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The effect of skewness and kurtosis on the
probability evaluation of fatigue limit states

Z. Kala, A. Omishore, S. Seitl, M. Krejsa, J. Kala

generations from its construction. However, this is not always

Abstract — The article presents the probabilistic analysis of théhe case. With increasing service life, the actual load intensity
limit state function of the fatigue resistance of a steel bridge, whichgghd fatigue wear of the load bearing members of bridge
numerically described as the tota_ll number of cyclt_es to fa!lure. A&ructures may more or less differ from the assumptions made
example of the evalqatlon of the.hlstogram of the fatlgue resstancelr(l)fthe design documentation. Most bridges are exposed to an
a steel member using the Latin Hypercube sampling method and ™ . . .
linear fracture mechanics based on Paris-Erdogan’s law is presenfé$fr-increasing number of passages of rail or road vehicles,
Probabilistic models of input variables for which the fatiguavhich are high in intensity and are constantly being repeated.
resistance has a typical log-normal probability density function afRepeated loading and unloading of a material leads to fatigue.

described. Differences between the stochastic analyses of gig@verse effects of the environment and load result in slowly
member with one edge crack and the entire steel bridge are discus

Attention is paid in the limit State function to the effects of sk ?‘?egressing and accumulating material damage. Repeated
ention 1S paid In e Iimit stae funcfion {0 the eliects of skewne cshanges in the stress state of load bearing members lead to the

and kurtosis of the fatigue resistance on the time-dependent failyre . '~ . .
probability. initiation and propagation of fatigue cracks. A crack eventually
reaches its critical size and propagates suddenly resulting in

Keywor ds—Fatigue, steel, bridge, limit state, reliability, fracturefracture of the structure. Deterioration of the load bearing

mechanics, stochastic, Monte Carlo. structure results in a state of disrepair, degradation of the
transport network and threatens traffic safety.
I. INTRODUCTION The end of the service life of a bridge results in its shutdown

S teel is the most versatile and effective material for th@nd demolition. When this happens, the girders of the steel
construction of bridge structures, which is able to Car@rldge can be cut into smaller more manageable sizes in order
loads in tension, Compression and shear. Designers of Sl@b[faci“tate demolition, and transportation to steelworks for
bridges are familiar with a number of guidelines and&ecycling. Recycling does not lead to degradation in
requirements needed in order to find the most econonfi€rformance. Around 99% of structural steel is either returned
solution for their clients. Modelling and limit states analysi§to the steelmaking process where it is used for the
are parts of the design process of effective structurBfoduction of new steel products or reused. Component parts
arrangements of load bearing members for various |Oadiﬁgstee| brldgeS can also be reused in -Other structures. Entlre
conditions including fatigue. Structural mechanics anBridges have been relocated. Thus, bridges can be designed
conventional structural stress analysis provide backgrouMdth the knowledge that they can be easily relocated in the
material yielding conclusive findings on safety based on expéﬂture-
estimates of traffic intensity over their lifetime. In the future, we can expect further development of lighter
A well-designed and maintained bridge should serve ma@jid more subtle steel bridges and an increased need for
advanced assessment of the remaining life of existing steel
bridges. It is therefore necessary to improve the methods of
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A. S-N curve method where F(a) is the geometric factor (calibration function)

In general, two approaches are used for evaluating tA@scribing the course of crack propagation with respect to the
fatigue damage and predicting the life of bridges. The firgieometry of the sample antlo is the quasi—constant stress
approach (i) is the stress-life method based orStNecurve, range.
which is determined using appropriate fatigue experiments atApproaches (i) and (ii) are applied sequentially, with (i)
constant-amplitude stresses and describes the relationdb@ng increasingly used in the design stage of bridges or the
between the stress ran§@nd the number of cycles to failurepreliminary evaluation of the fatigue life. Method (ii) is used
N. Basquin [16] presented the exponential relationshiigr the analysis and assessment of the remaining fatigue life,
betweerS andN, whose graphical representation is the Wohlger €.g., in connection with applications of decision making
curve with logN on the abscissa and I6pn the ordinate. The methods in civil engineering [22, 23].

