
 

 

  
Abstract— Folded cores are a not so common kind of sandwich 

core materials. These folded core structures have properties that make 
a more detailed examination advisable. Especially some properties 
make them particularly interesting for the aviation industry. This 
contribution gives an overview of the possible applications of folded 
core structures. By applying a numerical homogenisation method 
mechanical properties of folded sandwich cores are identified. For a 
selected type of folded core the properties are exemplarily 
determined. The shown homogenisation procedure is applicable to 
other types of sandwich cores as well. The mechanical properties 
presented in this contribution will be similar for other kinds of folded 
sandwich cores. 
 

Keywords—auxetic material, folded core, homogenisation, 
effective properties.  

I. INTRODUCTION 

N many fields of engineering sandwich structures  are quite 
common due to their superior characteristics in regard of 

effective stiffness and strength. This is in particular the case in 
aerospace engineering, but also in truck manufacturing, in 
shipbuilding and meanwhile also in civil engineering.   

The typical sandwich structure is a three-layer structure, 
with two thin outer face sheets and a thicker core. In general 
the face sheets are of a relatively dense, stiff and strong 
material whereas the core is of low effective density, with high 
compliance and low strength. In aerospace industry typical 
cores are hard foams, honeycomb or balsa wood.  

II. FOLDED SANDWICH CORES AND POSSIBLE APPLICATIONS 
Folded cores are a relatively novel kind of sandwich core 

structures. The core is manufactured by folding a planar base 
material into a three-dimensional structure. This process 
enables several geometric shapes of folded cores. Figure 1 
shows two examples manufactured by the Institut für 
Flugzeugbau Stuttgart.  

 
 

Folded cores have different advantages over other core 
materials. Finally, the folded cores can be manufactured by 
means of a continuous folding process. Compared to common 
honeycomb production processes a folded core can be 
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manufactured cost-efficiently as shown in [1]. Folded cores 
can be made from different bulk materials e.g. aramid paper, 
aluminium, CFRP. Secondly, the geometry of the different 
folded core cells can be variable. Thereby cores with varying 
thickness or curved structures can be produced without post-
processing [2]. 

 

 

Fig. 1: Different kinds of folded sandwich cores 

 
Another advantage, particularly for the aerospace industry, 

is that the folded core is open and can be ventilated (figure 2). 
The use of closed cell sandwich structures like honeycomb is 
problematic for exterior structural components. There is the 
problem of the diffusion-induced penetration of moisture and 
condensation of water. The water can be discharged only 
poorly. By using ventilated folded cores the problem could be 
solved [1]. 

 

Fig. 2: Ventilation of the folded sandwich core 

 
The possibility to ventilate the folded sandwich core also 

enables boundary layer suction. The channels of the folded 
core could be used for the suction (figure 3). In chordwise 
direction, the pressure in the folded core can be controlled by 
differently sized holes [3]. 
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Fig. 3: Boundary layer suction by using folded sandwich core [4] 

 
Another possible area of application is stealth technology. 

Folded cores have groups of faces sloped at an angle to the 
radiation source, where at the same time the outer skin can be 
positioned orthogonally to it. Furthermore, by re-reflecting the 
signal will lose its intensity [5]. The principle of operation is 
shown in figure 4. 

 

 

Fig. 4: Reflection of radar signal [5] 

III. HOMOGENISATION CONCEPT 
In order to use and analyse folded sandwich cores in real 

structural components the mechanical properties should be 
known. There are some publications about the mechanical 
properties of folded cores. Especially the behaviour under 
compression and shear loads [6], [7], [8] as well as the impact 
behaviour [9], [10] were investigated. All of these 
investigations however are restricted to a few geometries. 
There is no consideration of the general mechanical behaviour 
and the influence of the underlying geometric parameters. In 
this contribution all components of the elasticity tensor of the 
foldcore continuum are determined by using a numerical 
homogenisation concept. Furthermore, a wide range of 
different geometric shapes is examined.  

The folded sandwich core consists of periodical wave 
elements. For modelling only one wave element is used as a 
representative volume element (RVE). It is assumed that the 
characteristic length L of the macro-scale structure is much 
larger than the characteristic length l of the considered RVE 
(l<<L) [11]. In order to determine the effective stiffness of the 
folded core a strain energy homogenisation concept is used 
[12]. In this method the assumption is made, that the RVE and 

a corresponding effective homogenised medium (EHM), with 
yet unknown properties, are equivalent, if a macroscopically 
equivalent deformation state leads to the same strain energy in 
both elements. This equivalent element is a homogeneous 
volume with the same shape and boundary condition as the 
RVE (see Fig. 5). The strain energy requires 
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where U denotes the strain energy density in the core 
structure and U* the strain energy density in the equivalent 
homogenised medium. The equivalence of the deformation 
state for the elements necessitates 
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with the deformation gradient Fij. 
 

