
 

 

  
Abstract—In this work a numerical investigation of aeroelastic 

phenomena for long-span bridge decks is proposed: a simulation 
model is presented by which the aerodynamic fields and the motion 
of the structure are simulated simultaneously and in a coupled 
manner. The structure is represented as a bidimensional elastically 
suspended rigid body with two degrees of freedom, and the 
aerodynamic fields are simulated by numerically integrating the ALE 
formulated 2D URANS equations with a finite volume scheme on 
moving grids which adapt to the structural motion. The numerical 
model is validated by the comparison between numerical and 
experimental results, and is utilised to study the aeroelastic stability 
of the Forth Road Bridge deck. A deep insight into the onset and the 
amplification mechanisms of coupled flutter for long span bridge 
decks is proposed. The numerical model is also used to test the 
effectiveness of a small aerodynamic modification on the aeroelastic 
stability of the deck. 
 

Keywords—Bridge aeroelasticity, finite volume, moving grids, 
turbulence modelling.  

I. INTRODUCTION 
LUTTER is an oscillatory aero-elastic phenomenon to 
which long-span bridge decks are prone. Once the 

instability is triggered, the amplitudes of oscillation increase 
fast and the bridge deck is rapidly driven to collapse [1]. 
Torsional flutter can affect bridge decks with bluff cross-
section, as it has been seen in the case of the Tacoma Narrows 
Bridge deck, and its physical mechanism has been widely 
investigated by many research groups. It has been recognized 
that the key to the torsion instability mechanism is the 
formation and drift of large-scale vortices on the cross-section 
of the deck [2, 3]. Coupled (torsional-flexural) flutter can 
involve bridge deck with streamlined cross-section. The risk of 
coupled flutter is significant if the torsional natural frequency 
is only slightly larger than the vertical natural frequency, 
which is usually the case of long-span bridge decks [4]. Bridge 
deck coupled flutter has been experimentally investigated in 
[5]. The latter authors distinguish a torsional-branch (TB) 
 

G. Cannata is with the Department of Civil, Constructional and 
Environmental Engineering, “Sapienza” University of Rome, Via Eudossiana, 
18, 00184 Rome, (corresponding author to provide phone: +39 0644585062; 
e-mail: giovanni.cannata@uniroma1.it).  

L. Barsi is with the Department of Civil, Constructional and 
Environmental Engineering, “Sapienza” University of Rome, Via Eudossiana, 
18, 00184 Rome, (e-mail: luca.barsi@uniroma1.it).  

F. Gallerano is with the Department of Civil, Constructional and 
Environmental Engineering, “Sapienza” University of Rome, Via Eudossiana, 
18, 00184 Rome, (e-mail: francesco.gallerano@uniroma1.it). 

coupled flutter and a heaving-branch (HB) coupled flutter. TB 
coupled flutter looks like a fundamentally torsional motion, 
with the rotational axis at a certain point apart from mid-chord 
point. HB coupled flutter looks like a mainly heaving motion 
with large amplitude, accompanied by a torsional motion with 
small amplitude. 

The identification of the critical flutter wind velocity of 
bridge decks is usually performed by means of the Scanlan 
method [6]. In this method, which rests on the assumption of 
sinusoidal oscillations, the forces produced by the 
aerodynamic fields on the deck are modelled as linear 
functions of the structural displacements. This is accomplished 
by using a set of parameters, named flutter derivatives, which 
can be either estimated numerically and experimentally. As 
underlined in [7] and [1], the linear relationship between the 
aerodynamic forces and the structural displacements turns out 
to be adequate only if the deck oscillations have small 
amplitudes. The same authors stress that this linear 
relationship does not permit to consider the effects of the 
unsteady vortices generated by the wind-structure interaction. 

By contrast, many authors [4, 8-10] identify the critical 
flutter wind velocity by the free motion procedure. In this 
procedure, the aerodynamic fields and the structural motion 
are simultaneously and jointly simulated, so that the 
aeroelastic stability is verified for various wind speeds 
directly. According to this procedure, the pressure and velocity 
fluid fields that develop around the structure at every instant 
are simulated; starting from the aerodynamic pressures, the lift 
force and the twisting moment acting on the structure at every 
instant are computed; once the above-mentioned aerodynamic 
forces are known, the structural displacements are calculated; 
these displacements, in turn, modify the computational domain 
and the boundary for numerical integration of the fluid motion 
equations and, as a consequence, modify the structure of the 
aerodynamic fields. With respect to the Scanlan method, the 
free motion procedure provides more useful insights into the 
physical mechanisms of the aeroelastic instability. 

Finite volume techniques are used by many authors in order 
to simulate the aerodynamic fields on unstructured grids [11-
13] or on structured grids [14-18]. Many authors [19-21] 
underline that, when the aerodynamic fields are simulated 
around moving objects, the Arbitrary Lagrangian Eulerian 
(ALE) formulation has to be applied to the fluid motion 
equations. 

The instabilities of the decks are related to the unsteady 
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phenomena of the aerodynamic fields [2, 22, 23], and in 
particular to the formation of unsteady vortex structures. The 
URANS approach makes it possible to simulate the quasi-
periodic unsteady vortex structures of the aerodynamic field 
[24] and (with reference to aeroelastic instability phenomena 
such as vortex induced vibrations and flutter) to well identify 
the onset velocities and the amplitudes of the induced 
structural oscillations [25]. 

