
 

 

  
Abstract—In this paper we propose and compare different 

methods for the solution of the control-adjoint-state optimality 
system which minimizes an objective functional in temperature. The 
minimization is constrained by the energy convection-diffusion 
equation with velocity field defined by the incompressible Navier-
Stokes system. Three methods, based on different solution spaces, for 
solving the adjoint-state optimality system are compared. In the first 
one, as in the standard approach, the controlled temperature field is 
assumed to belong to a regular class of solutions with smooth 
derivatives and the resulting control-adjoint-state optimality system is 
solved in a segregated way. In the second one we introduce a fully 
coupled solution approach, where, in order to obtain a more robust 
numerical algorithm, the boundary control is extended to the interior 
and Dirichlet conditions are implicitly enforced through a volumetric 
force term. In the last approach we introduce Discontinuous Galerkin 
formulation for the energy equation in order to seek discontinuous 
solutions. Numerical two and three-dimensional test cases are 
reported in order to show the validity of the proposed approaches. 
The results are compared in term of solution smoothness and 
achievement of low values of the objective functional. 
 

Keywords—Optimal Boundary Control, Temperature Control.  

I. INTRODUCTION 
In recent years the optimal control of temperature 

distribution in fluid dynamics problems has gained popularity 
because of many   engineering applications in heat transfer 
and industrial processes. However the numerical computation 
of the optimal solution is a rather CPU time consuming task 
and the development of robust and stable numerical tools for 
such optimization problems is still an open challenge.  

In optimal control theory different types of controls, such as 
distributed, boundary and shape controls are considered, see 
for a review [1]-[2]. In particular, in the first one, source terms 
are used as control parameters to simulate heat generation. For 
convection-diffusion problems like the energy equation the 
interested reader can see [3]-[6]. For numerical treatments of 
the optimal control of Navier-Stokes or MHD equations one 
can consult [7]-[9], while for Boussinesq and MHD equations 
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[10]-[11]. Due to practical issues it is difficult to set control 
devices inside the system and this type of control cannot often 
be applied. In such cases the boundary control may be a 
possible approach. This type of control can be implemented in 
a very simple way by injecting fluid with different properties 
or setting temperature on the wall. However, boundary control 
is more challenging than the distributed one, from the 
theoretical point of view and in the construction of feasible 
computational algorithms. For an application to the Navier-
Stokes boundary optimal control see for example [12] and 
citations therein. In shape control the geometrical properties of 
the system can be changed in order to obtain the desired result. 
A common application of this type of control is airplane or car 
wing design [8]. Other techniques are available for control 
problems, like linear feedback methods. In [13]-[15], 
examples of this technique applied to the Boussinesq, Navier-
Stokes and energy equations are studied. 

The most challenging task arising in the study of optimal 
control problems and particularly in boundary control is the 
numerical solution of the optimality system. The solution of 
the control-adjoint-state optimality system can be obtained in 
different ways. The equations can be solved separately in a 
segregated way or the whole system can be solved in a fully 
coupled way. The coupled implicit solution of the state, 
adjoint and control equations is robust while in the segregated 
case oscillations may appear. When the system is non-linear 
the segregated solution can be a natural choice, however the 
penalty parameters in the regularization terms of the objective  
functional are limited by numerical errors. In fact if these 
parameters tends to zero the solution loses smoothness and the 
numerical algorithm may not converge. 

In this paper we consider an optimal boundary control 
problem for temperature and Navier-Stokes equations. Heat 
convection is regarded as the dominant physical mechanism 
for heat transfer and the effects of temperature on velocity and 
pressure, such as buoyancy, are neglected. We consider a 
boundary optimal control problem for the temperature 
equation where the control is performed through the boundary 
conditions of temperature on well-defined parts of the 
boundary and the objective functional is given in the following 
form 
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                       (1) 
 
where T(x) is the temperature distribution, Td is the desired 

temperature, w(x) is a weight function that can be used to 
improve the control, Γc is the surface on which the control is 
imposed and g  is the controlled temperature. This functional 
consists of three terms: the objective and two regularization 
terms. The two parameters β and λ can be used to impose a 
more smooth controlled temperature. In particular if both 
parameters are different from zero the function g is 
differentiable while for vanishing λ we have only square 
integrability. We consider and analyze three cases. In the first 
case we set λ = 0 and use standard Lagrangian quadratic 
elements. Since g is the trace of the gradient of the adjoint 
variable it is not possible to evaluate directly its numerical 
values, so we rewrite the boundary control equation in a 
volumetric form. In the second case we still set λ = 0 and use 
discontinuous Galerkin method [16]-[17]. In the first two 
approaches we solve the optimality system with a fully 
coupled one-shot algorithm, which is very efficient and fast. In 
the third case we consider the full functional and find a 
solution in more regular spaces. We solve this optimality 
system in a segregated way with standard quadratic elements 
for all state-adjoint variables. 

