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Abstract—Variational principles for magnetohydrodynamics
were introduced by previous authors both in Lagrangian and
Eulerian form. In this paper we introduce simpler Eulerian
variational principles from which all the relevant equations of
non-barotropic stationary magnetohydrodynamics can be derived
for certain field topologies. The variational principle is given in
terms of eight independent functions for stationary barotropic
flows. This is the same as the eight variables which appear in
the standard equations of non-barotropic magnetohydrodynamics
which are the magnetic field ~B the velocity field ~v, the entropy
s and the density ρ.

Index Terms—Magnetohydrodynamics, Variational principles

I. INTRODUCTION

Variational principles for magnetohydrodynamics were in-
troduced by previous authors both in Lagrangian and Eulerian
form. Sturrock [1] has discussed in his book a Lagrangian
variational formalism for magnetohydrodynamics. Vladimirov
and Moffatt [2] in a series of papers have discussed an Eulerian
variational principle for incompressible magnetohydrodynam-
ics. However, their variational principle contained three more
functions in addition to the seven variables which appear in the
standard equations of incompressible magnetohydrodynamics
which are the magnetic field ~B the velocity field ~v and
the pressure P . Kats [3] has generalized Moffatt’s work for
compressible non barotropic flows but without reducing the
number of functions and the computational load. Moreover,
Kats has shown that the variables he suggested can be utilized
to describe the motion of arbitrary discontinuity surfaces
[4], [5]. Sakurai [6] has introduced a two function Eulerian
variational principle for force-free magnetohydrodynamics and
used it as a basis of a numerical scheme, his method is
discussed in a book by Sturrock [1]. A method of solving
the equations for those two variables was introduced by
Yang, Sturrock & Antiochos [8]. Yahalom & Lynden-Bell [9]
combined the Lagrangian of Sturrock [1] with the Lagrangian
of Sakurai [6] to obtain an Eulerian Lagrangian principle for
barotropic magnetohydrodynamics which will depend on only
six functions. The variational derivative of this Lagrangian
produced all the equations needed to describe barotropic mag-
netohydrodynamics without any additional constraints. The
equations obtained resembled the equations of Frenkel, Levich
& Stilman [12] (see also [13]). Yahalom [10] have shown that
for the barotropic case four functions will suffice. Moreover,
it was shown that the cuts of some of those functions [11] are
topological local conserved quantities.
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Previous work was concerned only with barotropic mag-
netohydrodynamics. Variational principles of non barotropic
magnetohydrodynamics can be found in the work of Beken-
stein & Oron [14] in terms of 15 functions and V.A. Kats [3]
in terms of 20 functions. The author of this paper suspect that
this number can be somewhat reduced. Moreover, A. V. Kats in
a remarkable paper [15] (section IV,E) has shown that there
is a large symmetry group (gauge freedom) associated with
the choice of those functions, this implies that the number of
degrees of freedom can be reduced. Yahalom [16] have shown
that only five functions will suffice to describe non barotropic
magnetohydrodynamics in the case that we enforce a Sakurai
[6] representation for the magnetic field. Morrison [7] has
suggested a Hamiltonian approach but this also depends on
8 canonical variables (see table 2 [7]). The work of Yahalom
[16] was concerned with general non-stationary flows. Here
we shall concentrate on the particular but important stationary
flow case and study how the assumptions of stationarity effect
the variational formalism.

We anticipate applications of this study both to linear and
non-linear stability analysis of known non barotropic magne-
tohydrodynamic configurations [22], [24] and for designing
efficient numerical schemes for integrating the equations of
fluid dynamics and magnetohydrodynamics [30], [31], [32],
[33]. Another possible application is connected to obtaining
new analytic solutions in terms of the variational variables
[34].

The plan of this paper is as follows: First we introduce
the standard notations and equations of non-barotropic magne-
tohydrodynamics for the stationary and non-stationary cases.
Next we introduce a generalization of the barotropic varia-
tional principle suitable for the non-barotropic case. Later we
simplify the Eulerian variational principle and formulate it in
terms of eight functions. We conclude by writing down the
appropriate variational principle for the stationary case.