 

Fig. 5: Homogenisation concept for the folded core 

 
On the outer surface of the representative volume element 

periodic boundary conditions are applied. This requires that 
the relative displacement between two points on opposite 
surfaces of the element is equal. This ensures that the periodic 
repetition of the cell is also possible in the deformed 
configuration. The effective Green-Lagrange strain tensor can 
be expressed by the deformation gradient 

 and it can be shown, that the effective 
strain tensor can be derived directly from the prescribed 
displacements of the corner nodes, if the translatoric and 
rotatory rigid body motion of the volume element is 
suppressed. Consequently for the determination of the 
effective material properties of the homogeneous medium only 
the displacement values at the corner nodes need to be 
analysed. 

IV. IMPLEMENTATION OF THE HOMOGENISATION CONCEPT 
The numerical homogenisation is carried out with the finite 

element software ABAQUS. The model is generated with a 
PYTHON script. Also the analysis of the output data is done 
with the help of the PYTHON script. The folded core 
geometry has been generated in a parameterized form.  
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Fig. 6: Geometric parameters of the folded core 

 
One wave element can be described by six geometric 

parameters (see Fig 6), namely length a, length b, length c, 
height h, the included angle α between edge a and edge b and 
the sheet thickness t. As starting values, the dimensions of an 
existing folded core (Fig.1 b, Fig. 2) are used with the 
following data: a = 14 mm, b = 24 mm, c = 5 mm, α = 65°, h = 
19 mm and t = 0,75 mm. Due to the parameterization of the 
geometry, a wide selection of different configurations can be 
examined. For the range of parameters, there are limitations 
due to geometry. If the height of the folded core is zero, it 
becomes a flat plate. On the other hand the maximum height is 
calculated according to the equation: 

         (3) 
 

The foldcore is meshed with 4-node shell elements (S4) 
from the ABAQUS element library. The mesh is structured so 
that every node on the surface of the RVE has an opposite 
node that differs in only one coordinate.  

 
 

Fig. 7:  The highlighted nodes of the mesh are used for the periodic 
boundary conditions. 

 
By using equality constraints, periodic boundary conditions 

are implemented for all nodes on the outer surface of the RVE. 
At the corners of the volume “master nodes” are created.  

All nodes on the outer surface are coupled with these 
“master nodes” by periodic boundary conditions of the 
following kind. 

  
                  (4)

 Therein, ui are the translatory and the rotatory degress of 

freedom, k+ and k- denote corresponding nodes on opposite 
faces and * indicates the “master nodes” [13]. 

Thereby, the entire RVE can be deformed by displacements 
only of the master nodes. To determine all values of the 
elasticity tensor, it is necessary to perform three simulated 
“elongation tests” (see Fig. 8(a)) and three simulated “shear 
deformation tests” (see Fig. 8(b)) for each geometry. 

 

  
(a) Uniaxial strain deformation in 

3 direction 
(b) Shear deformation in 23 

direction 

Fig. 8: Determination of the effective elasticity tensor by prescribed 
strain states. 

V. EFFECTIVE ELASTIC STIFFNESSES 
By means of the implemented homogenisation procedure all 

components of the elasticity tensor could be determined for a 
family of folded core configurations in a straightforward 
manner with high efficiency and generality. In doing so, the 
effective stiffnesses have been determined in dependence of 
the introduced parameters a, b, c, α, h, and t. As shown in Fig. 
8 all results apply to the core without face sheets. The folded 
core exhibits an effective orthotropic material behaviour 
which can be expressed as:  
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  (5) 

 
Due to the effective orthotropic behaviour, it is possible to 

express the components of the stiffness tensor by the 
engineering 
constants 1E , 2E , 3E , 23G , 13G , 12G , 12ν , 13ν , 21ν , 23ν , 31ν an
d 32ν . 