The paper is organized as follows: in the next section we 
describe the optimality system and the solution strategies. In 
the subsequent section we report the numerical results of two 
and three-dimensional test cases obtained by implementing the 
three solution approaches. A comparison between the 
solutions is carried on and different features of the three 
approaches are highlighted. Finally in the last section we draw 
our conclusion.  

II. OPTIMALITY SYSTEM 
Let Ω be an open set with boundary Γ. The optimality 

system on Ω can be obtained by minimizing the objective 
functional under the constraints imposed by the energy 
equation and the Navier-Stokes system. The Navier-Stokes 
equations for an incompressible flow are 

∇ ∙ 𝑣𝑣 = 0          (2) 
𝜌𝜌 (𝑣𝑣 ∙ ∇)𝑣𝑣 =  −∇𝑝𝑝 +  𝜇𝜇 ∇2𝑣𝑣       (3) 

where μ is the dynamical viscosity, ρ the density and p the 
pressure. The steady state energy equation together with the 
boundary conditions can be written as 

(𝑣𝑣 ∙ ∇)𝑇𝑇 = 𝛼𝛼 ∇2𝑇𝑇           (4) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑑𝑑   𝑜𝑜𝑜𝑜 𝛤𝛤𝑛𝑛  

   𝑇𝑇 = 𝑔𝑔   𝑜𝑜𝑜𝑜 𝛤𝛤𝑐𝑐  
where v is the fluid velocity and α is the fluid thermal 
diffusivity. We assume that the value of the heat flux d is 
given. The optimal control problem consists in finding the best 
possible g in order to minimize the functional (1). 

Let us recall some notations about functional spaces used in 

the rest of the paper. We will use the standard notation for the 
Sobolev spaces Hs(Ω) with norm || ||s  (H0(Ω)= L2(Ω) and || 
||0=|| ||). Let Hs

0(Ω) be the closure of C∞
0(Ω) under the norm || 

||s  and  H-s(Ω) be the dual space of  Hs
0(Ω). The trace space 

for the functions in H1(Ω) will be denoted by H1/2(Γ). For 
details on these spaces, one can consult [18]-[19]. 

By writing the total Lagrangian and setting its Fréchet 
derivatives to zero we can obtain the weak form of the 
optimality system [7]-[11] 

� [(𝑣𝑣 ∙ ∇)𝑇𝑇]𝜙𝜙 𝑑𝑑Ω
Ω

+ � 𝛼𝛼 ∇𝑇𝑇 ∙ ∇𝜙𝜙 𝑑𝑑Ω 
Ω

− � 𝛼𝛼 ∇𝑇𝑇 ∙ 𝑛𝑛 𝜙𝜙 𝑑𝑑𝛤𝛤 = 0,                 ∀
𝛤𝛤𝑛𝑛

𝜙𝜙 ∈ 𝐻𝐻1(Ω) 

                                   (5) 

� 𝜃𝜃[(𝑣𝑣 ∙ ∇)𝜓𝜓] 𝑑𝑑Ω
Ω

+ � 𝛼𝛼 ∇θ ∙ ∇𝜓𝜓 𝑑𝑑Ω 
Ω

− � 𝛼𝛼 ∇𝜃𝜃 ∙ 𝑛𝑛 𝜓𝜓 𝑑𝑑𝑑𝑑
𝛤𝛤𝑛𝑛

= � (𝑇𝑇 − 𝑇𝑇𝑑𝑑)𝜓𝜓 𝑑𝑑Ω,
Ω

             ∀𝜓𝜓 ∈ 𝐻𝐻1(Ω) 

                                       (6) 

� 𝛽𝛽𝛽𝛽𝛽𝛽 𝑑𝑑𝑑𝑑
𝛤𝛤𝑐𝑐

+ � 𝜆𝜆 ∇𝑔𝑔 ∙ ∇𝜒𝜒 𝑑𝑑𝑑𝑑
𝛤𝛤𝑐𝑐

=  � 𝛼𝛼 ∇𝜃𝜃 ∙ 𝑛𝑛 𝜒𝜒 𝑑𝑑𝑑𝑑,             ∀
𝛤𝛤𝑐𝑐

 𝜒𝜒 ∈ 𝐻𝐻1/2(𝛤𝛤𝑐𝑐) 

                          (7) 
The adjoint temperature θ is the Lagrange multiplier 

satisfying (6). The (7), defined only on the controlled surface, 
is the equation for the control temperature g. The functions χ ϵ 
H1/2(Γc) are the restrictions of the test functions ψ ϵ H1(Ω) over 
Γc. If one approximates the above spaces with the finite 
dimensional ones the finite element approximation is obtained. 