II. STANDARD FORMULATION OF NON-BAROTROPIC
MAGNETOHYDRODYNAMICS

The standard set of equations solved for non-barotropic
magnetohydrodynamics are given below:

∂ ~B

∂t
= ~∇× (~v × ~B), (1)

~∇ · ~B = 0, (2)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (3)

ρ
d~v

dt
= ρ(

∂~v

∂t
+ (~v · ~∇)~v) = −~∇p(ρ, s) +

(~∇× ~B)× ~B

4π
. (4)
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ds

dt
= 0. (5)

The following notations are utilized: ∂
∂t is the temporal

derivative, d
dt is the temporal material derivative and ~∇ has

its standard meaning in vector calculus. ~B is the magnetic
field vector, ~v is the velocity field vector, ρ is the fluid density
and s is the specific entropy. Finally p(ρ, s) is the pressure
which depends on the density and entropy (the non-barotropic
case).

The justification for those equations and the conditions
under which they apply can be found in standard books
on magnetohydrodynamics (see for example [1]). The above
applies to a collision-dominated plasma in local thermody-
namic equilibrium. Such conditions are seldom satisfied by
physical plasmas, certainly not in astrophysics or in fusion-
relevant magnetic confinement experiments. Never the less it
is believed that the fastest macroscopic instabilities in those
systems obey the above equations [11], while instabilities
associated with viscous or finite conductivity terms are slower.
It should be noted that due to a theorem by Bateman [35] every
physical system can be described by a variational principle
(including viscous plasma) the trick is to find an elegant
variational principle usually depending on a small amount of
variational variables. The current work will discuss only ideal
magnetohydrodynamics while viscous magnetohydrodynamics
will be left for future endeavors.

Equation (1) describes the fact that the magnetic field lines
are moving with the fluid elements (”frozen” magnetic field
lines), equation (2) describes the fact that the magnetic field
is solenoidal, equation (3) describes the conservation of mass
and equation (4) is the Euler equation for a fluid in which
both pressure and Lorentz magnetic forces apply. The term:

~J =
~∇× ~B

4π
, (6)

is the electric current density which is not connected to any
mass flow. Equation (5) describes the fact that heat is not
created (zero viscosity, zero resistivity) in ideal non-barotropic
magnetohydrodynamics and is not conducted, thus only con-
vection occurs. The number of independent variables for which
one needs to solve is eight (~v, ~B, ρ, s) and the number of
equations (1,3,4,5) is also eight. Notice that equation (2) is
a condition on the initial ~B field and is satisfied automatically
for any other time due to equation (1). For the stationary case
in which the physical fields do not depend on time we obtain
the following set of stationary equations:

~∇× (~v × ~B) = 0, (7)

~∇ · ~B = 0, (8)

~∇ · (ρ~v) = 0, (9)

ρ(~v · ~∇)~v = −~∇p(ρ, s) +
(~∇× ~B)× ~B

4π
. (10)

~v · ~∇s = 0. (11)

III. VARIATIONAL PRINCIPLE OF NON-BAROTROPIC
MAGNETOHYDRODYNAMICS

In the following section we will generalize the approach of
[9] for the non-barotropic case. Consider the action:

A ≡
∫
Ld3xdt,

L ≡ L1 + L2,

L1 ≡ ρ(
1

2
~v2 − ε(ρ, s)) +

~B2

8π
,

L2 ≡ ν[
∂ρ

∂t
+ ~∇ · (ρ~v)]− ραdχ

dt
− ρβ dη

dt
− ρσds

dt

−
~B

4π
· ~∇χ× ~∇η. (12)

In the above ε is the specific internal energy (internal energy
per unit of mass). The reader is reminded of the following
thermodynamic relations which will become useful later:

dε = Tds− Pd1

ρ
= Tds+

P

ρ2
dρ

∂ε

∂s
= T,

∂ε

∂ρ
=
P

ρ2

w = ε+
P

ρ
= ε+

∂ε

∂ρ
ρ =

∂(ρε)

∂ρ

dw = dε+ d(
P

ρ
) = Tds+

1

ρ
dP (13)

in the above T is the temperature and w is the specific
enthalpy. Obviously ν, α, β, σ are Lagrange multipliers which
were inserted in such a way that the variational principle will
yield the following equations:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0,

ρ
dχ

dt
= 0,

ρ
dη

dt
= 0.