A. Variation of the height h 
In Figs. 11-22, parametric dependences of the engineering 

constants are presented for three different angles α and 
different heights h. The maximum height h is obtained from 
Eq. (3). With the variation of the height h the orientation of 
the faces of the folded core varies as well. Fig. 9 shows the 
variation of the shape for different heights h.  
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Fig. 9: Variation of the shape for different heights h 

 
For each combination of the geometric parameters, 

respectively six simulations were executed, to determine all 
engineering constants. As might be expected, the effective 
engineering constants depend on the orientation of the faces in 
the RVE and the relative volume. The relative volume is 
defined as the ratio of the sheet volume to the RVE. There are 
two limiting cases for the variation of the height h. For the 
case that h is zero, the folded core becomes a flat sheet in the 
1,2-plane. For the case that h is the maximum height, the faces 
between edge a and edge b get oriented in the 2,3-plane. These 
limiting cases are only theoretical cases and can only be 
approximated with the model. 

The effects of the shape can be seen particularly well in 
Young’s modulus E2 (see Fig. 12). For very small heights 
Young’s modulus converges against the material stiffness, 
because the faces of the folded core are almost in the 1,2-plane 
and the RVE corresponds to the volume of the sheet. For 
increasing height Young’s modulus decreases, because the 
relative volume decreases and the orientation of the faces 
deviates from the 1,2-plane. If the height approaches the 
maximum height h Young’s modulus again increases because 
the faces between edge a and edge b get orientated in the 2,3-
plane. 

Young’s modulus E1 (see Fig. 11) starts near the bulk 
material stiffness, because the faces of the folded core are 
almost in the 1,2-plane. Young’s modulus E1 decreases for 
increasing height, because the faces of the folded core move 
out of the 1,2-plane. The reverse behaviour can be observed 
for Young’s modulus E3 (see Fig. 13). Young’s modulus E3 
increases for increasing height h, because the faces of the 
folded core move in the 2,3-direction. 

The shear modulus G12 (see Fig. 14) starts near the material 
shear stiffness, because the faces of the folded core are almost 
in the 1,2-plane. The shear modulus G12 decreases for 
increasing height h, because the faces of the folded core move 
out of the 1,2 plane. The reverse behaviour can be observed 
for the shear modulus G23 (Fig. 15). The shear modulus 
increases for increasing height h, because the faces between a 
and c of the folded core move in the 2,3-plane. 

A distinctive feature of the folded core is that the effective 
Poisson’s ratios for some combinations of parameters can be 
very large compared to isotropic materials. For small heights 
the Poisson’s ratios 13ν and 12ν  become exceptionally large. 
Large values can be observed for large heights for the 
Poisson’s ratios 31ν  and 32ν , too. The reason for such unusual 
values is that the effective Poisson’s ratios are dominated by 
the geometry. The folded core has a behaviour like a gearing 
mechanism. It is important to remember that only the 

behaviour of the core was examined without facesheets which 
would hinder such core behaviour. 

Furthermore the effective Poisson’s ratios 12ν and 21ν can 
be negative. Figs. 21-22 show the variation of 12ν  and 21ν  for 
different angles α. For a height h near zero Poisson’s ratios are 
positive, in the extreme case h = 0 it would be the material 
Poisson’s ratio. For increasing height h the Poisson’s ratio 12ν  
becomes negative. Heuristically, this can be explained by a 
gearing mechanism of the foldcore structure as it is illustrated 
by the series of fold-configurations in the respective figures. A 
material with this kind of behaviour is called auxetic. This 
kind of behaviour means that under uniaxial tensile behaviour 
in the 1-direction there will be an elongation also in the 2-
direction. 

 

 

 
 

Fig. 10: Relative volume as function of core height 
 
 

 
 

Fig. 11: Young’s modulus E1 as function of core height 
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Fig. 12: Young’s modulus E2 as function of core height 

 
 

 

Fig. 13: Young’s modulus E3 as function of core height 

 
 

 
 

Fig. 14: Shear modulus G12 as function of core height 

 
 

 

Fig. 15: Shear modulus G23 as function of core height 

 
 

 
 

Fig. 16: Shear modulus G13 as function of core height 
 

       
Fig. 17: Poisson’s ratio 13ν as function of core height 
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Fig. 18: Poisson’s ratio 23ν  as function of core height 

 
 

 
 

Fig. 19: Poisson’s ratio 31ν  as function of core height 
 
 

 
 

Fig. 20: Poisson’s ratio 32ν  as function of core height 

 
 

 

Fig. 21: Poisson’s ratio 12ν  as function core height 

 
 

 

Fig. 22: Poisson’s ratio 21ν  as function of core height 

B. Variation of the angle α 
In Figs. 24-36, parametric dependences of the engineering 

constants are presented for four different heights h and 
different angles α. The maximum angle α is 90° and the 
minimum angle α is obtained by: 

 

        (4) 
 
 With the variation of the angle α the orientation of the faces 

of the folded core varies as well. Fig. 23 shows the variation 
of the shape for different angles α. The variation of the angle 
results in a significant change in the shape of the folded core. 
For the limiting angle α = 90°, the core becomes a prismatic 
wave. 
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Fig. 23: Variation of the shape for different angles 

 
Again, for each combination of the parameters, all 

engineering constants are determined. Also in the variation of 
the angle, the constants depend on the orientation of the faces 
in the RVE. The change of the relative volume has not such an 
important influence in the study before.  