The fluid velocity in the state and adjoint equations (5-6) is 
computed by solving the Navier-Stokes system. In order to 
introduce these equations, we set 

𝑎𝑎(𝑣𝑣,𝑢𝑢) = � ∇𝑣𝑣: ∇𝑢𝑢
Ω

 𝑑𝑑Ω 

       (8) 

𝑑𝑑(𝑢𝑢, 𝑞𝑞) = � q ∇ ∙ 𝑢𝑢
Ω

 𝑑𝑑Ω 

       (9) 

𝑐𝑐(𝑣𝑣,𝑢𝑢,𝜔𝜔) = � (𝑣𝑣 ∙ ∇)𝑢𝑢
Ω

∙ 𝜔𝜔 𝑑𝑑Ω 

       (10) 
 

for all u, v, ω ϵ H1(Ω) and q ϵ L2
0(Ω) with the Reynolds 

number defined as  

𝑅𝑅𝑅𝑅 =  
𝜌𝜌 𝑈𝑈 𝐿𝐿
𝜇𝜇

 , 

           (11) 
where ρ, U, L, μ denote the reference values for density, 
velocity, length and dynamic viscosity, respectively. Given v0 
ϵ H1/2(Γ), we seek (v, p, τ) ϵ H1(Ω) × L2

0(Ω) × H-1(Ω) such 
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that 
1
𝑅𝑅𝑅𝑅
𝑎𝑎(𝑣𝑣,𝑢𝑢) + 𝑐𝑐(𝑣𝑣, 𝑣𝑣,𝑢𝑢) + 𝑑𝑑(𝑢𝑢, 𝑝𝑝) + (𝜏𝜏,𝑢𝑢) = 0   ∀𝑢𝑢 ∈ 𝐻𝐻1(Ω) 

(12) 
𝑑𝑑(𝑣𝑣, 𝑞𝑞) = 0     ∀𝑞𝑞 ∈ 𝐿𝐿0

2 (Ω)     (13) 
where v=v0 on Γ and τ is the stress boundary vector [7]-[12]-
[14]. The velocity field is computed from the Navier-Stokes 
equations (12-13) before solving the optimality system since 
we do not consider temperature dependent properties of the 
fluid. 

We now describe and compare three different approaches 
for the solution of the system (5-7). In the first case we set the 
parameter λ=0 so we seek a solution for the controlled 
temperature in 𝐿𝐿0

2 (Ω). In this case the (7) can be solved by  
𝑇𝑇 = 𝑔𝑔 = 𝛼𝛼 ∇𝜃𝜃∙𝑛𝑛

𝛽𝛽
 𝑜𝑜𝑜𝑜 𝛤𝛤𝑐𝑐        (14) 

 In order to evaluate T from θ on Γc we can proceed in the 
following way 

∫ 𝛽𝛽𝛽𝛽𝛽𝛽 𝑑𝑑𝑑𝑑𝛤𝛤𝑐𝑐
= ∫ 𝛼𝛼 ∇𝜃𝜃 ∙ 𝑛𝑛 𝜒𝜒 𝑑𝑑𝑑𝑑,𝛤𝛤𝑐𝑐

      ∀𝜒𝜒 ∈ 𝐻𝐻
1
2(𝛤𝛤𝑐𝑐)   (15) 

which can be rewritten, using equation (6), as 

∫ 𝛽𝛽𝛽𝛽𝛽𝛽 𝑑𝑑𝑑𝑑𝛤𝛤𝑐𝑐
= ∫ 𝜃𝜃[(𝑣𝑣 ∙ ∇)𝜓𝜓] 𝑑𝑑ΩΩ + ∫ 𝛼𝛼 ∇θ ∙ ∇𝜓𝜓 𝑑𝑑Ω −Ω

∫ (𝑇𝑇 − 𝑇𝑇𝑑𝑑)𝜓𝜓 𝑑𝑑Ω,Ω          ∀𝜓𝜓 ∈ 𝐻𝐻1(Ω)    (16) 
where the test function χ is the restriction of ψ on Γc. We 
remark that the temperature control (14) is the trace of the 
function ∇θ ϵ 𝐿𝐿2 (Ω) which is difficult to evaluate numerically. 
The expression (16) allows an easy computation of T=g on the 
boundary since all the right hand side functions are well 
defined on Ω. 