Basquin function can be expressed mathematically as: C. Probabilistic Fatigue Life of One Structural Member

) An example of probabilistic analysis of the fatigue
resistance due to uncertainty of input parameters was
published in [24]. The number of cycles to failide (fatigue
resistance) of the steel member can be evaluated using linear

@) fracture mechanics as the number of cycles leading to the
propagation of initial edge craek into a critical cracla,.

NS™ = A
or
log N=-mlog S+log A,

wherem andA are positive empirical material constants. ., da

Even though the use &N curves [17] is well established j —= CIN. o™
in the field of steel structures [18], information related to time* [F(a)DV”Ea ]
dependent load, particularly in connection with the detection
of cracks from measurements during operation of the bridge,whereNe is the total number of cycles at crack growth from
cannot be included in the evaluation of reliability [19]. Theo to a,. The quasi—constant stress range = 50 MPa is
principal disadvantage of this approach is that it evaluates edinsidered.C, mare material constants according (6)
stages of the fatigue process together. Thus, it involves the
initiation of a fatigue crack and its propagation up to its criticabg(C) = ¢ + ¢,m, (6)
length ending with a brittle fracture. It does not determine the
number of cycles that belong to each stage. This approachwherec,, ¢, can be considered for the steel grade S235 as
cannot be used to determine the critical length of the crack#r.11.141,c, = -0.507 [25].F(a) is the calibration function
the critical stress in the structure with an existing crack witdvaluated for pure bending in the form [26, 27]:
respect to other external influences like temperature. Nor can

we competently determine the remaining service life of such a a a)? a )
structure. Fla)= 1114- 18975(W]+ 2.752(W] - 11323(W] , (1)

B. Fracture mechanics approach

The second method (ii) is based on fracture mechanics andvherea is the crack length and/ is the specimen width in
is dedicated to investigating the features and disciplinéde direction of crack propagation. In accordance with [24] let
pertaining to the initiation and growth of cracks with regard t4s consider the parameters of the fatigue process as random
the stress field at the crack tip. Cumulative damage yariables with probability density functions (pdfs) acc. to
characteristic for fatigue. Commonly applied linear elasti¢able 1.
fracture mechanics analyses the propagation of initial cracks of
sizea in dependence to the number of fatigue cy®NeS he
growth of fatigue cracks is generally described by Paris’s rule

®)

TABLE |
INPUT RANDOM QUANTITIES - VARIANT 1

which is expressed by Paris and Erdogan [20] Characteristic Pdf Mean value St. deviation
Initial crack sizea,  log-normal 0.526 mm 0.504 mm
da Critical crack sizea, Gauss 175 mm 14 mm
—= =c(aKk)", 3) Specimen widthw Gauss 400 mm 20 mm
dN Parametem Gauss 3 0.03

where m and C are material-related parameters and the The gim of the study is to determine the effects of the pdf of
range of stress intensity factdK can be determined by Broekinput variables on the outpie. For this purpose a second

[21]. variant of input variables acc. to Table 2 is considered.

AK = AomaF(a), 4)
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Relative Frequency

0.069 . .
Ia Valid observations: 10000 The mean vglue olNg is .16.7><16 for. variant 1 and
A Minimum: 2.3081-10° 13.8x10 for variant 2, see Fig. 1 and Fig. 2. The standard
0.058 / 1 'i‘{':;"g"e‘“m gg-g;;:}gs deviation ofNg is 7.62x16 for variant 1 and 5.11xf0for
! Median: 15.285-10° variant 2. For clarity, the histogram in Fig.1 is displayed on a
; k ’g”"‘me"c mean:  16.710-10° shortened interval 2.3xi0to 82.3x16, even though the
0.046 tand. deviation: 7.6222-10° . 9 .
\ Coef. of variation: (45615 maximum value N was 98.677x10 The Chi-square
z \ g‘a”d-s"e""“??s 16183 goodness-of-fit test [30] with the final p-value = 0.05 was
. tand. Kurtosis: 8.6043 . . . C
0.035 N carried out to verify the log-normality of thé distributions.
The hypothesis should not be rejected for variant 1 and should
be rejected for variant 2. & has a log-normal pdf thé¥: has
0.023 a pdf very close to log-normal. However, the result of the
study pertains to one structural member under bending. In the
general context, it must be assumed that the fatigue resistance
0.2 of a steel bridge with numerous structural elements involved in
serial or parallel interactions will have a different type of pdf
0.000 : from the log-normal.
23 16.7 82.3