In this work the aeroelastic stability of long-span bridge 
decks is numerically investigated. A simulation model is 
presented by which the aerodynamic fields and the structural 
motion are simultaneously and jointly simulated. The bridge 
deck is schematised as a bidimensional rigid body subject to 
elastic restraints corresponding to the torsional and the vertical 
degree of freedom, and the ALE formulated 2D URANS 
equations are numerically integrated by a finite volume 
technique on meshes which deform according to the motion of 
the structure. The finite volume technique is based on high 
order weighted essentially non-oscillatory (WENO) 
reconstructions, and the advancing in time of the solution is 
carried out through a five stage fourth order accurate strong 
stability preserving Runge-Kutta (SSPRK) method. By the 
proposed numerical method it is possible to ensure high 
accuracy both in space and time. The URANS equations are 
completed by the turbulent closure relations which are 
expressed as a function of the turbulent kinetic energy, the 
turbulence frequency and the strain tensor according to the k-ω 
SST approach. The proposed model is applied to the case 
study of the Forth Road Bridge deck in its current 
configuration, and is validated by comparing the obtained 
numerical results with those of an experimental campaign [15]: 
in order to perform the above validation, the critical flutter 
wind velocity and the root mean square of rotational 
displacements are taken as benchmark parameters. A profound 
insight into the onset and the amplification mechanisms of 
coupled flutter for long-span bridge decks is proposed. Such 
profound insight makes it possible to deduce that the reason 
for the coupled flutter onset lies in the fact that, within each of 
the first oscillation cycles, there is a portion of the cycle in 
which the energy supplied by the aerodynamic field to the 
deck motion is more than the energy extracted in the rest of the 
cycle. Moreover, it is deduced that the reason for the 
amplification of the aeroelastic instability is ascribable to the 
formation and drift of large vortical formations along the 
surface of the deck. The proposed model is also used in order 
to test the effectiveness, on the aeroelastic stability of the deck, 
of the introduction of a couple of sloping barriers at the 
windward and leeward bridge deck edges. The differences in 
the static behaviour exhibited by the deck in the current and 
the modified configuration are highlighted by comparing the 
time-averaged static coefficients (drag, lift and moment 
coefficient) and the Strouhal number related to both cases. The 
detailed analysis of the aerodynamic fields and the structural 
motion makes it possible to highlight the differences produced 
by the introduction of the sloping barriers in the evolutionary 

dynamics of the vortices generated in the fluid-structure 
interaction. It is demonstrated that this small aerodynamic 
modification is effective in increasing the critical flutter wind 
velocity and mitigating the vibration amplitudes which develop 
during the flutter instability.  

II. THE PROPOSED MODEL 

A. The Fluid Motion Equations 
The simulation of the aerodynamic field is performed by 

numerically integrating the ensemble averaged continuity and 
momentum equations. In integral form, the ALE (Arbitrary 
Lagrangian-Eulerian) formulated 2D URANS (Unsteady 
Reynolds-Averaged Navier-Stokes) equations are expressed as 
follows [26]: 
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being ‹ui› and ‹P› respectively the ensemble-averaged i-th 
fluid velocity component and the ensemble-averaged fluid 
pressure, ug,i the i-th grid velocity component, ν the kinematic 
fluid viscosity, fi the i-th component of the mass force vector, 
dA the surface area of an element delimited by the contour line 
L, and nj the normal pointing outward. The additional 
unknown ‹ui’uj’›, which can be defined as the Reynolds tensor, 
is modelled based on the Boussinesq assumption: 
 

' ' 22 ,
3i j t ij iju u S kν δ〈 〉 = − 〈 〉 + 〈 〉                 (3) 

 
being ‹Sij› the ensemble averaged strain rate tensor, ‹k› the 
ensemble averaged turbulent kinetic energy per unit mass, νt 
the kinematic eddy viscosity, δij the Kronecker symbol. The 
turbulent closure relations adopted in this work, together with 
the calibration parameters herein included, are taken from 
[27].  

B. The Structural Motion Equations 
By neglecting the displacements in the horizontal direction 

x, the 2D motion of the body can be described in terms of two 
displacement components, η, θ, where η is the translational 
displacement of the gravity centre in the vertical direction y, 
and θ is the torsional displacement of the body (rotation). The 
governing equations for the body motion are expressed as 
follows: 
 

( , , , , , ),y y ym S c k fη θ η η η η η θ θ θ+ + + =  
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( , , , , , ),I S c k mθ θ θθ η θ θ η η η θ θ θ+ + + =   

              (5) 
 
being fy and mθ the vertical component of the aerodynamic 
force and the twisting moment generated by the same force, m 
and I the structural mass and the structural moment of inertia 
per unit length, S the static imbalance (which is equal to m 
times the distance a between the shear centre and the centre of 
mass), cy and cθ the structural damping constants in the vertical 
and torsional degree of freedom, and ky and kθ the stiffness 
constants of the vertical and the torsional elastic spring. The 
integration of the pressures, the viscous stresses and the 
turbulent stresses over the surface of the structure allows the 
calculation of the force component fy and the twisting moment 
mθ. The stiffness constants are ascribed to give the correct 
natural frequencies in the fundamental flexural and torsional 
modes of vibration of the structure. The damping coefficients 
are derived from the known damping ratios by means of the 
classical viscous damping assumption. The structural motion 
equations are solved by a second-order accurate scheme, and 
the coupling between the fluid solver and the structure solver 
follows a partitioned loose-coupling approach [28].  