In the second case we still assume λ=0 and use the 
Discontinuous Galerkin method for the solution of the energy 
equation. Therefore we impose Dirichlet boundary conditions 
by setting T=g on Γc. The use of Discontinuous Galerkin is 
appropriate for this setting since we have 𝛽𝛽 ≠  0  and the 
solution g ϵ L2(Γc). We remark that 𝛽𝛽 =  0 implies g ϵ 
H1/2(Γc), [9]-[10]-[12]. In the first two cases we solve the 
optimality system with a one-shot solver because the system is 
linear and the control g is computed implicitly. 

In the third case we assume 𝜆𝜆 ≠  0 which implies g ϵ 
H1(Γc). In this case the differential equation (7) must be solved 
on the boundary. Extra boundary conditions over ∂ Γc must be 
enforced. We solve this optimality system in a segregated way 
with standard quadratic elements for all the three variables T, 
θ and g. Since we cannot use a one-shot solver because the 
equations are segregated, the following algorithm could be 
used to obtain the final solution: 

1. assign an initial condition for the temperature on 
the controlled boundary gi; 

2. solve energy equation (5) with the control gi; 
3. solve adjoint energy equation (6) with temperature 

computed at the previous step; 
4. solve control equation (7) with adjoint temperature 

computed at the previous step to obtain the new 
gi+1; 

5. start again from step 2 setting i=i+1 until 
convergence is reached (gi+1 ≈ gi). 

We have found however that this algorithm does not 

converge monotonically and often convergence is not 
reached. One may introduce the following changes to the 
algorithm to obtain a more stable solution process: 

1) assign an initial condition for the temperature on the 
controlled boundary gi; 

2)  solve energy equation (5) with the control gi; 
3)  solve adjoint energy equation (6) with temperature 

computed at the previous step; 
4)  solve control equation (7) with adjoint temperature 

computed at the previous step to obtain the new gi+1; 
a) compute the functional J(T,g) in (1) and assign an 

initial η; 
b) solve energy equation (5) with the boundary 

condition (1-η) gi + η gi+1; 
c) compute J1(T,g) with the new temperature; 
d)  if J1(T,g) < J(T,g) go to step 3, if J1(T,g) > J(T,g)  

then compute η=0.5 η and go to step (a),  if J1(T,g) ≈ 
J(T,g) convergence is reached. 

This algorithm can reduce strongly solution oscillations and 
therefore will be used in the numerical results section. 

III. NUMERICAL RESULTS 
In this section we report the numerical results of three 

smoothness controls obtained by using different values of the 
parameters β and λ. We consider three test problem cases:  a 
simple problem with a standard boundary layer plane flow, a 
two and three-dimensional geometry with secondary flow 
injections at different temperatures. The objective functional 
in all cases is a desired constant temperature to be obtained in 
a specific region with support Ωd where the weight function 
w(x) is defined. 

For the numerical implementation of the different 
approaches and for the solution of the Navier-Stokes system 
we have used a finite-element multi-physics code with a multi-
grid solver implemented. The coupled solution is obtained 
with standard GMRES solvers implemented by using the 
PETSC library. For large optimality system one may use 
Vanka solvers where the coupled optimality system is solved 
over a series of small subdomains [20]. The convergence of 
the solution is checked by its L2 norm which takes into 
account the last two finest resolutions. Let Mh1 be the coarser 
mesh and Mh2 the refined mesh over the domain Ω and Th1 and 
Th2 the corresponding solutions. The convergence criteria is 

‖𝑇𝑇ℎ1−𝑇𝑇ℎ2‖𝐿𝐿2(Ω)
‖𝑇𝑇ℎ2‖𝐿𝐿2(Ω)

< 10−4        (17) 

In all the tests the inequality (17) has been assumed to define 
the convergent solutions. In the rest of the paper the 
temperature and velocity fields and the physical properties are 
reported in non-dimensional values.  
 

A. Boundary layer flow 
In this paragraph we analyze the behavior of different 

solvers in a simple laminar fully developed plane flow. We 
define the inlet on the left side, the outlet on the right side, a 
symmetry plane on the top and the wall with the controlled 
temperature on the bottom, as reported in Fig. 1. 
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Figure 1. The plane boundary layer geometry. On the left inlet of the flow, on 
top symmetry axis, on bottom solid wall and on the right outlet. 

 

 
Figure 2. Plane boundary layer with Td=0.7, temperature on the wall. One-
shot case with quadratic elements (OS) and Discontinuous Galerkin method 
(DG) (top) and 𝜆𝜆 ≠ 0 case (bottom). In the last graph dotted lines are for 
𝜆𝜆 = 10−6 while continuous for 𝜆𝜆 = 10−3. 