Ne10° D. Probabilistic Fatigue Life Assessment of Steel Bridges

The development of probabilistic assessment of reliability
of existing steel structures and bridges cannot be considered
complete in any case. The process of fatigue involves a certain

Fig. 1 Lognormal pdf fitting of histogram of: for variant 1

| RANDO TABLE NI s.v 5 degree of stochastic randomness, which often displays
NP_UT_ NDOM QUANTITIE — ARIANT considerable scatter even in seemingly identical samples in
Characteristic Pdf Min value Max value

— - well controlled environments. The fatigue performance of steel
Initial crack sizea, Rectangular 0.1 mm 1.1 mm brid is d dent b f fact f terial
Critical crack sizea,, Rectangular 151 mm 200 mm rages '§ .epen enton .a number of fac ors,. ore.g. ma e.rla
Specimen widthW  Rectangular 365.36 mm 434.64 mm characteristics, stress history, and the environment, which
Parametem Rectangular 2.94804  3.05196 exhibit uncertainty and randomness during the service life of
the bridge. On the contrary, when assessment of the fatigue

The second variant considers all input random variabléondition is performed using field measurement data, the
with Rectangular pdf. Histograms df of both variants are uncertainties pertinent to the field-measured data and the
evaluated using ten thousand simulation runs of the Lafipaccuracies due to data processing procedures are subsistent

Hypercube Sampling method [28, 29] and are depicted @nd unavoidable. Due to these reasons it is more appropriate to
Fig. 1 and Fig. 2. perform the assessment of the fatigue life using probabilistic

rather than deterministic methods.

Relative Frequency

0.137
T — IIl.  THE PROBABILISTIC CONCEPTS OFLIMIT STATES
| Minimum: 7.1171-10° . . L .
Min Maximum: 35.085-10° A. The basic concept of design reliability conditions
0.114 { Range: 27.967-10° . . . A . .
I Median: 12.242-10° The basic application of the probabilistic concept is using
- Arithmetic mean: 13 814-10° the reliability indexs. This approach is based on expressing
0.091 and. deviation:  5.1091-10° the limit-state function in t f the static resistaRcand
: L Coef. of variation: ¢ 36984 e limit-state function in terms of the static resistaRcan
Stand. skewness: 1 3089 the load action effedi.
< Stand. Kurtosis: 4.3781
0.069 n \&
1\e G=R-A20, (8)
mm \=
&

0.046 The pdfs of random variabld® A are often introduced as
Gauss pdfs [31-33] in the limit states of steel structures
exposed to the dominant effects of static load. The random

0.023 variability of R is examined using analytical [34] or numerical
[35, 36] stochastic computational models. The basic

0.000 characteristics of the reliability condition (8) as a random

7 13.8 35 variablesR and A with Gauss pdf in the case of statistical

Ne10° . .
F independence of these variables are expressed as:

Fig. 2 Lognormal pdf fitting of histogram of for variant 2
m, = m, —m, . ©)
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transformation [38].

s=Vg+si, (10)

