π τ−= are the 
Jacobi parameters. 

Similar to (28), the equation for the pressure depression 
( ) wp t p−  for the wells with different drainage areas was 

obtained by Dietz [27] in the following form: 
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where γ=1.781, CA is a dimensionless form factor for different 
drainage area (Dietz shape factor), and ∆ is the square of the 
drainage area.  

Comparing (28) and (30), the following relationship 
between the Dietz shape factor CA and the reduced radius of 
the drainage area R could be established: 
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It should be noted that the value of the Dietz shape factor 

CA was calculated using the method of "imaginary sources" 
for a very limited number of drainage areas and only for the 
rectangular and triangular shape of drainage areas [27], while 
the analytic expression (29) for the parameter R [26] allows us 
to calculate this value (and, hence, CA using the formula (31)) 
for any form of drainage areas. 

In the case of a rectangular lattice (θ=π/2, τ=iλ), equation 
(31) can be represented as follows [26]: 

 
2/3

116 (2 ) ,AC KK kkγ ′=                                                        (32)  
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where ( )K K k=  and 1( )K K k′ =  are the complete elliptic 

integrals, k and 2
1 1k k= −  are the main and additional 

modules of these integrals [21]-[22]. The value of k in the case 
of a rectangular lattice is associated with the value of the 
lattice parameter λ as follows [26]: 
 

2( 1 ) / ( ).K k K kλ = −                                                        (33)  
 

In particular, for a square lattice, when λ=1, the values of k 
and k1 are 2/11 == kk . Considering that 

(1 / 2) (1 / 2) 1.8541K K ′= = , we obtain from (32) that 
CA=30.8832. According to Dietz [27], this coefficient for a 
square drainage area is equal to 30.88. 

In the case of a rectangular lattice with λ>1, the parameter 
CA can be calculated using a simple approximate expression 
for small values of k, constructed on the basis of (32) and the 
asymptotic representations for ( )K K k= , 1( )K K k′ =  as 
follows [26]: 
 

2 316 exp( / 3) / 2.ACγ π λ πλ= −                                           (34)  
 

The results of calculations of the parameter CA using (31) 
are presented graphically in Fig. 9 and summarized in Table 1. 
In Table 1, the numerical values of the parameter CA, obtained 
by Dietz [27] and Earlougher et al. [28] using the method of 
"imaginary sources" are also presented. 

The analysis based on the CA(λ) dependence (Fig. 9) 
reveals that the square lattice with λ=1 is the best among the 
all rectangular lattices placement of wells. The productivity 
index PI of such a lattice  
 

1
2

4 4(ln( ))
w A w

Q khPI
p p C r

π
µ γ
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is maximal among the set of all rectangular lattices having the 
same square of the drainage area ∆. 

Then, the main question there arises: whether the square 
lattice location of wells is the most productive lattice among 
the all possible ways of placing wells in the design field?  

To answer this question, we must refer to the initial 
expression (31) for the dependence of the CA Dietz shape 
factor on the lattice parameters and to find the value 

2 1/ ie θτ ω ω λ= = corresponding to the maximal magnitude of 
CA. Based on the symmetrical dependence of the parameter CA 
from the Jacobi parameters iq e πτ=  and /

1
iq e π τ−= , we can 

conclude that the maximal value of the parameter CA will be 
achieved in the case 1q q= . This condition is satisfied only 

for rhombic lattices, i.e., when θτ ie=  and sin
1q q e π θ−= = . In 

this case, equation (31) takes the following form: 
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Numerical calculations according to (36) show that the 

derivative of CA(θ) in the range 0 θ π< < is equal to zero at 
θ=π/3, θ=π/2 and θ=2π/3, i.e., the angles θ=π/3, θ=π/2 and 
θ=2π/3 are the extreme points of the function CA(θ), at which 
it takes on its maximal and minimal (local) values.  

The results of CA(θ) calculations on the base of (36) for the 
rhombic lattices are shown in Fig. 10 and are presented in  
Table 1. From these results it is clear that optimum 
productivity index PI corresponds to rhombic lattices with the 
angles θ =π/3 and θ =2π/3, which give a hexagonal drainage 
area for wells (Fig. 6). A square lattice with the angle θ =π/2 
and a square drainage area (Fig. 4) gives a slightly lower value 
of the productivity index PI. 
 

 
Fig. 9. A plot of the Dietz shape factor CA vs λ  

in the case of rectangular lattices. 
 
 

 
Fig. 10. A plot of the Dietz shape factor CA vs angle θ  

in the case of rhombic lattices.  