 
Two test cases have been studied with a different Td. For 

the first test case the weight function is set to be w(x) = 1 
along the whole domain and we seek for an analytical 
solution: we impose a non-dimensional inlet temperature of 
0.7 and we set Td = 0.7. The three approaches give different 
solution results, as we can see in Fig. 2. In this figure the 
temperature profile on the controlled wall is reported as a 
function of the axial coordinate x for the three approaches and 
different values of the parameters β and λ. In the graph on the 
left two temperature profiles for β = 10-3 (dotted line) and β = 
10-6 (straight line) are reported as obtained with the first 
solution case. It is visible that the controlling parameter β has 
a great importance to obtain the correct solution. With the 
Discontinuous Galerkin method there are convergence 
problem to impose β = 10-6 due to numerical errors. When β 

TABLE 1 
Solution Approach J’ 
One-shot 𝛽𝛽 = 10−3 2.23 × 10−6 
One-shot 𝛽𝛽 = 10−6 3.40 × 10−12  

Discontinous Galerkin 𝛽𝛽 = 10−3 1.63 × 10−6 
𝛽𝛽 = 10−3 and 𝜆𝜆 = 10−3 1.48 × 10−6 
𝛽𝛽 = 10−3 and 𝜆𝜆 = 10−6 1.46 × 10−6 
𝛽𝛽 = 10−6 and 𝜆𝜆 = 10−3 2.68 × 10−12  
𝛽𝛽 = 10−6 and 𝜆𝜆 = 10−6 2.57 × 10−12  

Plane boundary layer with Td=0.7, objective functional computed with 
different solution approaches. 
 
tends to zero the control is not a standard function anymore 
and becomes a distribution and therefore it is not numerical 
representable in this approach. The result reported is the one 
with β = 10-3 (dashed line). On the right we can see the results 
obtained by imposing λ ≠ 0 and solving the control equation 
for g. By changing the parameter β one can obtain the correct 
solution, while by changing λ no relevant differences can be 
seen. 
 

 
Figure 3. Plane boundary layer with Td=1, temperature on the wall. One-shot 
case with quadratic elements (OS) with 𝛽𝛽 = 10−3 (dotted), 10−6 (continuous) 
and Discontinuous Galerkin method (DG) with 𝛽𝛽 = 10−3 (dashed) on top.  
Segregated approach with 𝜆𝜆 = 10−3 (continuous line), 𝛽𝛽 = 10−3 and 
𝜆𝜆 = 10−6 (dotted), 𝛽𝛽 = 10−6 and 𝜆𝜆 = 10−6 (dashed) on the bottom. 
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Figure 4. Plane boundary layer with Td=1, one-shot case with 𝛽𝛽 = 10−6. 
Temperature (top) and adjoint variable θ (bottom) contours obtained with ten 
equal subdivisions of the variable range. 
 

In Table 1 the objective functional J' defined as J′ =
0.5∫ (𝑇𝑇(𝑥𝑥) − 𝑇𝑇𝑑𝑑)2 𝑤𝑤(𝑥𝑥)𝑑𝑑ΩΩ  is reported for different solution 
approaches. It can be clearly seen that the most powerful 
control is achieved by setting β = 10-6 and that the best result 
for this case is obtained with the segregated approach with λ = 
10-6. It must be taken into account that this method is much 
slower than the one-shot method in obtaining a convergent 
solution. 

In the other set of test cases which is studied with this 
geometry we still set the weight function w(x) = 1 but impose 
Td = 1. We report the controlled solution and also some results 
for the adjoint temperature. In Fig. 3 we show the profile of 
the temperature on the controlled wall as computed in all the 
three cases. On the left the temperature profile is obtained with 
one-shot approach and Discontinuous Galerkin method while 
on the right with the segregated solver and g as additional 
variable. One-shot and DG methods give quite similar results 
for the temperature profile: the controlled wall tends to 
increase temperature of the fluid near the inlet while the 
temperature falls to 1.1 close to the outlet. The third approach 
shows ripples for cases with λ = 10-6 and the profiles are 
different from the ones obtained with the other two approaches 
because near the outlet the temperature rises again. In Fig. 4  

TABLE 2 
Solution Approach J’ 
One-shot 𝛽𝛽 = 10−3 1.0941 × 10−2 
One-shot 𝛽𝛽 = 10−6 1.0936 × 10−2 

Discontinous Galerkin 𝛽𝛽 = 10−3 1.0921 × 10−2 
𝛽𝛽 = 10−3 and 𝜆𝜆 = 10−3 1.0940 × 10−2 
𝛽𝛽 = 10−3 and 𝜆𝜆 = 10−6 1.0940 × 10−2 
𝛽𝛽 = 10−6 and 𝜆𝜆 = 10−3 1.0936 × 10−2 
𝛽𝛽 = 10−6 and 𝜆𝜆 = 10−6 1.0936 × 10−2 

Plane boundary layer with Td=1, objective functional computed with different 
solution approaches. 
 
the temperature and adjoint variable are reported for the one-
shot case with β = 10-6. Near the axis of symmetry, very far 
from the wall, the control cannot be enforced and the 
maximum absolute value of θ is reached. On the other side, 
near the wall the control is very good and the adjoint variable 
vanishes in this region. 