INQ=In(N,)-In(N,)=0, (18)
A= 2 &S (11) .
G S where random variables M§) and In{N,) have log-normal
pdfs. The mean value and standard deviation dfi)nére
where symbolgn, S a represent the mean value, standarge]clned as:
deviation and skewness of random varialiesR, A. In the 19
case of Gauss pdf o6, the failure probabilityP; with M) = In(m, )~ 0508,(,,) = In(m,. ). (19)
implementation of normalised random variable
Sn(N;): Vln(l+VNZF)=VNF' (20)
T = G- mG ’ (12)
Se where Vyr is the coefficient of variation ofNg; the
_ approximate equality can be applied for small values\¢gfr.
is expressed as The mean value and standard deviation dfi{hare defined
as:
P=PG<0)= P[T <—mGj: P(T<-B)=0(-p). (13)
SG mln(NA) = ln(mNA)_ 05 [Sln(NA) =In (mNA)’ (21)
where ®(¢) is the normalized Gauss pdf. The so-calledSn(NA) - \/ﬁ(l’r—VNzA):VNA’ (22)

reliability index is implemented in expression (13):

whereVya is coefficient of variation olN,; the approximate
equality ~ can be applied for small values &, The
reliability condition based on the comparison of the calculated

If these assumptions are met the verification of reliability carrﬁ_"“"ib"'ty index 8 with the target reliability indexs; in [37]

be performed by comparing the calculated ingewith the can be expressed as:
target value of the reliability inde&, listed by the design rules Mo = Mooy
n (N g In(N ,

in standard EN1990 [37]. B= =2 ;"
NETREES
B =By (15)

B = ms | (14)

(23)

Similarly to (16) the application of (23) is often limited due

Expressing (15) using (14), (9), (10) is obtained: to the non-fulfillment of the condition that the random
variables of the limit state (18) have log-normal pdfs. From a

_m,-m, (16) technical point of view, this assumption is approximately
p= W 2 fy fulfilled if the random variables in (17) have a log-normal or at
" least Gauss pdf with small variation coefficients. As shown in

. L . . Fig.1, we can consider log-normal pdfs My if a; has a log-
Direct applications using the formula (16) in real tasks alformal pdf and the other random variables have Gauss pdf as

often preventeq by the non-_ful_flllment of the assumption th% listed in Table 1. These assumptions are satisfied relatively
the random variables of the limit state (8) have Gauss pdfs. accurately in the case of one structural element with one initial

B. Design reliability conditions for fatigue limit state crack. However, it is questionable if the use of a log-normal
The fatigue limit state function in steel structures such &I i also sufficiently adequate for the analysis of the fatigue

steel girder bridges can be expressed in terms of two variabl@it state of a bridge in which there exist many stochastic
interactions between fatigue (or even corrosive) degradation of

its structural elements.
In actuality, the propagation of the fatigue crack leads to
changes in the stiffness and stress state of the local structural

whereN: denotes the fatigue resistance (number of cycles ggtall, which in turn further affect the crack growth behaviour.

failure under the given stress history), aNg denotes the !Elther a global-local crack model of the structure for the

number of applied load cycles and N, are statistical implementation of crack propagation analysis or an isolated

independent random variables with mean valags my, and Iof(f:altc;ati:ok r|n0d?| r\gh bour;}dary condltﬁ_ns, ]\c/vh|chthare notk
standard deviationsSyr, Sya. Derivation of the design arfected by local stifiness changes resulting trom tné crac

reliability condition for (17) is based on the IogarithmicDrOpag"’ltion Is necessary for this interaction problem [39].

Q=E—Z211 (17)
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Skewness and kurtosis are two other statistical momentd)e generation of pairg, k can be clearly written in the
which should be considered in the probabilistic assessmentpsbgramming language Pascal:
limit states, see e.g. [40, 41]. One way to include the effects of
skewness and kurtosis in the probabilistic assessment B8x:=100; (26)

reliability is to consideN: and N, as random variables with For i1:=0 to max do
Hermite pdf. For i2:=0 to max do