VI. THE MAIN SOLUTION IN THE CASE OF A DOUBLY PERIODIC 
SYSTEM OF MULTI-WELL CLUSTERS 

Consider a doubly periodic multi-well cluster, i.e., a system 
of n vertical wells with flow rates Q1, Q2, ... Qn, located at the 
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points (x1, y1), (x2, y2), ... (xn, yn) and repeated double-
periodically with the main periods x=ω1 and y=ω2 (Fig. 11).  

 

 
 

Fig. 11. Doubly periodic multi-well cluster. 
 
In the case of one well in a cluster, the solution for the 

velocity and the pressure fields in the complex variable 
z=x+iy was built in [25] and [26] in the form of (26)-(27). 

Using the superposition method, the solution for the multi-
well cluster can be represented as the follows [29]: 
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where / 2k kq Q khµ π=  is the generalized flow rate of the k-
well in the cluster. In the case of rectangular lattice, the 
similar solution was introduced by Ozkan [30] and was used 
by Valko et al. [31] to calculate the multi-well productivity 
index (MPI). The solutions (37) and (38) are more general and 
are valid for arbitrary doubly lattices.  

Equation (38) allows one to represent the connection 
between the pressure drawdown of the i-well in the cluster 

( ) i
i wp p t p∆ = −  (i=1, 2,… n) and the generalized flow rate of 

the k-well in the cluster kq  in the following form [29]: 
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The values of ln(R/Rik) are the elements of the influence 

matrix aik, as they reflect the influence of the k-well flow rate 

kq  on the pressure drawdown ip∆ of the i-well. Valko et al. 
[31] calculated the elements of the influence matrix aik only 
for the rectangular lattice, while (40) generalizes their 
equation for any doubly periodic lattices.

 The expression for productivity index (PI) /i i iJ q p= ∆  of 
the i-well in the multi-well cluster and the total multi-well 
productivity index 1 2 1 2( ... ) / ( ... )n nJ q q q p p p= + + + +  (MPI) for 
the whole cluster has the form 

 

1

1

ln( / ),
n

i ki ik
k

J s R R−

=

= ∑
           

1 1

1

,
n

k k k k
k

J s J s a− −

=

= =∑ ∑      (41) 

 
where / ,ki k is q q=  1 2/ ( ... )k k ns q q q q= + +  is the generalized 
flow rate of the k-well to the i-well and to the cluster at the 

whole, and 
1

ln( / )
n

k ik
i

a R R
=

= ∑ .  

Representing the productivity index of the k-well as 
1 ( ) 2(1 / 2) ln(4 / )k

k k wAJ C rγ− = ∆ , where ( )k
AC is the shape factor of the 

k-well in the multi-well cluster, we obtain the following 
expression for the ( )k

AC calculation [29]: 

 
( ) 2

1 4

siknk
A ikA

k
A i

i k

C C Rs
C

γ

=
≠

 
=   ∆ 

∏  .                                                  (42) 

 
Thus, the problem of optimization of field development by 

doubly periodic multi-well cluster is reduced to finding the 
optimal placement of wells in a doubly periodic lattice with 
the aim to maximize the MPI value J.  

VII. THE EXAMPLES 
As  examples let us consider the character of flow for some 

clusters in square and rhombic lattices. 

A. Two-well cluster in the square lattice. 
As it was shown in [29], for the two-well cluster and 

lattices that are close to a rectangular form, the maximum 
value of СА would be achieved at the point (ω1+ω2)/2, but for 
the rhombic lattice at the point (ω1+ω2)/3. 

For the square lattice with equal flow rates of the both wells 
(q2=q1) and the location of the second well at the point 
(ω1+ω2)/2, the streamlines are shown in Fig. 12. The shape 
factor for both wells calculated by (42) is equal to СА=30.881. 

For the rhombic lattice with equal flow rates of the both 
wells and the location of the second well at the point 
(ω1+ω2)/3, the streamlines are shown in Fig. 13. For 
comparison, the streamlines for the rhombic lattice when the 
second well is at the point (ω1+ω2)/2 are shown in Fig. 14. 
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Fig. 12. The nature of fluid flow in a square lattice for two-well 

cluster with z1=0 and z2=(ω1+ω2)/2. 

B. Two-well cluster in the rhombic lattice.  

Comparison of Fig. 13 and Fig. 14 shows that  in the case 
of the second well is placed at the point (ω1+ω2)/3, the 
drainage area for both wells takes the form of an equilateral 
triangle and the shape factor of the triangle drainage area 
becomes СА=27.321. Placing the second well at the point 
(ω1+ω2)/2 results in a rectangular shape of the drainage area 
with an aspect ratio of 1: √ 3 and the shape factor СА=25.035. 