Finally in Table 2 we report the values of the functional J' 
for this test case. We remark that the functional is several 
orders of magnitude higher than in the previous test case. We 
can see also that the parameter β is less important for this 
range of values and the lowest objective functional is achieved 
with the Discontinuous Galerkin method. 

 

B. Two-dimensional mixing channel 
In this paragraph we report the numerical results obtained in 

a more complex geometry in order to show the capability of 
the optimality system in real applications. We simulate a 
mixing channel in which a main flow mixes with another flow 
injected from a side of the channel with different temperature. 
The objective of the problem is to obtain a desired temperature 
in the flow lower than the inlet one but still higher than the 
walls. Moreover we decide to assign great importance to the 
center of the channel near the outlet by using the weight 
function w(x) = 0.25 (8x-x2) (y-y2).  

 
 

 
Figure 5. Mixing channel geometry (top) and weight function w(x) (bottom). 
The segment AF is the main flow inlet, BC is the secondary flow inlet, DE is 
the outflow. 
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Figure 6. Velocity streamlines and velocity magnitude in the mixing channel. 

 

 
Figure 7. Temperature (top) and adjoint variable (bottom) computed with first 
approach and 𝛽𝛽 = 10−6. 
 

In Fig. 5 the geometry and the weight function are reported 
over the computational domain. In this Figure the key regions 
are marked as follows: the segment AF is the inlet of the main 
flow, BC is the injection of the secondary flow with the 
controlled temperature and DE is the outlet. The other 
boundaries are solid walls with constant temperature. 

As we have mentioned above we use a finite element solver 
for the solution of Navier-Stokes incompressible system to 
obtain the velocity field before solving the optimality system. 
We use Taylor-Hood finite elements with the same multi-grid 
solver of the optimality system for the solution of the Navier-
Stokes equation. In Fig. 6 the velocity field is reported with 
flow streamlines and in colors the velocity magnitude. The 
injection flow is visible and a recirculation zone appears just 
after the injection region. With this velocity field we can solve 
the optimality system with different approaches as described 
before. 

 
Figure 8. Temperature on the inlet line computed in the first case for 
 𝛽𝛽 = 10−3(continuous line) and 𝛽𝛽 = 10−6(dotted line). 

 

 

 
Figure 9. Temperature distribution on the whole domain (top) and on the inlet 
line (bottom) computed with Discontinuous Galerkin method and 𝛽𝛽 = 10−3. 

 
The one-shot approach with quadratic elements shows to be 

very robust and the fully coupled solution with this approach 
is quite fast to obtain. The temperature and the adjoint variable 
fields, as obtained with the one-shot approach, are reported in 
Fig. 7 for β = 10-6. We can see, as expected, that the region 
with high values of the adjoint variable is the region marked 
with the w(x) weight function. Having β = 10-6 we can have a 
stronger control but the smoothness of the temperature on the 
controlled boundary decreases, as it can be seen in Fig. 8. The 
temperature is reported on the injection inlet line with 
coordinate x in the range of 0.8 to 2.2 for two values of β = 10-

3 and β = 10-6. Strong oscillations of the temperature start to 
appear as the parameter β decreases under a certain value. On 
the contrary, with β = 10-3,  

 
Figure 10. Temperature on the inlet line computed with third approach and 
𝛽𝛽 = 10−3(continuous) and 𝛽𝛽 = 10−6(dotted), 𝜆𝜆 = 10−3 in both cases. 
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TABLE 3 

Solution Approach J’ 
One-shot 𝛽𝛽 = 10−3 3.3039 × 10−2 
One-shot 𝛽𝛽 = 10−6 3.2960 × 10−2 

Discontinous Galerkin 𝛽𝛽 = 10−3 3.2890 × 10−2 
𝛽𝛽 = 10−3 and 𝜆𝜆 = 10−3 3.3275 × 10−2 
𝛽𝛽 = 10−6 and 𝜆𝜆 = 10−3 3.3270 × 10−2 

Two-dimensional mixing channel. Objective functional computed with 
different solution approaches and β-λ values. 
 
the temperature is quite smooth but it has a sharp peak near 
the walls, where the inlet velocity v→0. The temperature 
distribution along the central region of the inlet flow is very 
similar for all different values of β. 