C. The Numerical Scheme 
In this section we present the finite volume method used for 

the numerical integration of the fluid motion equations.  
Let us define ‹͞ui› and ‹͞P› as the cell averaged values of the 

velocity vector and the pressure: 
 

1 1, .i i
A A

u u dA P P dA
A A∆ ∆

〈 〉 = 〈 〉 〈 〉 = 〈 〉
∆ ∆∫ ∫               (6) 

 
The state of the system is known at the centre of the 

calculation cell and it is defined by the cell-averaged values 
‹͞ui› and ‹͞P›. The time level at which the variables are known is 
n, while the time level at which the variables are unknown is 
n+1. From the values of the fluid dynamic quantities at the 
time t(n), by solving the structural motion equations, the 
structural displacements are calculated and, from the latter, the 
coordinates of the control volume vertices are updated and the 
grid velocity ug,i

(n) is calculated. Given the values of ‹͞ui›(n), 
‹͞P›(n), ‹͞k›(n), ‹͞ω›(n) at the centre of the calculation cells at the 
time t(n), the calculation of the values of ‹͞ui›(n+1), ‹͞P›(n+1), 
‹͞k›(n+1), ‹͞ω›(n+1) at the time t(n+1) is performed by integrating the 
fluid motion equations (supplied with the turbulence closure 
relations for the Reynolds stress tensor). 

In the solution procedure for the fluid motion equations, a 
five stage fourth order accurate Strong Stability Preserving 
Runge-Kutta (SSPRK) fractional-step method is used for the 
momentum equations and a pressure correction formulation is 
applied to obtain a divergence free velocity field at each time 
level. Having indicated with ‹͞ui›(n) the value of the i-th 
component of the fluid velocity field at the time level n, the 
following five stage iteration procedure is adopted in order to 
calculate the fluid velocity field ‹͞ui›(n+1) at the time level n+1. 

Let be 
 

(0) ( ) .n
i iu u〈 〉 = 〈 〉                      (7) 

 
At each stage p (where p = 1,2,... 5), an intermediate velocity 
field ‹͞ui›*(p) is obtained explicitly through (2) by using the 
values of the previous time level 
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being D(‹ui›,t) equal to the right-hand side of (2) divided for 
∆A, in which the pressure gradient term has been ignored. For 
the values of the coefficients Ωpq, ϕpq and dq refer to [29]. In 
general, the requirement to satisfy the continuity equation is 
not met by the intermediate velocity field of (8). Therefore, the 
velocity and the pressure field are corrected as follows. By 
introducing a scalar potential ψ, the well-known Poisson 
pressure equation in integral form reads: 
 

( )
*( ) ,

p
p

i i i
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x
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where L and ni are respectively the contour of the calculation 
cell and the i-th component of the unit outward vector normal 
to the contour. The calculation of the above scalar potential ψ 
is performed by solving (9). The corrector velocity field ‹͞ui›c is 
calculated by means of the relation 
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The velocity field ‹͞ui›p at the stage p is given by 
 

( ) *( ) ( ) .p p c p
i i iu u u〈 〉 = 〈 〉 + 〈 〉                (11) 

 
The velocity and pressure fields at the time t(n+1) are 
respectively given by 
 

( 1) (5) ( 1) (5)1, .n n
i iu u P

t
+ +〈 〉 = 〈 〉 〈 〉 = Ψ

∆
           (12) 

 
The calculation of the term D(‹uj›,t) require the numerical 
approximations of the integrals on the right-hand side of (2). 
This calculation is based on the following passages: 
1. High order WENO reconstructions, from cell averaged 

values, of the point values of the unknown variables at the 
centre of the contour segments which define the calculation 
cells. At the centre of the contour segment which is common 
with two adjacent cells, two point values of the unknown 
variables are reconstructed by means of two WENO 
reconstructions defined on two adjacent cells. 
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2. Advancing in time of the point values of the unknown 
variables at the centre of the contour segments by means of 
the so-called exact solution of the Riemann problem, with 
initial data given by the pair of point values computed by 
two WENO reconstructions defined on the two adjacent 
cells. 

3. Calculation of the spatial integrals which define D(‹uj›,t). 
Further details regarding the WENO reconstructions, the 
advancing in time of the unknown variables and the calculation 
of the spatial integrals which define D(‹uj›,t) can be found in 
[30-32]. The numerical integration of the turbulence closure 
relations makes it possible to calculate ‹͞k›(n+1), ‹͞ω›(n+1) and the 
Reynolds stress tensor at the time t(n+1) through (3). The 
discretisation of (8) and (9) by means of the numerical method 
introduced above entails the risk of introducing mass sources 
or sinks in the flow field, if the grid velocity ug,i and the 
change of volume over time are not treated consistently. For 
this reason, the Geometric Conservation Law (GCL) 
 

, 0g i

iA A

ud dA dA
dt x∆ ∆

∂
+ =

∂∫ ∫                (13) 

 
has to be satisfied. In order to warrant consistency, (13) is used 
to determine the grid velocity by the given change of volume 
of the computational cell [26]. In order to update the 
coordinates of the control volume vertices at all times, a mesh 
movement algorithm based on using Inverse Distance 
Weighting [33] is used in order to interpolate the 
displacements of the boundary nodes to the whole flow mesh. 