Young’s modulus E1 (see Fig. 24) starts at a low relative 
stiffness and increases with increasing angle α. This behaviour 
can be explained by the variation of the shape shown in      
Figure 23. At a small angle, the surfaces are mainly oriented in 
the 2 direction. With increasing angle α, the faces of the 
folded core change the orientation to the 1-direction. In the 
limiting case α = 90° all faces are orientated in the 1-direction. 

Young’s modulus E2 (see Fig. 25) shows the opposite 
behaviour as Young’s modulus E1. The explanation is the 
same argumentation as before. Because of the variation of the 
angle α the faces change their orientations. In the limiting case 
α = 90° all faces are orientated in the 1-direction and Young’s 
modulus E2 reaches the lowest value.    

Young’s modulus E3 (see Fig. 26) shows a decreasing 
behaviour for an increasing angle α. The reason for this 
behaviour is the orientation of the rhomboid shaped faces of 
the folded core. For the case of a small angle α these faces are 
almost in 3-direction. For an increasing angle α the faces 
move out of the 3-direction.  

The shear modulus G12 (see Fig. 27) and shear modulus G13 
(see Fig. 28) increase with increasing angle α. For smaller 
angles α  the slope of the graph is very steep. The reason is 
that in this range a small change of the angle α causes a bigger 
variation of the shape of the folded core. The shear modulus 
G23 (see Fig. 29) decreases for increasing angle α. This can be 
explained, because the faces of the folded core move out of 
the 2,3-plane. 

Again, Poisson’s ratios of the folded core are large 
compared to isotropic materials. But there are not such 
extreme values for the Poisson’s ratios v13 and v23. The reason 
for this less extreme behaviour in the case of variation of the 
angle α in comparison of the variation of the height h is, that 
the variation of the core shape is not that much. 

The reason for such unusual values is that the effective 
Poisson’s ratios are dominated by the geometry. The folded 
core has a behaviour like a gearing mechanism. It is important 
to remember that only the behaviour of the core was examined 
without facesheets which would hinder such core behaviour. 

Furthermore the effective Poisson’s ratios v12 and v21 can be 
negative. Figs. 30 and 32 show the variation of v12 and v21 for 
the variation of the angles α. For a range of the angle α  
Poisson’s ratios are negative. Heuristically, this can be 
explained by a gearing mechanism of the foldcore structure as 

it is illustrated figure 23.  
 

 

Fig. 24: Young’s modulus E1 as function of the angle α 

 

  

Fig. 25: Young’s modulus E1 as function of the angle α 

  

      

Fig. 26: Young’s modulus E3 as function of the angle α 
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Fig. 27: Shear modulus G12 as function of angle α 

 

 

Fig. 28: Shear modulus G13 as function of angle α 

 

 

Fig. 29: Shear modulus G23 as function of the angle α 

 

 

Fig. 30: Poisson’s ratio  as function of the angle α 

 

 

Fig. 31: Poisson’s ratio  as function of the angle α 

 

 

Fig. 32: Poisson’s ratio  as function of the angle α 
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Fig. 33: Poisson’s ratio  as function of the angle α 

 

Fig. 34: Poisson’s ratio  as function of the angle α 

 

 

Fig. 35: Poisson’s ratio  as function of the angle α 

VI. CONCLUSION 
In many fields of modern lightweight constructions 

sandwich structures play an increasingly important role. By 
using folded core structures instead of common sandwich 
structures it is possible to avoid disadvantages like 
accumulated water in closed cells. Special applications like 
boundary layer suction or stealth technology are conceivable. 

By the concept of a representative volume element and by 
the techniques of homogenisation the effective elastic 
properties of a sandwich core can be identified. The effective 
mechanical properties of an example of one type of folded 
core were determined for the variation of the height h and for 
the variation of the angle α. These two parameters were varied 
within a wide range. A technically useful range is much 
smaller, but for extreme cases of the geometry the folded core 
has astonishing properties. The foldcore exhibits two amazing 
effective mechanical properties, namely very large Poisson’s 
ratios and negative Poisson’s ratios.  
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