The results obtained with the Discontinuous Galerkin 
method are reported in Fig. 9. On the left the temperature field 
is reported on the whole domain as computed with β = 10-3 
while on the right the temperature on the controlled inlet is 
shown as a function of the coordinate x in the range of 0.8 to 
2.2. The result is quite similar to the one obtained with first 
approach showing sharp edges near the inlet wall and a flat 
non-dimensional temperature of around 0.8 in the center of the 
flow. 

In Fig. 10 we report the temperature profile on the inlet line 
as computed with the third approach solving directly a 
differential equation for g. We consider solutions with λ = 10-3 
and with β = 10-3 and 10-6. In this figure two plots are reported 
with a straight continuous line for β = 10-3 and with a dotted 
line for β = 10-6. This profile shows similar peaks near the 
inlet walls as those obtained in the other two cases. It is 
important to remark some differences in the decreasing profile 
of the temperature near the peaks. 

 

 
Figure 11. Three-dimensional mixing channel geometry with a scale factor of 
0.1 in the axial direction (top), weight function on the same geometry 
(bottom). On the left the two flow injections are visible in red color and on the 

right ten equally subdivided isosurfaces for the weight function are reported. 
The flow is directed from left to right in both figures. 

Finally we can compute the objective functional J' and 
compare the results. In Table 3 the functional is reported for 
the injection test case and for all the different cases and β 
values employed. As already remarked, from this table one 
can see that by imposing a lower value of β the control is more 
effective. All the methods give quite similar values but the 
best result is obtained with the Discontinuous Galerkin 
method. The solution obtained with the segregated method is 
smoother and therefore the control loses effectiveness. For this 
reason it gives the worst results in term of functional J'. The 
one-shot approach with quadratic elements lies between the 
other two. The result that gives high temperature oscillations 
near the wall corresponds to a low functional value. 

 

C. Three-dimensional mixing channel 
In this paragraph we report the numerical results obtained in 

a three-dimensional test case. The geometry is a channel with 
a main flow entering from the bottom and two injections of a 
fluid with controlled temperature on two sides. The axial 
domain dimension is 5 while the other two dimensions x and y 
are 0.1. The injections are located between z = 1.5-2 and z=3-
3.5 and are 0.05 wide. A three-dimensional view of the 
geometry is reported in Fig. 11 with a scale factor of 0.1 in the 
axial direction. In this Figure the injections are reported in red 
color while the walls are blue. The main inlet velocity is 2 
while the secondary injection velocities are 0.5 in the normal 
direction of the inlet.  

 

 
Figure 12. Velocity flow pattern of the three-dimensional mixing channel 
geometry. Velocity streamlines colored by the velocity magnitude (top) and  
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velocity on a slice obtained at a constant axial coordinate z=4 with arrows 
colored by velocity magnitude (bottom). 
The main inlet temperature and the wall temperature are 
assigned as 0.5, while the temperature of the two injection 
flows is controlled. The control objective is to obtain a 
constant temperature near the outlet of the channel and this 
can be accomplished with a weight function as 

𝑤𝑤(𝑥𝑥) = (0.12𝑧𝑧2 − 0.016𝑧𝑧3) �𝑒𝑒
ln (2)𝑧𝑧

5 − 1� (40𝑦𝑦

− 400𝑦𝑦2)(40𝑥𝑥 − 400𝑥𝑥2) 
This weight function is reported in Fig. 11 with a 

geometrical scale factor of 0.1 in the axial direction and with 
ten equally spaced isosurfaces of the weight function in the 
range of 0 to 1. 

The velocity field of the incompressible Navier-Stokes 
system can be solved separately from the optimality system, as 
explained before. The solution of the velocity and pressure 
fields requires high computational cost because of the three-
dimensional problem. On the left of Fig. 12, the flow pattern is 
visible with the velocity streamlines reported on the three-
dimensional domain and colored by the velocity magnitude. 
One can see the formation of vortices due to the lateral 
injections. A slice obtained at axial coordinate z = 4 is 
reported in Fig. 12 on the right with the velocity vectors 
represented with arrows and colored by the velocity 
magnitude. The recirculation patterns are visible in this Figure 
and the flow on the outlet section is pushed towards a corner 
of the channel by two recirculation vortices. 

For this test case the optimality system has been solved with 
the one-shot approach because of its robustness and fast 
convergence obtained in the other test cases. The temperature 
results obtained with β = 0.1 are reported in Fig. 13. In this 
Figure the temperature is shown with ten equally subdivided 
isosurfaces on the domain clipped with a section normal to the 

 
Figure 13. Temperature profile obtained with β=0.1 in the three-dimensional 
mixing channel geometry. Ten equally spaced temperature isosurfaces on half 

of the domain clipped with a section normal to the x-axis (top) and section 
normal to the y-axis (bottom). 

