
 

 

 
Abstract—Article deals with physical models of mathematical 

and simple and double physical pendulum for its stabilization 
possibilities verification in instable inverse position. Whereas 
classical stabilization by proximal joint horizontal movement of 
inverse mathematical pendulum is well known and in article is 
just why and when is possible, the case of stabilization by 
proximal joint vertical oscillation comings-out from chaos theory 
and is referred in article by multiport physical models and their 
behavior. 

KeywordsMathematical pendulum, double physical 
pendulum, inverse position stabilization, multiport physical 
models.  

I. INTRODUCTION 

S generally known that nonlinear dynamic systems may 
have, in contrast to linear systems, several balance states 

(singular points) and behavior in their neighborhoods is 
able to distinguish. In this contribution we will show what 
the nonlinear system singular point typical characteristics 
are and how we can affect them. Second part is then 
oriented on chaos and bifurcations principles theory results 
utilization for such way stabilization of inverted pendulum, 
which although its application is known from fourteenth 
century, only chaos theory clarified it. 

II. MATHEMATICAL PENDULUM STABILIZATION BY 
PROXIMAL COUPLING HORIZONTAL MOVEMENT 

Fig.1 shows mathematical pendulum basic type ordering 
connected by proximal kinematic rotating pair to the 
material cart with one freedom degree in global axis x 
direction. 

 
Fig.1 mathematic inverse pendulum ordering on material cart 

     Motional equations of this system are being: 
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As for controllability matrix Q  is 
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 the system is for finite M controllable. 

But as for observability matrix N is 0det N , the system 
isn’t observable. 

Matrix eigenvalues and eigenvectors of linearized system 
are 
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Jordan’s canonical form of system is 
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Corresponding block diagram is 

 
Fig.2 system diagram in Jordan’s form 

From diagram is see, why this system is controllable (all 
state quantities are influence able by input quantity Fext(t)).  

And also why isn't observable. Output, ergo , depends 
only on first two state quantities, so other two state 
quantities aren't „ seen“ in output. 

 
Fig.3 cascade controller diagram pendulum stabilization by force 

of cart movement 

Fig. 3 shows diagram of hereof cart position control (mass 
M) and Fig. 4 shows its physical system multiport model 
including control law. In this model the compartment 
principle is used with released body in plane model with 
two rotational kinematic pairs. 

 
Fig.4 physical model of pendulum stabilization by means of cart 

movement set to the Dynast system [13].   

III. RELEASED BODY DYNAMICS WITH ROTARY KINEMATIC 
PAIRS  

In previous model setting, the model of released stiff body 
with two rotary kinematic pairs was used. Let present 
mentioned compartment description principle od Fig.5. 

What is relation between point A absolute speed 
components and local homogenous coordinates [xA, yA]? 

 

Fig.5 General released body in plane with four rotational 
kinematic pairs. 

For its absolute velocity components (velocity in global 
reference coordinate system) pays: 
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Point A absolute velocity is determinated by two 
components of across variables (velocity)   

ĴvÎvv
yx AAA 

  (where Ĵ,Î  are global axes X0 and Y0 

unitary vectors).  Similarly for other points  B, C, D. 
For across variables the flow variables   (generalized forces 

ĴfÎfF
yx AAA 

 ) appertain (see Fig.5). 

Fig.6 shows time dependencies of cart position, 
mathematical pendulum angle and its deviation from 
vertical position at response on outside perturbative force 
applied in axis x direction on mass m.  

 
Fig.6 cart and pendulum behavior on outside perturbative force 

applied in direction x axis on mass m 

[deg] 
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IV. MATHEMATICAL PENDULUM STABILIZATION BY 
PROXIMAL COUPLING VERTICAL MOVEMENT 

Interesting result will be further mentioned mathematical 
pendulum stabilization by proximal coupling vertical 
movement derived on chaos theory principle. 

 
Fig.7 mathematical pendulum stabilization principle by proximal 

coupling vertical movement 

System ordering is in Fig.7. Proximal joint of mathematical 
pendulum under consideration moves vertically 
harmoniously with certain amplitude and frequency. 

Equation of motion describing existing motion is  
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So, this is Mathieu type’s second-order not-autonomous 
system with periodical matrix of system and by Floquet’s 
theorem is possible to express the solution in the form 

   TPeT Ti                            (9) 

where the exponent  depends on  and  and P(T) is 
periodic function with period . If is real, but not a 
rational number, then (9) is not periodic. If is a rational 
number m

k , then (9) is periodic with period at most 

4.m (but not 2 or 4). If is an integer number then (9) 
is periodic with period 2 or 4). 

From [3] and [4] is possible by  and P(T) evaluation to 
determinate that for  
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the system is stable. 