ρ
ds

dt
= 0. (14)

It is not assumed that ν, α, β, σ are single valued. Provided ρ
is not null those are just the continuity equation (3), entropy
conservation and the conditions that Sakurai’s functions are
comoving. Taking the variational derivative with respect to ~B
we see that

~B = ~̂B ≡ ~∇χ× ~∇η. (15)

Hence ~B is in Sakurai’s form and satisfies equation (2). It
can be easily shown that provided that ~B is in the form given
in equation (15), and equations (14) are satisfied, then also
equation (1) is satisfied.

For the time being we have showed that all the equations of
non-barotropic magnetohydrodynamics can be obtained from
the above variational principle except Euler’s equations. We
will now show that Euler’s equations can be derived from the
above variational principle as well. Let us take an arbitrary
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variational derivative of the above action with respect to ~v,
this will result in:

δ~vA =

∫
dt{
∫
d3xdtρδ~v · [~v − ~∇ν − α~∇χ− β~∇η − σ~∇s]

+

∮
d~S · δ~vρν +

∫
d~Σ · δ~vρ[ν]}. (16)

The integral
∮
d~S · δ~vρν vanishes in many physical scenarios.

In the case of astrophysical flows this integral will vanish
since ρ = 0 on the flow boundary, in the case of a fluid
contained in a vessel no flux boundary conditions δ~v · n̂ = 0
are induced (n̂ is a unit vector normal to the boundary). The
surface integral

∫
d~Σ on the cut of ν vanishes in the case

that ν is single valued and [ν] = 0 as is the case for some
flow topologies. In the case that ν is not single valued only
a Kutta type velocity perturbation [32] in which the velocity
perturbation is parallel to the cut will cause the cut integral
to vanish. An arbitrary velocity perturbation on the cut will
indicate that ρ = 0 on this surface which is contradictory to
the fact that a cut surface is to some degree arbitrary as is
the case for the zero line of an azimuthal angle. We will show
later that the ”cut” surface is co-moving with the flow hence it
may become quite complicated. This uneasy situation may be
somewhat be less restrictive when the flow has some symmetry
properties.

Provided that the surface integrals do vanish and that δ~vA =
0 for an arbitrary velocity perturbation we see that ~v must have
the following form:

~v = ~̂v ≡ ~∇ν + α~∇χ+ β~∇η + σ~∇s. (17)

The above equation is reminiscent of Clebsch representation in
non magnetic fluids [36], [37]. Let us now take the variational
derivative with respect to the density ρ we obtain:

δρA =

∫
d3xdtδρ[

1

2
~v2 − w − ∂ν

∂t
− ~v · ~∇ν]

+

∫
dt

∮
d~S · ~vδρν +

∫
dt

∫
d~Σ · ~vδρ[ν]

+

∫
d3xνδρ|t1t0 . (18)

In which w = ∂(ερ)
∂ρ is the specific enthalpy. Hence provided

that
∮
d~S · ~vδρν vanishes on the boundary of the domain and∫

d~Σ · ~vδρ[ν] vanishes on the cut of ν in the case that ν is
not single valued1 and in initial and final times the following
equation must be satisfied:

dν

dt
=

1

2
~v2 − w, (19)

Since the right hand side of the above equation is single valued
as it is made of physical quantities, we conclude that:

d[ν]

dt
= 0. (20)

Hence the cut value is co-moving with the flow and thus the
cut surface may become arbitrary complicated. This uneasy

1Which entails either a Kutta type condition for the velocity in contradiction
to the ”cut” being an arbitrary surface, or a vanishing density perturbation on
the cut.

situation may be somewhat be less restrictive when the flow
has some symmetry properties.

