
 

 

 
Abstract— In this paper a method to improve the stress state on a 

2D finite element (FE) Q1 coarse mesh for fracture mechanics 
applications is shown. Radial Basis Functions (RBF) are employed 
synergically with balance equations to reduce the interpolation error 
and improve results extracted from the coarse FEM models. In 
addition to FE nodes, RBF interpolation embeds a certain number of 
additional points, for which displacements satisfy a minimization 
procedure of the error on balance equations. Derived fields (strain, 
stress) yield analytically from the constructed interpolator. Proposed 
method is validated with two 2D structural cases involving strong 
stress concentrations and applied on a mode I crack opening 
simulation in which the J-integral is extracted. Described procedure 
can be employed as a post-processing tool on meshes not suitable to 
be employed for fracture mechanics applications. 
 
Keywords— Balance equations, FEM upscaling, meshless, radial 

basis functions, fracture mechanics, j-integral. 

I. INTRODUCTION 

n several fields, the study and the prediction of crack 
propagations is a requirement that allows the prevention of 

potentially harmful and catastrophic failures, otherwise 
occurring abruptly. Starting from highly loaded areas where 
stress concentrations are encountered, structural elements 
subjected to cyclical loads can develop cracks, whose 
evolution is enhanced by fatigue cycles. Crack propagation 
can continue undetected until a critical size is reached, 
producing dangerous and unexpected breaks.  

Nowadays, given the level of risk linked to such 
occurrences, the engineering practice prescribes an accurate 
study of the phenomenon, relying on the fracture mechanics 
theory. The first approaches, theorized by Griffith [1], are 
today enriched relying on numerical-based simulations, which 
allow the accurate prediction of the evolution of flaws in 
complex structures subjected to varying loads. Among other 
methods, the most suitable in tackling fracture mechanics 
applications demonstrated to be the finite element method 
(FEM)[2], the boundary elements method (BEM)[3], the dual 
boundary element methods (DBEM)[4] and the extended finite 
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element method (XFEM)[5]. FEM-based tools are already 
employed extensively in several fields of engineering [6][7] 
and do not require a complex ad hoc implementation stage, 
contrarily to other methods. For these reasons, they are 
widespread available and were employed for years for fracture 
mechanics applications. Two main drawbacks when adopting 
FEM for crack propagation analyses, are the difficulty of 
adapting the numerical grid to the newly evolved geometry, 
and the level of mesh refinement required in order to obtain 
reliable results. To update the numerical grid with the new 
crack shape, re-meshing is an option; however, it can turn in a 
very difficult and time-consuming task especially if dealing 
with complex shapes [8]. This process can become unbearable 
when several re-meshing are required for a single study or 
when large deformations are encountered [9]. 

Meshless methods [12] emerged with the aim of avoiding 
the limitations related to the element-based approaches [11]. 
They  allow reaching a higher level of flexibility, with the 
approximation entirely described in terms of points in the 
space, for the study of large distorted domains [13]. 

Nayroles et al. [14] were the first to introduce the so-called 
diffused approximation (DA). This method assigns at each 
point of the set a circumscribed interpolating function whose 
coefficients minimize a properly defined L2 norm. In such a 
way, the boundaries of each local interpolation assume a fuzzy 
characteristic, enhancing continuity with respect to traditional 
basis functions. Belytscho and co-workers [15] coupled the 
DA with the Galerkin method. Although a grid is still present 
to carry out numerical quadrature, it is independent of the 
model geometry. The partition of unity method (POU) [16] is 
similar under some aspects to the DA (overlapping patches 
covering the whole domain), anyway the possibility to include 
the differential expression of the problem in the local 
approximation space and its differentiability ad libitum 
constitute innovative features. Another class of meshless 
approaches relies on local weak forms, such as the local 
Petrov-Galerkin method [17]. This procedure prescribes the 
subdivision of the global domain into regular overlapping 
subdomains, in which integration evaluates in a truly meshless 
fashion. 

Radial basis functions (RBF) were introduced to deal with 
problems of multidimensional interpolation [18]. In [19] 
Kansa proposed the so-called collocation method based on 
multiquadratics (MQ) RBF to obtain approximate solutions to 
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partial differential equations (PDEs) problems. The 
derivability and accuracy of MQ allow the construction of 
large systems of equations, where a function and its 
derivatives appear all at once. This method showed its efficacy 
in a variety of applications, involving both global [20]-[22] 
and local [23]-[25] RBF. Despite its versatility, Fasshauer [26] 
pointed out drawbacks of this strategy such as the asymmetry 
of the associated matrix and its singularity for certain 
arrangements of points, proposing a Hermitian form able to 
overcome these issues. 

Collocation methods are not the only way to adopt RBF in a 
meshless solution process. The method of fundamental 
solutions (MFS) [27] as well as the dual reciprocity method 
(DRM) [28] can adopt RBF to handle various problems, with 
no mesh involved. In [29] and [30] RBF substitute classical 
shape functions for the local approximation task while a 
background mesh is still necessary to integrate the Galerkin 
weak form. 

Without the need of connectivity, meshless methods are 
particularly suitable for studies in which geometry changes 
also involve internal boundaries. For this reason, several 
notable examples of fracture mechanics problems tackled by 
using meshless methods can be encountered in literature 
[31][32][33].  