III. RESULTS AND DISCUSSION 
In this section, the proposed simulation model is utilised to 

analyse the full fluid-structure interaction of the Forth Road 
Bridge deck in the current configuration. Table 1 lists the full-
scale geometric and structural properties used in the fluid-
structure interaction analysis, which are taken from [9]. In Fig. 
1 the geometric characteristics of the Forth Road Bridge deck 
cross-section in the current configuration are shown. 
 
Table1: full-scale properties of the Forth Road Bridge deck 

Overall width (B) 31.2 m 
Maximum depth (D) 3.2 m 
Unit length mass (m) 17.3 x 103 kg/m 
Unit length moment of inertia (I) 2.13 x 106 kgm2/m 
Heaving natural frequency (fy) 0.174 Hz 
Torsional natural frequency (fθ) 0.4 Hz 
Heaving damping ratio (cy) 0.31% 
Torsional damping ratio (cθ) 0.14% 

 

A. Geometry and Numerical Modelling 
The results related to the bridge deck in its current 

configuration are obtained by using a block-structured grid 
which is made up of 272464 cells. In this grid, a geometric 
progression of 1.02 for the cell size varying is used in all 
directions. The dimensions of the computational domain in the 

x and y directions are respectively equal to Dx = 10B e Dy = 
5B (being B the width of the cross-section of the deck). In each 
simulation, the adopted Reynolds number correspond to that 
derived from the full-scale wind velocity U, the air kinematic 
viscosity ν (which is equal to 1.23 ˣ 10-5 m2/s) and the cross-
section width B. The time step is derived by imposing the 
Courant number to be less than 0.9 in all the simulations: e.g., 
for the simulation performed at Re = 1.95 ˣ 108 (U = 87.4 m/s) 
this prescription produces a minimum time step close to ∆t = 1 
ˣ 10-5 s. 

For the fluid pressure, a zero gradient boundary condition is 
applied at the inflow of the domain, while at the domain outlet 
a constant pressure boundary condition is applied. For the 
other quantities (fluid velocity, turbulent kinetic energy and 
turbulence frequency) a constant value is imposed at the 
inflow, while a zero gradient boundary condition is applied for 
the same quantities at the outlet. The near-wall treatment 
proposed in [34], which permits to switch automatically from a 
classical low-Re formulation on fine grids to a wall function 
formulation on coarser meshes, is used at the solid walls. 
 

 
 
Fig. 1: Geometry of the Forth Road Bridge deck cross-section in the 
current configuration  
 

B. Model Validation 
The model validation is performed by comparing the 

numerical results with those obtained from the wind tunnel 
tests described in [9]. Fig. 2 shows the plot of the damping 
coefficient of the rotations against the reduced velocity Uθ of 
the wind (Uθ = U / (fθ B) = 6.34, being fθ the natural torsional 
frequency of the deck). From Fig. 2 it can observed that the 
reduced critical velocity obtained by the proposed model is 
Uθ* = 6.34 (which corresponds to a full-scale critical wind 
velocity of 79.1 m/s). This value matches very well the 
experimental result of Uθ* ≈ 6.35 reported in [9]. Fig. 3 shows 
the plot of the root mean square of the rotations against the 
reduced velocity Uθ. In this figure, both the root mean square 
values obtained numerically in the present work and the 
experimental ones taken from [9] are shown. By observing 
Fig. 3 it can be seen that the numerical results are in good 
agreement with the experimental ones. Lastly, the frequencies 
of the rotational and the vertical motion of the deck are 
identified for the considered reduced velocities Uθ. In 
agreement with that reported in [9], it is found that at the point 
of flutter instability the frequencies of the translational and 
rotational motion are identical. In particular, the 
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synchronization frequency is found to be fθ* = 0.34 Hz. 
 

 
 
Fig. 2: Damping coefficients of the rotations against the reduced 
velocity 
 
 

 
 
Fig. 3: Root-mean-square of the rotations against the reduced 
velocity 
 

C. Flutter Type Characterization 
According to [5], the type of flutter affecting the Forth Road 

Bridge is characterised by means of the angle Ψ defined as the 
phase delay of the deck heaving response (vertical 
displacements) to the deck torsional response (rotations). 
These authors underline that the oscillatory motion of the 
cross-section of a bridge deck can be seen as the overlapping 
of two fundamental oscillatory motions. The first of these 
motions is named as torsional fundamental mode and mainly 
consists of a pure rotational motion around a certain point 
apart from the mid-chord point. In this first mode, the angle Ψ 
is equal to 0° (Fig. 4) or 180° (Fig. 5) depending on whether 
the centre of rotation is placed upstream or downstream the 
mid-chord point of the deck cross-section. The second of the 
above fundamental motions is named as heaving fundamental 
mode and consists of a prominent heaving motion with the 
accompany of small torsional oscillations. In this second 
mode, the angle Ψ  is equal to 90° (Fig. 6) or -90° (Fig. 7) 
depending on whether the sign of the small rotation of the 
upward moving cross-section is clockwise or anti-clockwise 
during the passage from the position of static equilibrium to a 
position of maximum relative height.  