Finally we have to calculate the variation with respect to
both χ and η this will lead us to the following results:

δχA=

∫
d3xdtδχ[

∂(ρα)

∂t
+ ~∇ · (ρα~v)− ~∇η · ~J ]

+

∫
dt

∮
d~S · [

~B

4π
× ~∇η − ~vρα]δχ

+

∫
dt

∫
d~Σ · [

~B

4π
× ~∇η − ~vρα][δχ]

−
∫
d3xραδχ|t1t0 , (21)

δηA=

∫
d3xdtδη[

∂(ρβ)

∂t
+ ~∇ · (ρβ~v) + ~∇χ · ~J ]

+

∫
dt

∮
d~S · [~∇χ×

~B

4π
− ~vρβ]δη

+

∫
dt

∫
d~Σ · [~∇χ×

~B

4π
− ~vρβ][δη]

−
∫
d3xρβδη|t1t0 . (22)

Provided that the correct temporal and boundary conditions are
met with respect to the variations δχ and δη on the domain
boundary and on the cuts in the case that some (or all) of
the relevant functions are non single valued. we obtain the
following set of equations:

dα

dt
=
~∇η · ~J
ρ

,
dβ

dt
= −

~∇χ · ~J
ρ

, (23)

in which the continuity equation (3) was taken into account.
By correct temporal conditions we mean that both δη and δχ
vanish at initial and final times. As for boundary conditions
which are sufficient to make the boundary term vanish on can
consider the case that the boundary is at infinity and both
~B and ρ vanish. Another possibility is that the boundary is
impermeable and perfectly conducting. A sufficient condition
for the integral over the ”cuts” to vanish is to use variations
δη and δχ which are single valued. It can be shown that χ
can always be taken to be single valued, hence taking δχ to be
single valued is no restriction at all. In some topologies η is
not single valued and in those cases a single valued restriction
on δη is sufficient to make the cut term null.

Finally we take a variational derivative with respect to the
entropy s:

δsA=

∫
d3xdtδs[

∂(ρσ)

∂t
+ ~∇ · (ρσ~v)− ρT ]

+

∫
dt

∮
d~S · ρσ~vδs−

∫
d3xρσδs|t1t0 , (24)

in which the temperature is T = ∂ε
∂s . We notice that according

to equation (17) σ is single valued and hence no cuts are
needed. Taking into account the continuity equation (3) we
obtain for locations in which the density ρ is not null the
result:

dσ

dt
= T, (25)

provided that δsA vanished for an arbitrary δs.
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IV. EULER’S EQUATIONS

We shall now show that a velocity field given by equation
(17), such that the equations for α, β, χ, η, ν, σ, s satisfy the
corresponding equations (14,19,23,25) must satisfy Euler’s
equations. Let us calculate the material derivative of ~v:

d~v

dt
=

d~∇ν
dt

+
dα

dt
~∇χ+ α

d~∇χ
dt

+
dβ

dt
~∇η + β

d~∇η
dt

+
dσ

dt
~∇s+ σ

d~∇s
dt

. (26)

It can be easily shown that:

d~∇ν
dt

= ~∇dν
dt
− ~∇vk

∂ν

∂xk
= ~∇(

1

2
~v2 − w)− ~∇vk

∂ν

∂xk
,

d~∇η
dt

= ~∇dη
dt
− ~∇vk

∂η

∂xk
= −~∇vk

∂η

∂xk
,

d~∇χ
dt

= ~∇dχ
dt
− ~∇vk

∂χ

∂xk
= −~∇vk

∂χ

∂xk
,

d~∇s
dt

= ~∇ds
dt
− ~∇vk

∂s

∂xk
= −~∇vk

∂s

∂xk
. (27)

In which xk is a Cartesian coordinate and a summation
convention is assumed. Inserting the result from equations
(27,14) into equation (26) yields:

d~v

dt
= −~∇vk(

∂ν

∂xk
+ α

∂χ

∂xk
+ β

∂η

∂xk
+ σ

∂s

∂xk
)