begin

C. Hermite probability density function a:g-1.1+2.2*i1/max;

The design conditions of reliability described in thek:i=1.4+3.2*2/max;
previous two subchapters have considerable limitationgnd;
Probabilistic models of limit states are derived under the
assumption of two-parameter Gauss or log-normal pdf, whidfe values of skewness and kurtosis shown in Fig. 3 are
may not always fit the distributions of probability densitygvaluated for 10Dpairs ofa, k using [42] (26), (27). The
functions of the random variables of the limit states witFESUlts in Fig. 4 are evaluated for max:=200 so that only points
sufficient accuracy. More generally, we encounter randoffff Skewness that are approximately equal to -1, -0.9, ..., 1 are

variables whose pdf shapes are approximately bell-shaped Vﬂf—,ﬁ

. . ues of parameterin dependence on the values of skewness
small values of skewness and kurtosis. These random varlal:}fe P P

are better approximated using a four-parameter Hermite pa d kurtosis.
(24), which consists of a Gauss pgf(x) multiplied by the 1.2
Hermite polynomial. 1.0
0.8
0,020,012 (e -39 + LD e o3| (29 08
; 0.2
A detailed derivation of the Hermite pdf is in [42], E 0.0

however, other more sophisticated variants of the Hermite pdf £ -0.2 2
are available, see e.g. software Statrel 3.1. & 04
Parametersa, k in (24) describe the skewness and 06
kurtosis relatively accurately if parametaris at a small 0.8
distance from zero and parameltds at a small distance from 10
three, otherwise they match the skewness and kurtosis only 45

approximately. The functiof24) cannot be used for arbitrary

parametersa, k, because the conditiom(x)=0 is not Fig. 3 The set of points of parametevs skewness and kurtosis
automatically fulfilled for OxO(-c0, o). Let interval k., Xg] 12
define the region around the mean value whig)=0. If 1.0
the interval k., xg] is sufficiently wide, (24) can be replaced 0.8
with a truncated Hermite pdf (25) defined on the intewial 0.6
[X,, Xl o 041s
5 0.2
E (020 0 x0(x., x.) é 00 skewness~0 Kurtosis|
b.(0=cg, () 12077 o (23 84, 5
¢, & F Ootherwise & o4l
. . -0.6
where parametetg is calculated numerically [42] so that (25) 08
has all the required properties on the interval, [xg]. 10
Dependencies betweea, k vs thresholdx, and a, k vs 1.2

thresholdxz are described and graphically presented in [42].

For practical use of pdf (25) it is useful to have a detailed Fig. 4 The set of points of parametevs skewness and kurtosis
mapping of parameterg k, which must be assigned in order
for (25) to attain the desired values of skewness and kurtosisSimilarly, Fig. 5 and Fig. 6 show the values of paramieter
see Fig. 3 to Fig. 6. The normalized Gauss pgfx) is in dependence on the values of skewness and kurtosis.
considered in the present study. Fig. 3 displays 100 discrete
points of parametea realized with constant spacing on the
interval -1.1 to 1.1 and 100 discrete points of paramieter
realized with constant spacing on the interval 1.4 to 4.6.
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5 Kurtosis
2 25 3 3.5 4 45 5
4.5 0
Setpoints of skewness Skewnessx—0.2
4 Skewness~—0.1
Skewness~0
< 35 2
2 %
£ 3 3
(3]
© 2 4
g 25 s
£
2 5 6
)
1.5
1 -8
2 25 3 3.5 4 4.5 5
Kurtosis
-10

Fig. 5 The set of points of paramekers skewness and kurtosis
Fig. 8 The set of points of parameteivs skewness and kurtosis

5
skewness~t1 10
4.5
4 skewness=+0.9 8
£
- 3.9 _ ¢
8 sll:ewnesszio.] skewness~+0.8 _:
O . S
g 3 skewness==£0 skewness~+0.7 % 6
g 25 g Setpoints of skewness
skewness~+0.6 =
o 4
2 3
skewness~+0.5
15 skewness~+0.4 S
sKewness~+0.3 2
1 skewness~10.2
2 25 3 3.5 4 4.5 5
Kurtosis 0
2 2.5 3 3.5 4 4.5 5