 
Fig.8 stability zone of inverted mathematical pendulum stabilized 

by proximal coupling vertical movement 

 
Fig.9 pendulum stabilization by means of proximal joint vertical 

movement physical model setting to the Dynast system 

Fig.9 shows model setting to the physical simulation 
environment Dynast. Fig.10 shows mass at the end of 
immaterial arm behavior trajectory in 2D space at initial 
deviation about angle   ;m42.0A;0 6   Proximal 
joint oscillation frequency in y axis direction is two time 
pendulum oscillation frequency. 

 
Fig.10 pendulum stabilization by means of proximal joint 

vertical movement physical model setting to the Dynast 
system 

It's seen, that at sized oscillations amplitude A the 
pendulum begins be circulating around gripping axis.  

At identical amplitude and specific frequency the arm 
oscillates around upper instable position according to 
Fig.11. 

xm[m] 

ym[m] 
Mass m 
 trajectory 

Proximal joint 
 trajectory 


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Fig.11 behavior trajectory of mass at the end of immaterial arm in 

2D space at initial deviation about angle 
  5020   . 

Detailed amplitude size and oscillation frequency reasoning 
and their computation already demonstrate Andrew 
Stephenson [1] in the year 1908. 

V. DOUBLE PHYSICAL PENDULUM STABILIZATION BY 
PROXIMAL COUPLING VERTICAL MOVEMENT 

We introduce next possibility of two physical pendulums 
stabilization bonded by rotary kinematic pair partly with 
each other, partly to vertically moving proximal joint of the 
first of them- Fig . 12.  

 
Fig.12 principle of double physical pendulums' stabilization by 

proximal coupling vertical movement 

Already in the year 1738 Daniel Bernoulli shown, that 
telescopic pendulum (pendulum compound from n rigid 
articles) hung down is able to oscillate with any n natural 
frequencies, where with lowest frequency the pendulum 
articles swing more or less together, practically as if they 
form only one long pendulum and at highest frequency 
subsequently located pendulums oscillate in every instant in 
opposite directions. 

Mathematical model of the system from Fig.12 is 
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Natural frequencies of model linearization in down stable 
position neighborhood are 
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For kg2m,kg08.1m; 2121  lll  we can obtain 
from [3]  
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On Fig.13 is setting of ordering from Fig. 12 to the Dynast 
simulation space. 

 
Fig.13  double physical pendulum stabilization by means of 

proximal joint vertical movement setting as physical 
model to the Dynast system  

Fig.14 shows that both physical pendulums turn, at 
sufficient proximal join movement frequency, around 1st 
and 2nd joint against each other. 

 
Fig.14 double physical pendulum behavior trajectory in 2D space 

at proximal joint high oscillation frequency  

At well select vertical oscillations’ amplitude and frequency 
of the first joint it is possible to stabilize the both arms in 
inverted (upper) position -Fig. 15.  

On Fig. 16 is practical experiment demonstration taken 
over from [8]. 

In fine we state, that mentioned problem is solvable also for 
continuously distributed mass. Mentioned problem is 
described in [6] and Fig.15 taken over [6] shows achieved 
experimental results. 
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Fig.15 double physical pendulum behavior trajectory in 2D space 

at oscillation frequency and amplitude of proximal joint 
ensuring stabilization of both arms 

 
Fig.16 triple physical pendulum practical experiment at 

oscillation frequency and amplitude of proximal joint 
ensuring stabilization of arms 

 
 

 
Fig.17 the experimental demonstration: (a) the sagging buckled 

wire; (b) the stabilized vertical wire; (c) leaning motion 
near the lower-frequency `falling-over’ instability; and (d) 
motion near the higher-frequency dynamic instability. 

Kindly note the [6] title: Indian trick with rope. Perhaps 
is concerned one of the most famous tricks in all of magic 
history: Rope ejected to the air doesn't fall down, but it will 
stay „stand still" in vertical position. The reference about 
this „trick" reaches until fourteenth century. And it is cross-
eyed. Is it really cross - eyed? 

VI. CONCLUSION 

Stated contribution shows mathematical and double 
physical inverse pendulum stabilization possibilities. In the 
first parts is described and simulated as physical model 
generally known inverse mathematical pendulum case 
stabilization by force of proximal joint horizontal 
movement, which is documented by cascade control of 
pendulum angular speed and position by means of cart with 
pendulum proximal joint. 

In the second parts is stated mathematical, physical and 
double physical pendulum stabilization by vertical 
oscillations of proximal joint. Example is simulated by 
means of physical model in Dynast system and so forms 
suitable starting point to the next detailed analysis on chaos 
theory principle and its verification by simulation 
experiments.  
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