Having introduced the flutter fundamental modes, the above 
authors distinguish a torsional-branch (TB) coupled flutter and 
a heaving-branch (HB) coupled flutter. In particular, the 

coupled flutter is of TB type if the torsional fundamental mode 
dominates on the heaving fundamental mode. In the case under 
examination (Forth Road Bridge), the angle Ψ is found to be 
equal to -16°, so that the relative contribution of the torsional 
and the heaving fundamental mode can be respectively 
quantified as |cos (-16°)| = 0.96 and |sen (-16°)| = 0.27. It is 
thus concluded that the Forth Road Bridge deck is prone to a 
TB coupled flutter in which the torsional fundamental mode 
clearly dominates the heaving fundamental mode. 
 

 
 
Fig. 4: Torsional fundamental mode, Ψ = 0° 
 
 

 
 
Fig. 5: Torsional fundamental mode, Ψ = 180° 
 
 

 
 
Fig. 6: Heaving fundamental mode, Ψ = 90° 
 
 

 
 
Fig. 7: Heaving fundamental mode, Ψ = -90° 
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D. Coupled Flutter Onset Mechanism 
Below the onset mechanism of coupled flutter is shown. For 

this purpose, the evolution of the aerodynamic forces and the 
structural displacements produced for a wind speed U = 87.4 
m/s (Uθ = 7.0) is investigated during a cycle of structural 
oscillations in which the amplitudes of vibration are still 
limited. Fig. 8 shows together the time history of the resultant 
of the unit-area forces exerted by the fluid on the deck surface 
and the time history of the infinitesimal vertical displacement 
of the centre of gravity of the deck. Fig. 9 shows together the 
time history of the twisting moment produced by the above 
resultant force and the time history of the infinitesimal deck 
rotation. The structural oscillation cycle shown in Figs. 8, 9 is 
delimited by two time instants (indicated as A and E) at which 
a relative minimum value is assumed by the infinitesimal 
vertical displacement of the downward moving gravity centre 
of the structure. 
• By observing Fig. 8 it is deduced that in the time interval 

between instants A and B the gravity centre moves 
downward and passes from the position which corresponds 
to the static equilibrium to the position of minimum height 
(within the considered cycle), when the vertical velocity of 
the gravity centre of the structure vanishes. In this interval 
the resultant of the aerodynamic forces is directed upward, 
thus acting in opposition to the downward translational 
motion of the deck and, consequently, provides a damping 
effect on the same translational motion. 

• In the time interval between instants B and C the gravity 
centre of the structure inverts the direction of the 
translational motion and passes from the position of 
minimum height to the position which corresponds to the 
static equilibrium, when the vertical velocity of the gravity 
centre assumes a relative maximum value. In this interval 
the resultant of the aerodynamic forces, which is still 
directed upward, acts in the same direction as that of the 
upward translational motion of the deck and then produces 
an effect of amplification of the same motion. 

• In the time interval between instants C and D the gravity 
centre of the deck still moves upward until it reaches the 
position of maximum height (within the considered 
oscillation cycle), when the vertical velocity of the gravity 
centre vanishes again. In this interval the magnitude of the 
resultant of the aerodynamic forces switches from positive 
values to negative values (close to zero). For most of this 
interval the above resultant acts in the same direction as that 
of the upward translational motion of the deck and then still 
amplifies the translational motion of the deck. 

• In the time interval between the instants D and E the gravity 
centre of the structure inverts the direction of the 
translational motion and passes from the position of 
maximum height to the position which corresponds to the 
static equilibrium, when the vertical velocity of the gravity 
centre assumes a relative minimum value. In this last portion 
of the oscillation cycle the resultant of the aerodynamic 
forces starts to grow one more from negative values (close 

to zero). In this interval the above resultant acts in 
opposition to the downward translational motion of the deck 
and then provides a damping effect of the same translational 
motion. 

 

 
 

Fig. 8: Time histories of the resultant of the unit-area forces exerted 
by the fluid on the deck surface (blue) and of the infinitesimal 
vertical displacement of the centre of gravity of the deck (black, 
dashed)  
 
 

 
 

Fig. 9: Time histories of the aerodynamic twisting moment (blue) and 
of the infinitesimal deck rotation (black, dashed)  
 

By observing Fig. 8 it can be deduced that, in the time 
intervals A-B and D-E of the considered cycle, the force 
resultant acts against the vertical motion of the centre of 
gravity whereas, during the time interval B-D, the same 
resultant acts in favour of the translational motion. The 
integral of the work performed by the force resultant over the 
infinitesimal displacement of the centre of gravity during the 
time interval B-D is around equal to 260 kJ. This value is 
found to be considerably higher, in modulus, than the value 
obtained by adding the integral of the work performed during 
the time interval A-B (around -100 kJ) and the integral of the 
work performed during the time interval D-E (around -60 kJ). 
It follows that the net input of energy (roughly 100 kJ) of the 
aerodynamic resultant force to the translational motion is to 
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destabilise the motion itself. 
Similar considerations apply to the effect of the twisting 

moment produced by the above resultant force to the rotational 
motion. Fig. 9 shows that, in the time intervals A-B1 and D1-
E, the above moment acts in favour of the rotational motion of 
the deck, thus providing an amplification effect of the motion 
itself. By contrast, during the time interval B1-D1, the twisting 
moment acts against the rotational motion and, consequently, 
produces a damping effect of the motion itself. The integral of 
the work performed by the twisting moment over the 
infinitesimal deck rotation during the entire cycle A-E is 
around equal to 25 kJ. It can be deduced that the net input of 
energy of the aerodynamic twisting moment to the rotational 
motion is to destabilise the motion itself. 