 
Figure 14. Adjoint variable profile obtained with β=0.1 in the three-
dimensional mixing channel geometry. Ten equally spaced temperature 
isosurfaces on half of the domain clipped with a section normal to the x-axis 
(top) and section normal to the y-axis (bottom). 

 
x-axis on the left and y-axis on the right. On the left, one can 
see the effect of the first injection located between z = 1.5-2 
and on the right it can be seen the second injection located 
between z = 3-3.5. The control on the boundary tries to heat 
the flow by increasing temperature on the two injections. The 
hottest fluid moves along the channel achieving a lower 
functional J'. It is interesting to study also the adjoint variable 
in order to better understand the control problem. 
 
 

 
Figure 15. Temperature profile obtained with β=0.05 in the three-dimensional 
mixing channel geometry. Ten equally spaced temperature isosurfaces on half 
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of the domain clipped with a section normal to the x-axis (top) and section 
normal to the y-axis (bottom). 

 
Figure 16. Adjoint variable profile obtained with β=0.05 in the three-
dimensional mixing channel geometry. Ten equally spaced temperature 
isosurfaces on half of the domain clipped with a section normal to the x-axis 
(top) and section normal to the y-axis (bottom). 
 
In Fig. 14 the adjoint variable is reported with ten equally 
subdivided isosurfaces. On the left the domain is clipped with 
a plane normal to the x-axis, on the right with respect to y-
axis. The adjoint or importance function is higher in modulus 
where the control should act stronger in order to better achieve 
the desired result. In this problem the velocity is quite high 
and the adjoint variable is higher towards the inlet of the 
channel since changing the temperature in this region would 
control better the result. A possible way of taking into account 
this information could be to set the injections upstream in the 
axial direction. 

By decreasing the parameter β to 0.05 the control acts 
stronger to decrease the objective functional because the 
solution T on the boundary can take higher values. In Fig. 15 
the temperature is reported with ten equally subdivided 
isosurfaces on the domain clipped with respect to the x (left) 
and y-axis (right). It can be seen from this Figure that the 
values attained by the temperature on the controlled surfaces 
are higher in modulus than the ones obtained by setting β=0.1. 
The adjoint variable for this case is reported in Fig. 16 and it is 
shown with ten equally subdivided isosurfaces. On the left the 
domain is clipped with respect to the x-axis and on the right 
with respect to the y-axis. By decreasing β the adjoint variable 
becomes lower and the region where the control cannot reduce 
the objective functional is more visible. 

We can now compare the temperature distributions obtained 
on the outlet section for two different values of β. On the left 
of Fig. 17 the results of the test case with β = 0.1 is reported, 
while on the right those with β = 0.05. Over this section the 
vortices created by the flow are well visible. Moreover we 
remark the different ranges of temperature with the different β, 
with the maximum temperature obtained for β = 0.05. Finally 
in Table 4 we compare the objective functional obtained with 

the one-shot approach and β = 0.1, 0.05. It is clear the 
 

 
Figure 17. Temperature distribution on the outlet section of the three-
dimensional mixing channel. Test case with β=0.1 (top) and β=0.05 (bottom). 

 
TABLE 4 

Solution Approach J’ 
One-shot 𝛽𝛽 = 0.1 1.722 × 10−3 

One-shot 𝛽𝛽 = 0.05 1.054 × 10−3 
Three-dimensional mixing channel test case, objective functional computed 
with different β values. 

 
important effect of the regularization parameter β in achieving 
low functional values. 

IV. CONCLUSION 
In this paper the optimal boundary control problem for the 

energy equation driven by Navier-Stokes incompressible flow 
has been analyzed. We have proposed and compared three 
different approaches to the solution of the optimality system. 
An extrapolated way of setting Dirichlet boundary condition 
for the controlled temperature in the one-shot approach with 
standard finite elements has been proposed. We have reported 
numerical results obtained in two and three-dimensional 
geometries with different values of the optimality system 
parameters. 

We have found that the integral boundary condition, for the 
controlled temperature setting, gives a very high stability to 
the fully coupled solution even with very low values of β. The 
parameter β, as defined in equation (1), has a strong influence 
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in control effectiveness, while the parameter λ is important 
only for increasing the controlled temperature smoothness. 
The fully coupled one-shot approach has shown the best 
convergence properties although not always the best solution 
in term of smoothness and objective functional. The 
Discontinuous Galerkin method gives very good results 
because in many test cases it allows to compute the lowest 
objective functional, but it has some convergence issues. The 
last approach with segregated solution and an additional 
transport equation for the control is much more suitable for 
searching smoother profiles. The solution algorithm is quite 
slow and some improvements are necessary. The results 
obtained with this approach are however quite good and, as 
expected, the temperature profiles are smoother than the ones 
obtained with all the other approaches. 
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