 

 
Fig. 13. The nature of fluid flow in a rhombic lattice for two-well 

cluster with z1=0 and z2=(ω1+ω2)/3. 
 

 
Fig. 14. The nature of fluid flow in a rhombic lattice for two-well 

cluster with z1=0 and z2=(ω1+ω2)/2. 

C. Three-well cluster in the square lattice. 
As it is shown in [29], for the three-well cluster the 

maximum productivity index J is achieved not at the critical 
points, i.e., at the points of half-periods ω1/2, ω2/2 and 
(ω1+ω2)/2, but at the points, where R12, R13 and R23 are equal. 
There exist only three pairs of points, namely: (ω1/3, 2ω1/3), 
(ω2/3, 2ω2/3) and ((ω1+ω2)/3, 2(ω1+ω2)/3), where 
R12=R13=R23. In this case, the values of )1(

AC , )2(
AC  , and )3(

AC  
are equal too. In accordance with (42), they can be calculated 
as 
 

2(1) (2) (3) 2
121

3 4
A A A A

A A A

C C C C R
C C C

γ 
= = =  

∆ 
                                           (43) 

 

 
Fig. 15. The nature of fluid flow in a square lattice for three-well 

cluster with z1=0, z2=(ω1+ω2)/3 and z3=2(ω1+ω2)/3. 
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For the square lattice with equal flow rates (q3=q2=q1) and 
the second and the third wells located at the points (ω1+ω2)/3 
and 2(ω1+ω2)/3, the streamlines are shown in the Fig. 15. 

For the comparison, the streamlines of flow in the square 
lattice, wherein the second and the third wells are located at 
critical points ω1/2 and ω2/2, are shown in the Fig. 16. In this 
case, the values of R12 and R13 are different, therefore, the 
drainage areas for the second and the third wells as well the 
shape factors СА are different too. 

 

 
Fig. 16. The nature of fluid flow in a square lattice for three-well 

cluster with z1=0, z2=ω1/2 and z3=ω2/2. 

D. Three-well cluster in the rhombic lattice.  
Similarly to the case of the flow in a square lattice, let us 

consider the nature of the flow in a rhombic lattice with equal 
flow rates (q3=q2=q1) and the second and the third wells 
located at the points (ω1+ω2)/3 and 2(ω1+ω2)/3 along the 
rhomb diagonal. In this case, the streamlines are shown in Fig. 
17, from which it is evident that such a placement of the wells 
in the rhombic lattice is optimal and provides the maximum 
value of the shape factor СА =31.548.  

The nature of the flow in the rhombic lattice, when the 
second and the third wells are located at critical points ω1/2 
and ω2/2 of the parallelogram period is shown in Fig. 18, 
whence it can be seen that each well has a rhombic drainage 
area with the value of the shape factor СА=26.493. 

E. The closed square reservoir.  
The above-proposed approach to modeling the oil recovery 

using the Weierstrass elliptic functions is based on a priori 
assignment of the parallelogram period and the placement of 
the wells in this parallelogram. The drainage area for every 
well and for the entire cluster as a whole thus may not be 
straightforward and is strongly depended on the flow rates and 
the well locations in the cluster. However, the elliptic 
functions can be used in modeling of oil recovery for 
predetermined drainage area like a rectangle or right triangle. 

 
Fig. 17. The nature of fluid flow in a rhombic lattice for three-well 

cluster with z1=0, z2=(ω1+ω2)/3 and z3=2(ω1+ω2)/3.  
 

 
Fig. 18. The nature of fluid flow in a rhombic lattice for three-well 

cluster with z1=0, z2=ω1/2 and z3=ω2/2.  
 

Consider a closed square reservoir (xe, ye) with n wells 
located at the points (x1, y1), (x2, y2), … (xn, yn) with flow rates 
Q1, Q2, ... Qn (Fig. 11). Condition of impermeability of 
reservoir boundaries is the condition of zero normal velocity 
components at the boundary, i.e., 0yv =  on the horizontal 

boundaries y=0 and y=ye of the rectangle and 0xv =  on the 
vertical boundaries x=0 and x= xe. Using the method of image 
sources, this condition will be satisfied if we consider the 
infinite double-periodic rectangular lattice with the periods 

ex21 =ω  and eiy22 =ω , where 4 groups of n wells with 
coordinates ( ),( 11 yx , ),( 22 yx , … ),( nn yx ); ( ),( 11 yx − , 
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),( 22 yx − , … ),( nn yx − ); ( ),( 11 yx− , ),( 22 yx− , … ),( nn yx− ) 

and ),( 11 yx −− , ),( 22 yx −− , … ),( nn yx −− ) are placed. 
Therefore, the velocity and the pressure functions can also 

be written in the form (37) and (38), and the summation is 
taken over all 4n wells. The productivity index J for the whole 
reservoir and the productivity index Jk for k-well in the 
reservoir as well the shape factor )(k

AC  could also be 
calculated via (41) and (42). 