On the basis of the above consideration, it is possible to 
conclude that the reason for the onset of the instability resides 
in the fact that there are some temporal fractions, within each 
of the first oscillation cycles, in which the  aerodynamic field 
provides both the translational and the rotational motion with a 
higher supply of energy than that subtracted from the deck 
motion in the rest of the cycle. 

After the instability of the roto-translational motion has 
been triggered, the maximum amplitude of the rotation angle 
progressively increases. As shown in the following subsection, 
once the above angle exceeds a threshold value the leading 
edge recirculation bubble, which pulsates in the onset phase 
just described, starts to drift along the deck surface. From this 
point on, the modalities by which the oscillations amplify are 
different to those described before in the present subsection. 

E. Post-Critical Flutter Mechanism 
Below the amplification mechanism of coupled flutter is 

shown. For this purpose, the evolution of the aerodynamic 
fields and the structural motion developed for a wind speed U 
= 87.4 m/s (Uθ = 7.0) is investigated during a cycle of 
structural oscillations in which the deck exhibits large 
amplitudes of vibration. Figs. 10-13 show the fluid velocity 
field which form around the deck in four time instants T1-T4 
included in ½ of the above cycle. It is intended by ½ cycle the 
time interval delimited by the instant when the gravity centre 
of the downward moving structure corresponds to the static 
equilibrium position of the structure’s centre of gravity and the 
instant when the gravity centre of the upward moving structure 
corresponds to the static equilibrium position of the structure’s 
centre of gravity. Figs. 14-17 show the distribution of the 
surface normal unit-area forces exerted by the fluid on the 
deck (aerodynamic forces) in the same time instants. 
• In the first of the four considered instants a downward 

translation and a clockwise rotation of the deck is ongoing. 
The angle of attack is sufficiently high to cause the flow 
detachment near the leading edge. In Fig. 10 the vortex 
formed immediately downline this detachment zone is 
shown. In Fig. 14 the distribution of the aerodynamic forces 
can be seen. The resultant of these forces is an upward force 
directed normally to the upper surface of the deck. In this 
instant, this resultant acts in opposition to the downward 

velocity of the gravity centre and, therefore, provides a 
damping effect on the translational vertical motion of the 
deck. The point of application of the resultant is placed near 
the centre of the vortex, in an extremely far position from 
the mid-chord point of the deck cross-section. This resultant 
gives rise to a clockwise twisting moment which prevails 
against the elastic and the damping moment acting in the 
same instant and, together with the inertial torque, leads to 
an amplification of the clockwise rotation of the deck. 

• In Fig. 11 it can be seen that, compared to the previous 
instant, the vortex has drifted along the upper surface 
toward the trailing edge. This change of position is 
accompanied with a growth in the dimensions of the vortical 
formation. By observing Fig. 15 it can be seen that an 
overall increase of the aerodynamic forces is associated to 
the growth of the vortex. The point of application of the 
resultant, placed near the centre of the vortex, has got close 
to the mid-chord point of the deck cross-section. The effect 
produced by the increase of the intensity of the resultant 
prevails against the effect produced by the change of its 
point of application, causing an increase of the intensity of 
the clockwise twisting moment due to this resultant. 
Consequently this twisting moment acts in opposition to the 
elastic and the damping moment and, together with the 
inertial torque, produces a further amplification of the 
clockwise rotation of the deck. As well as in the previous 
instant, the resultant of the aerodynamic forces acts in 
opposition to the downward translational motion of the 
gravity centre and, therefore, still provides a damping effect 
on the motion itself. 

• By examining Fig. 12 it can be seen that, compared to the 
previous instant, the vortex has further drifted along the 
upper surface, getting close to the trailing edge. In Fig. 16 it 
is seen that an overall increase of the aerodynamic forces 
corresponds to the growth of the vortex. At the same time it 
can be seen that the point of application of the resultant has 
got closer to the mid-chord point of the deck cross-section. 
The effect produced by the change of position of the 
resultant’s point of application prevails against the effect 
produced by the increase of its intensity, causing a decrease 
of the intensity of the clockwise twisting moment due to this 
resultant. The aerodynamics twisting moment continues to 
act in opposition to the elastic and the damping moment, but 
its intensity has reduced compared to the previous instant. 

• In the latest of the four considered instants the inversion of 
the translational and rotational motion of the deck has taken 
place. In Fig. 13 it is shown that the vortex still drifts along 
the upper surface till reaching the trailing edge. Fig. 17 
shows the distribution of the aerodynamic forces. The 
resultant of the these forces slightly decreases compared to 
the previous instant. The point of application of the 
resultant, previously placed between the leading edge and 
the mid-chord point, is now placed between the mid-chord 
point and the trailing edge. Consequently the moment due to 
the resultant changes sign and, as a result of the 
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simultaneous change in the rotation direction of the deck, 
acts in the same direction as that of the angular velocity. 
The resultant of the aerodynamic forces acts in the same 
direction as the upward velocity of the gravity centre, so that 
it provides a contribution in the amplification of the upward 
translational motion of the deck.  