+ ~∇(
1

2
~v2 − w) + T ~∇s

+
1

ρ
((~∇η · ~J)~∇χ− (~∇χ · ~J)~∇η)

= −~∇vkvk + ~∇(
1

2
~v2 − w) + T ~∇s

+
1

ρ
~J × (~∇χ× ~∇η)

= −
~∇p
ρ

+
1

ρ
~J × ~B. (28)

In which we have used both equation (17) and equation (15)
in the above derivation. This of course proves that the non-
barotropic Euler equations can be derived from the action
given in equation (12) and hence all the equations of non-
barotropic magnetohydrodynamics can be derived from the
above action without restricting the variations in any way
except on the relevant boundaries and cuts.

V. SIMPLIFIED ACTION

The reader of this paper might argue here that the paper is
misleading. The author has declared that he is going to present
a simplified action for non-barotropic magnetohydrodynamics
instead he added six more functions α, β, χ, η, ν, σ to the
standard set ~B,~v, ρ, s. In the following I will show that this is
not so and the action given in equation (12) in a form suitable
for a pedagogic presentation can indeed be simplified. It is

easy to show that the Lagrangian density appearing in equation
(12) can be written in the form:

L = −ρ[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s

∂t
+ ε(ρ, s)]

+
1

2
ρ[(~v − ~̂v)2 − (~̂v)2]

+
1

8π
[( ~B − ~̂B)2 − ( ~̂B)2] +

∂(νρ)

∂t
+ ~∇ · (νρ~v).(29)

In which ~̂v is a shorthand notation for ~∇ν+α~∇χ+β~∇η+σ~∇s
(see equation (17)) and ~̂B is a shorthand notation for ~∇χ× ~∇η
(see equation (15)). Thus L has four contributions:

L = L̂+ L~v + L ~B + Lboundary,

L̂ ≡ −ρ
[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s

∂t

+ ε(ρ, s) +
1

2
(~∇ν + α~∇χ+ β~∇η + σ~∇s)2

]
− 1

8π
(~∇χ× ~∇η)2

L~v ≡ 1

2
ρ(~v − ~̂v)2,

L ~B ≡ 1

8π
( ~B − ~̂B)2,

Lboundary ≡ ∂(νρ)

∂t
+ ~∇ · (νρ~v). (30)

The only term containing ~v is2 L~v , it can easily be seen that
this term will lead, after we nullify the variational derivative
with respect to ~v, to equation (17) but will otherwise have no
contribution to other variational derivatives. Similarly the only
term containing ~B is L ~B and it can easily be seen that this
term will lead, after we nullify the variational derivative, to
equation (15) but will have no contribution to other variational
derivatives. Also notice that the term Lboundary contains only
complete partial derivatives and thus can not contribute to
the equations although it can change the boundary conditions.
Hence we see that equations (14), equation (19), equations
(23) and equation (25) can be derived using the Lagrangian
density:

L̂[α, β, χ, η, ν, ρ, σ, s] = −ρ[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s

∂t

+ ε(ρ, s) +
1

2
(~∇ν + α~∇χ+ β~∇η + σ~∇s)2]

− 1

8π
(~∇χ× ~∇η)2 (31)

in which ~̂v replaces ~v and ~̂B replaces ~B in the relevant
equations. Furthermore, after integrating the eight equations
(14,19,23,25) we can insert the potentials α, β, χ, η, ν, σ, s into
equations (17) and (15) to obtain the physical quantities ~v and
~B. Hence, the general non-barotropic magnetohydrodynamic
problem is reduced from eight equations (1,3,4,5) and the
additional constraint (2) to a problem of eight first order (in
the temporal derivative) unconstrained equations. Moreover,
the entire set of equations can be derived from the Lagrangian
density L̂.