Fig. 6 The set of points of paramekers skewness and kurtosis Kurtosis

. Fig. 9 The set of points of paramexgivs skewness and kurtosis
The same number of paie k that were used for the 9 P P ®

depictions in Fig. 3 to Fig. 6 were used for Fig. 7 to Fig. 10, 10
which show threshold, andxg.
Kurtosis 8
2 2.5 3 3.5 4 4.5 5 3
0 e
26
(%]
e
L
-2 o
¢ % 4
X |
ke
2 4
3 2
2 Setpoints of skewness Skewness~0
ES Skewness=0.1
% -6 Skewness~0.2
= 0
2 2.5 3 35 4 4.5 5
Kurtosis
-8
Fig. 10 The set of points of threshodglvs skewness and kurtosis
-10

The outputs shown in Fig. 3 to Fig. 10 enable more practical
Fig. 7 The set of points of parameteivs skewness and kurtosis  sage of (25) using the input values of skewness and kurtosis.
It should be noted that the threshold values shown in Fig. 7 to
Fig. 10 are valid only for the normalized Gauss gglx) and
in the case of the general assignment of the mean value and
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standard deviation the values ®gf are multiplied by the Failure probability =
standard deviation and the mean value is added; and_ . //
correspondingly foxz. The outputs shown in Fig. 3to Fig. 6 |

are generally valid for arbitrary assignment of the mean value

and standard deviation. TR

IV. THE FAILURE PROBABILISTIC ANALYSIS 3.00E-06

Let us consider parameteM: and N, of the limit state
function (17) as random variables with variation coefficient 2.00E-06
Vn=Vna=0.2, where parametad: has a Hermite pdf and
parameteiN, has a Gauss pdf. Pdfs of the conside¥edNa 1.00E-06
do not allow the assessment of reliability via calculation of the
reliability index S in the close form according (23), therefore,

0.00E+00

the probability assessment is performed using the Monte Carlo 03 1, — 3,33
method. The average numbewg of cycles to failure is S0, g sl
1.2x16 and the average numbex, of applied load cycles is S 1 02555728 Kurtosis
1200 per day. As the number of applied load cycles increases

over time, the probability of the fatigue limit state increases. m4.00E-06-5.00E-06  O3.00E-06-4.00E-06  02.00E-06-3.00E-06

The aim of the probabilistic analysis is to quantify the effect
of skewness and kurtosis of paramédeion the probability of
failure P;. Skewness and kurtosis are not as popular parameters
as the first two statistical moments, and the question is, what isFig. 12 Failure probability in the"éyear of operation
their influence on the results of probabilistic analysis of
failure?

m1.00E-06-2.00E-06 ~ m0.00E+00-1.00E-06

L i i . Failure probability g
The probabilistic analysis was evaluated using fifteen =
million simulation runs of the Monte Carlo method, which 60006 T
enabled the numerical calculation of very small values of the
o : I 5,00E-06 |
probability of failure. Results of the probabilistic study are
shown in Fig. 11 to Fig. 18. oy
Failure protw/' 3.00E-06
5.00E-06
J 2.00E-06 -
4.50E-06
4.00E-06 1.00E-06 -
3.50E-06
3.00E-06 0.00E+00
03 533
2.50E-06 02 4, g B4
0 ' 2.9
| 0.1 :
2.00E-06 Skewness 025497 28 Kurtosis
1.50E-06 -
1.00E-06 m5.00E-06-6.00E-06 m4.00E-06-5.00E-06 03.00E-06-4.00E-06
5.00E-07
02.00E-06-3.00E-06 m1.00E-06-2.00E-06 m0.00E+00-1.00E-06
0.00E+00 -
- a g4 32 i
0 e 2 29 3 Fig. 13 Failure probability in the%year of operation
Skewness _(;,»2_0‘3 27 8 Kurtosis

m4.50E-06-5.00E-06 m4.00E-06-4.50E-06 03.50E-06-4.00E-06
m3.00E-06-3.50E-06 @2 .50E-06-3.00E-06 m2.00E-06-2.50E-06
01.50E-06-2.00E-06 01.00E-06-1.50E-06 m5.00E-07-1.00E-06
m0.00E+00-5.00E-07