By examining Figs. 10-13 and Figs. 14-17 it can be deduced 
that the instability amplification is due to the formation and 
drift of large-scale vortices on the surface of the deck. From 
the simulation it is possible to deduce that the resultant of the 
surface normal unit-area forces exerted by the fluid on the 
deck surface moves with the vortical formation generated at 
the leading edge. The point of application of this resultant is 
placed at the vortical formation. Therefore, the movement of 
this resultant with respect to the shear centre gives rise to a 
twisting moment which varies in intensity and direction during 
the deck oscillation. In particular, the sign of this twisting 
moment is found to be always coherent with the sign of the 
instantaneous angular velocity. Consequently, there is a 
continuous supply of energy from the fluid dynamic field to 
the structure, that constitutes the reason for the amplification 
of the instability of the torsional motion. The integral of the 
work performed by the resultant of the aerodynamic forces 

over the infinitesimal displacement of the centre of gravity 
during the entire cycle is positive. As a consequence, the net 
effect of the resultant on the translational motion of the deck is 
to amplify the above-mentioned motion and provide a 
destabilising contribution. 

F. Aeroelastic Optimization of the Deck 
The proposed simulation model is used in order to evaluate 

the aero-elastic stability of the Forth Road Bridge deck in a 
configuration modified by the introduction of a couple of 
sloping barriers at the windward and leeward bridge deck 
edges. In Fig. 18 the geometric characteristics of the Forth 
Road Bridge deck in the modified configuration are shown. 
The wind barriers are 2.0 m high and inclined by 45 degrees 
with respect to the vertical direction. The fluid-structure 
interaction for the modified configuration is simulated by 
means of a block-structured grid made up of 276520 cells. 

In order to compare the static behaviour of the two different 
configurations of the Forth Road Bridge deck (current and 
modified configuration), the static aerodynamic coefficients 
are computed for various Reynolds number (1.39 ˣ 107 < Re < 
1.95 ˣ 108). 

 

            
 
Fig. 10: Fluid velocity field around the deck at T1 Fig. 11: Fluid velocity field around the deck at T2 

 

            
 
Fig. 12: Fluid velocity field around the deck at T3 Fig. 13: Fluid velocity field around the deck at T4 
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Fig. 14: Distribution of the unit-area fluid forces at T1 Fig. 15: Distribution of the unit-area fluid forces at T2 

 

            
 
Fig. 16: Distribution of the unit-area fluid forces at T3 Fig. 17: Distribution of the unit-area fluid forces at T4 
 
 

The obtained time-averaged drag coefficient CD = FD / (0.5 
ρ U2 D)  (in which FD is the drag force exerted by the fluid on 
the structure, U the undisturbed wind velocity, D the depth of 
the deck cross-section and ρ the fluid density), the time-
averaged lift coefficient CL = FL / (0.5 ρ U2 B) (in which FL is 
the lift force exerted by the fluid on the structure and B the 
width of the deck cross-section) and the time-averaged 
moment coefficient CM = M / (0.5 ρ U2 B2) (in which M is the 
aerodynamic moment exerted by the fluid on the structure) for 
the two different configurations of the Forth Road Bridge deck 
are given in Table 2. For each of the examined quantities, the 
first number reported in this table refers to the simulation 
performed for Re = 1.39 ˣ 107, whilst the second number refers 
to the simulation performed for Re = 1.95 ˣ 108. From this 
table it can be deduced that, compared to its current 
configuration, the introduction of the sloping barriers causes a 
slight decrease in the drag coefficient, a slight increase in the 
lift coefficient and a considerable decrease in the moment 
coefficient. 
 

Table2: Time averaged drag, lift and moment coefficients and 
Strouhal number of the Forth Road Bridge deck in the current and the 
modified configuration 

 Current  Modified 
Drag coefficient (CD) 0.578 ÷ 0.644 0.379 ÷ 0.441 
Lift coefficient (CM) -0.584 ÷ -0.685 -1.951 ÷ -2.444 
Moment coefficient (CM) -0.391 ÷ -0.445 -0.018 ÷ -0.043 
Strouhal number (St) 0.23 ÷ 0.25 0.24 ÷ 0.27 

 
In addition to the time-averaged static coefficients, Table 2 

lists also the Strouhal number values computed for the Forth 
Road bridge deck in both current and modified configurations. 
For the deck in its current configuration, the numerical 
simulations provide slightly variable values for the Strouhal 
number which are between 0.23 and 0.25; for the deck in the 
modified configuration, the numerical simulations provide 
slightly higher values for the Strouhal number which are 
between 0.24 and 0.27. From the values of the Strouhal 
number, the critical flutter wind velocity for which the Vortex 
Induced Vibration (VIV) instability occurs are calculated by 
means of the expression UVIV = (Ωy D) / St, where Ωy is the 
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natural heaving frequency of the deck. It follows that the 
critical VIV wind velocity for the deck in the modified 
configuration is slightly lower (2.2 m/s) than the critical VIV 
wind velocity for the deck in its current configuration (2.3 
m/s). From this comparison it results that the modification of 
the cross-section of the Forth Road Bridge deck through the 
introduction of the sloping barriers causes only a slight 
deterioration in the VIV instability. 