2Lboundary also depends on ~v but being a boundary term is space and
time it does not contribute to the derived equations
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VI. STATIONARY NON-BAROTROPIC
MAGNETOHYDRODYNAMICS

Stationary flows are a unique phenomena of Eulerian fluid
dynamics which has no counter part in Lagrangian fluid
dynamics. The stationary flow is defined by the fact that
the physical fields ~v, ~B, ρ, s do not depend on the temporal
coordinate. This, however, does not imply that the corre-
sponding potentials α, β, χ, η, ν, σ are all functions of spatial
coordinates alone. Moreover, it can be shown that choosing
the potentials in such a way will lead to erroneous results in
the sense that the stationary equations of motion can not be
derived from the Lagrangian density L̂ given in equation (30).
However, this problem can be amended easily as follows. Let
us choose α, β, χ, ν, σ to depend on the spatial coordinates
alone. Let us choose η such that:

η = η̄ − t, (32)

in which η̄ is a function of the spatial coordinates. The
Lagrangian density L̂ given in equation (30) will take the form:

L̂ = ρ(β − ε(ρ, s))− 1

2
ρ(~∇ν + α~∇χ+ β~∇η̄ + σ~∇s)2

− 1

8π
(~∇χ× ~∇η̄)2. (33)

The above functional can be compared with Vladimirov and
Moffatt [2] equation 6.12 for incompressible flows in which
their I is analogue to our β. Notice however, that while β is
not a conserved quantity I is.

Varying the Lagrangian L̂ =
∫
L̂d3x with respect to

ν, α, β, χ, η, ρ, σ, s leads to the following equations:

~∇ · (ρ~̂v) = 0,

ρ~̂v · ~∇χ = 0,

ρ(~̂v · ~∇η̄ − 1) = 0,

~̂v · ~∇α =
~∇η̄ · ~̂J
ρ

,

~̂v · ~∇β = −
~∇χ · ~̂J
ρ

,

β =
1

2
~̂v
2

+ w,

ρ~̂v · ~∇s = 0,

ρ~̂v · ~∇σ = ρT. (34)

Calculations similar to the ones done in previous subsections
will show that those equations lead to the stationary non-
barotropic magnetohydrodynamic equations:

~∇× (~̂v × ~̂B) = 0, (35)

ρ(~̂v · ~∇)~̂v = −~∇p(ρ, s) +
(~∇× ~̂B)× ~̂B

4π
. (36)

VII. CONCLUSION

It is shown that stationary non-barotropic magnetohydrody-
namics can be derived from a variational principle of eight
functions.

Possible applications include stability analysis of stationary
magnetohydrodynamic configurations and its possible utiliza-
tion for developing efficient numerical schemes for integrating
the magnetohydrodynamic equations. It may be more efficient
to incorporate the developed formalism in the frame work
of an existing code instead of developing a new code from
scratch. Possible existing codes are described in [17], [18],
[19], [20], [21]. I anticipate applications of this study both
to linear and non-linear stability analysis of known barotropic
magnetohydrodynamic configurations [22], [23], [24]. I sus-
pect that for achieving this we will need to add additional
constants of motion constraints to the action as was done
by [25], [26] see also [27], [28], [29]. As for designing
efficient numerical schemes for integrating the equations of
fluid dynamics and magnetohydrodynamics one may follow
the approach described in [30], [31], [32], [33].

Another possible application of the variational method is in
deducing new analytic solutions for the magnetohydrodynamic
equations. Although the equations are notoriously difficult to
solve being both partial differential equations and nonlinear,
possible solutions can be found in terms of variational vari-
ables. An example for this approach is the self gravitating
torus described in [34].

One can use continuous symmetries which appear in the
variational Lagrangian to derive through Noether theorem new
conservation laws. An example for such derivation which still
lacks physical interpretation can be found in [38]. It may be
that the Lagrangian derived in [10] has a larger symmetry
group. And of course one anticipates a different symmetry
structure for the non-barotropic case.

Topological invariants have always been informative, and
there are such invariants in MHD flows. For example the two
helicities have long been useful in research into the problem
of hydrogen fusion, and in various astrophysical scenarios. In
previous works [9], [11], [40] connections between helicities
with symmetries of the barotropic fluid equations were made.
The variables of the current variational principles are helpful
for identifying and characterizing new topological invariants
in MHD [41], [42].
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