Fig. 11 Failure probability in the™lyear of operation
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Failure probability
7.00E-06 w

6.00E-06 -
5.00E-06
4.00E-06 -
3.00E-06

2.00E-06 -

1.00E-06

L

0.00E+00

0.1 3.1

Skewness

0 3

-0.1 28 2.9

024327

32

Kurtosis

m6.00E-06-7.00E-06 m5.00E-06-6.00E-06
03.00E-06-4.00E-06

m0.00E+00-1.00E-06

02.00E-06-3.00E-06

m4.00E-06-5.00E-06
= 1.00E-06-2.00E-06

Fig. 14 Failure probability in the"Syear of operation

Failure probability

=2

=}

=}

m

o

o}
.

2.00E-06 -

0.00E+00

0.1

Skewness

0
-0.1 28 29

Kurtosis

029327

3.2
3 3.1

3.3

=1.00E-05-1.20E-05 m8.00E-06-1.00E-05

04.00E-06-6.00E-06 ~ m2.00E-06-4.00E-06

06.00E-06-8.00E-06

m0.00E+00-2.00E-06

Fig. 15 Failure probability in the f/ear of operation
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initial cracks, the calculations must also include the random
effects of material and geometric characteristics of steel
samples whose investigation is the subject of intensive
experimental research [43-46] and numerical FEM
modelling [45, 47].

From a structural point of view, the fatigue life is
significantly influenced by the shape of the structure, for e.g.
square holes or sharp corners, which entail increased local
stresses and the associated increased risk of the initiation of
fatigue cracks. Therefore, round holes and smooth transitions
and fillets increase the fatigue strength of structures. Stress
states and forms of failure are commonly studied in
engineering practice using the finite element method [47, 49],

Failure probability

il

4.00E-03 l
3.50E-03

3.00E-03 -
2.50E-03 -
2.00E-03 -
1.50E-03 1
1.00E-03

5.00E-04

0.00E+00

0.3 gp B8 which provides information usable in numerical analyses of
02 o4 g 817 linear fracture mechanics.
Skewness L 02457 28 o= Kurtosis It is apparent from the numerically obtained results shown

in Fig. 11 to Fig. 18 that the failure probability reaches higher
values for low values of skewness and high values of kurtosis.
With increasing operation time increases the probability of
failure. However, the differences between the stochastic
analysis of a single element with one crack and the entire steel
bridge can be large. With regard to the number of inaccuracies
present in probabilistic calculations, targeted time specific
V. CONCLUSION inspections of bridge structures, during which the size of

The high effects of skewness and kurtosis of fatigu%lready measured cracks are controlled among other things, is

resistanceN on the failure probability are apparent from the'significan_t for 'Fhe analysis of the propagatiqn of fatigue cracks.
results of the probabilistic analysis of reliability. Consideratio;qhe thalned |nf0rr_n_a_1t|on ca_n be m_cluded in the caI(_:uIatlon of
of the influence of skewness and kurtosis of Struth%ondltlonal probabilities, which enriches the evaluation of the

resistance and load effects can be an important part of {ﬁ\ggue limit staFe W'th_ as;umptlons, that no failure has_

probabilistic analysis of the limit states of steel structures. TH§C9fr6d befor_e !nspe_ct!on time or that the fatigue damage is
example evaluated using linear fracture mechanics and H’ﬂﬁh'n the admissible limits [S0].

LHS method has shown that the fatigue resistance of the steel
element with an initial random crack has negligible values of

skewness and kurtosis and its pdf may differ from the log- This resu]t was achieved with the financial support of the
normal pdf. Generally, pdfs of the random variables of fatigugrojects GA'R 17-01589S and No. LO1408 “AdMAs UP”.

limit states may exhibit significant deviations from Gauss or

log-normal pdfs, which can greatly reduce the accuracy of the REFERENCES
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