With the purpose of characterising the flutter type of the 
modified configuration, the angle Ψ defined as the phase-lag 
of the heaving response to the torsional response of the 
structure is used. In the case under examination, this angle is Ψ 
= -29°. It is thus concluded that, in this case, the Forth Road 
Bridge deck is prone to a TB coupled flutter in which the 
torsional fundamental mode still dominates but to which the 
heaving fundamental mode contributes to a greater extent than 

in the case related to the bridge deck in the current 
configuration. 

 

 
 
Fig. 18: Geometry of the Forth Road Bridge deck cross-section in the 
modified configuration  

 
 

            
 
Fig. 19: Fluid velocity field around the deck at T1 (configuration 
modified through sloping barriers) 

Fig. 20: Fluid velocity field around the deck at T2 (configuration 
modified through sloping barriers) 

 

            
 
Fig. 21: Fluid velocity field around the deck at T3 (configuration 
modified through sloping barriers) 

Fig. 22: Fluid velocity field around the deck at T4 (configuration 
modified through sloping barriers) 
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Fig. 23: Distribution of the unit-area fluid forces at T1 (configuration 
modified through sloping barriers) 

Fig. 24: Distribution of the unit-area fluid forces at T2 (configuration 
modified through sloping barriers) 

 

            
 
Fig. 25: Distribution of the unit-area fluid forces at T3 (configuration 
modified through sloping barriers) 

Fig. 26: Distribution of the unit-area fluid forces at T4 (configuration 
modified through sloping barriers) 

 
 

The critical flutter wind velocity value is U* = 82.6 m/s 
(Uθ* = 6.62), which is slightly higher than the one identified 
for the deck in its current configuration. Therefore this 
modification is to be considered effective in the improvement 
of the aero-elastic stability of the deck. Moreover, as observed 
with regard to the current configuration it is found that, for 
wind velocity values equal or greater than the critical flutter 
wind velocity value, the frequencies of the rotational and 
vertical wind-induced motion synchronise on a common 
frequency. 

Figs. 19-22 show the fluid velocity field which form around 
the deck in four time instants T1-T4 included in ½ of an 
oscillation cycle when flutter oscillations have been already 
developed. Figs. 23-26 show the distribution of the surface 
normal unit-area forces exerted by the fluid on the deck 
(aerodynamic forces) in the same time instants. As a result of 
the introduction of the sloping barriers, a remarkable decrease 
in the amplitudes of the oscillations which develop during the 
evolution of the phenomenon is observed. This decrease in the 
amplitudes of the vibrations is due to the fact that, as a result 

of the introduction of the sloping barriers, the flow detachment 
near the leading edge is limited compared to the early case 
(current configuration) and, consequently, there is a 
considerable delay in the formation and drifting of large 
vortical formations along the surface of the deck. It is thus 
concluded that the aerodynamic modification can be 
considered effective in the mitigation of the amplitudes of the 
vibration which develop during the evolution of the flutter 
instability. 

IV. CONCLUSION 
In this work the aeroelastic stability of long-span bridge 

decks has been numerically investigated. A simulation model 
has been presented by which the aerodynamic fields and the 
structural motion are simultaneously and jointly simulated. 
The validation of the numerical model has been performed by 
comparing the numerical results with those of an experimental 
campaign, in terms of critical flutter wind velocity and root-
mean-square of the deck rotational displacements, and has 
been used to investigate the aeroelastic stability of the Forth 
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Road Bridge deck. 
A profound insight into the onset and the amplification 

mechanisms of coupled flutter for long-span bridge decks is 
proposed. It has been demonstrated that the reason for the 
onset of the instability resides in the fact that there are some 
temporal fractions, within each of the first oscillation cycles, in 
which the aerodynamic field provides both the translational 
and the rotational motion of the deck with a higher supply of 
energy than that subtracted from the motion itself in the rest of 
the cycle. Once the instability has been triggered, the 
amplitudes of vibrations increase at each cycle until the 
leading edge recirculation bubble, which pulsates for small 
oscillation amplitudes, bursts producing large vortical 
formations which drift along the upper side of the bridge deck. 
The drifting of this vortical formations has been found to be 
the reason for the amplification of the instability. It has been 
shown that the sign of the twisting moment produced by the 
aerodynamic field on the structure is always coherent with that 
of the rotation. Consequently, there is a continuous supply of 
energy from the fluid dynamic field to the structure, that 
constitutes the key to the amplification of the instability of the 
torsional motion.  

The numerical model has been used to test the effectiveness 
of a small aerodynamic modification of the deck cross-section 
on the aeroelastic stability of the deck. It has been shown that 
the introduction of a couple of sloping barriers at the 
windward and leeward bridge deck edges causes an increase in 
the critical flutter wind velocity and a reduction in the 
amplitudes of vibrations which develop during the evolution of 
the phenomenon. This decrease in the amplitudes of the 
vibrations is due to the fact that, as a result of the above 
modification, there is a delay in the formation and drifting of 
large vortical formations along the surface of the deck. 
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