Figure 19a shows the experimental streamlines data from 
[32] for a closed reservoir with a square drainage area 2x2 and 
two wells placed at the points (0.5, 0.5) and (0.5, 1.5), 
respectively. The ratio q1:q2 of the flow rates is 1:4.1.  

 

 a) 
 

 b) 
Fig. 19 a) the experimental streamlines [32] and  
b) the streamlines calculated according to (41)  

in a closed square reservoir 2x2 with q1=1 и q2=4.1.  
 

The streamlines for this reservoir calculated according to 
(41) are shown in the Fig. 19b. Reference to Figs 19a and 19b 
shows the complete agreement between the experimental and 
calculated streamlines data. 

Figure 20 shows the nature of the fluid flow in a square 
reservoir 2x2 with a symmetric placement of three (a) or four 
(b) wells of the same flow rate. The first case can further be 
interpreted as a rectangular reservoir 2x1, when one of the 
wells is located within the reservoir, and the second is on the 
boundary with the 2:1 ratio of the flow rates.  

 

 a) 
 

 b) 
 

Fig. 20. The nature of the fluid flow in a closed square reservoir  
with a symmetrical placement in the reservoir  

of three (a) or four (b) wells. 
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Table 1. The values of the Dietz shape factor CA according Eq. (31) 
or Eq. (42), as well  calculated by Dietz [27] and Earlougher [28]. 

 
The shape of drainage 

area 
CA calculated by  

Eqs. 
(31), (42) 

[27] [28] 

 

30.881 30.9 30.8828 

 

31.548 31.6 - 

 

27.321 27.6 - 

 

26.493 27.1 - 

 

21.918 21.9 - 

 

21.836 22.6 21.8309 

 

5.378 5.38 5.3780 

 

2.359 2.36 2.3606 

 

12.984 12.9 12.9851 

 

4.522 4.57 4.5132 

 

10.837 10.8 10.8374 

 

4.522 4.86 4.5141 

 

2.081 2.07 2.0769 

 

2.689 2.72  

 

0.232 0.232 0.2318 

 

0.116 0.115 0.1155 

 

3.335 3.39 3.3351 

 

3.157 3.13 3.1573 

 

0.583 0.607 0.5813 

 

0.112 0.111 0.1109 

 

0.100 0.098 - 

VIII. CONCLUSIONS 
This paper presents the analytical solution for modeling the 

oil fields development with the use of the Weierstrass elliptic 
functions. The velocity and the pressure fields defined by 
relationships (26) and (27) allow us  
1) to determine the drainage areas for each well 

depending on its placement on a doubly periodic lattice of 
wells, 

2) to describe the nature of the fluid flow (streamlines) in 
the drainage area for each well in a doubly periodic lattice 
of wells, 

3) to find the pressure distribution within the drainage 
area as well as in the whole reservoir, 

4) to determine the dependence between the  productivity 
index PI of the drainage area and the reduced radius R of 
the drainage area, 

5) to establish the relationship between the reduced radius 
of the drainage area R and the Dietz shape factor CA, 

6) to calculate the Dietz shape factor CA for any shape of 
drainage area. 

The approach proposed has been extended for the case of 
multi-well producing systems (doubly periodic multi-well 
clusters). In this case, the productivity index (PI) has been 
found for each well of the multi-well cluster, as well the 
multi-well productivity index (MPI) of this cluster as a whole.  

The dependences (31) and (42) for PI and MPI allow us to 
calculate the shape factor for each well of the multi-well 
cluster and to optimize the placement of the wells in this 
cluster. It is shown that in any case the most optimal structure 
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of the multi-well cluster is the hexagonal one with the shape 
factor CA=31.548.  

The calculated values of the shape factor CA for different 
forms of drainage areas are presented in Table 1. These values 
correspond to the results given by Dietz [27] and Earlougher 
et al. [28] for the rectangular and triangular drainage areas. 
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