In [34], Belytschko et al. proposed the element free 
Galerkin (EFG) method to model crack propagation. The EFG 
is extensively employed in literature given its high accuracy in 
the solution of elliptic problems. In [35] Khosravifard et al. 
employed the EFG method and meshless radial point 
interpolation, together with the background decomposition 
method (BDM) to obtain the integral form of a fracture 
mechanics problem. A local partition of unity method was 
proposed in [36] to be used with EFG for the analysis of 
quasi-static 2D crack growth. In [37] YuanTong et al. 
proposed an enriched radial basis function (e-RPIM) method 
for the accurate description of crack tip fields, including stress 
and displacement. In [38] Biancolini et al. employed RBF 
splines for the deformation of the numerical FEM domains 
employed for the stress intensity factor (SIF) calculations, 
relying on 2D crack development models and furtherly 
expanding the concept for multi degree of freedom problems 
in  [39].  

The authors recently proposed a method to improve FEM 
results obtained for 2D models [40]. FEM displacements are 
continuous across elements and exhibit a faster h-convergence 
with respect to their derived fields [7]. RBF interpolation of 
FEM displacements provides a continuous analytical form 
over the domain. Strain and stress fields obtained from 
derivation of the RBF interpolator do not suffer from the 
continuity problems typical of shape functions, showing a 
higher accuracy with respect to FEM. Proposed method 
proved to give the greatest benefit when coarse meshes are 
considered, improving FEM results in correspondence of 
stress raisers. In [41] authors moved a step forward, exploiting 
the continuous and differentiable representation of the 
scattered FEM displacements obtained using RBF. By adding 
RBF points to the preexistent FEM nodes, local imbalance 

was reduced while maintaining the original values on the FEM 
nodes, obtaining straightforwardly the stress and strain values. 
In the present work, the approach demonstrated in [41] is 
applied in fracture mechanics as a post-processing tool for Q1 
FEM models, enriching numerical results with RBF points in a 
meshless fashion. An analytical meshless RBF-based 
procedure to extract the J-integral value is employed on such 
obtained results, exploiting the analytical differentiability of 
RBF. Using this method, crack analysis can be performed on 
coarse numerical meshes with linear elements, otherwise not 
suitable for fracture mechanics applications. Additional RBF 
points are added only where needed and in a second time after 
structural analysis, performing the J-integral calculation in the 
interested area, obtaining results comparable to the ones 
achieved using parabolic elements. The paper is structured as 
described: after a first mathematical introduction on RBF, the 
numerical procedure at the basis of this work is illustrated. 
The approach is then validated on two structural cases with 
strong stress concentrations prior to the application on a mode 
I crack opening simulation for the J-integral evaluation by 
means of the proposed method. 

II. RADIAL BASIS FUNCTIONS 

Radial basis functions interpolation is a subject covered in 
many dedicated textbooks, from either a mere mathematical 
[42] or a more applicative perspective [43]. RBF have given 
their contribution in a wide range of fields pertaining to 
engineering and science: neural networks [44] to computer 
graphics (surface reconstruction [45]), mesh morphing 
[46][47] to image analysis of deformations [48] and data 
transfer [49]. RBF mesh morphing has been employed for 
several applications, from FSI coupling [50] to genetic [51], 
evolutionary optimizations [52] and advanced modelling [53]. 

Let suppose to have a set of N points xi with i=1,…,N in Թd 
for which the scalar values gi are assigned. A RBF interpolant 
s(x) is a series of radial basis φ, biased by the weights γi: 

ሻݔሺݏ ൌ෍ߛ௜߮ሺ‖ݔ െ ௜‖ሻݔ
ே

௜ୀଵ

 (1) 

Two significant benefits of RBF interpolation are clear from 
the above expression: 
1) Interpolation is constructed just in terms of nodes.  
2) The Euclidean norm reduces the original space dimension 

to a scalar quantity, providing dimensional independence. 
Typical RBF kernels are shown in Table 1 with ݎ ൌ

࢞‖ െ  ϵ is a shape parameter [54], which should depend ,‖࢏࢞
upon the average grid spacing. Given the expressions in Table 
1, it is worth to notice that the generalized multiquadratic can 
assume also the form of any spline, multiquadratic, inverse 
multiquadratic and inverse quadratic kernel with a proper 
choice of the exponent q and of the parameter R. 

The coefficients γi are such that the interpolator s(x) gives 
exactly the values gi at the original (source) points xi. In 
matrix form: 
ࢽࡹ ൌ  (1) ࢍ

The matrix M collects the radial basis φ computed at the 
source points and its inversion is necessary to determine the 
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vector of weights γ. Sometimes it is convenient to add a 
polynomial supplement h(x) to the expression in (1), in this 
way polynomial functions of the same form of h(x) can be 
reproduced exactly. This comes at the cost of a formal 
complication of the system in (2), anyway in the present work 
we make no use of the polynomial supplement thus no more 
details are given in this regard. 

It seems suitable to continue this brief dissertation on RBF, 
rather general so far, directly addressing the workflow 
presented in this paper. In the specific context, RBF reproduce 
two-dimensional displacement fields. Thus, it is appropriate to 
illustrate the case of RBF interpolating a vector field in 2D. As 
the RBF interpolation works on scalar functions, each 
component of the displacement field requires its RBF series: 

ە
ۖ
۔

ۖ
ۓ

	

ݑ ൌ 	 ሻܠ௫ሺݏ ൌ෍ߛ௜
௫߮

ே

௜ୀଵ

ሺ‖ܠ െ ୧‖ሻܠ

ݒ ൌ 	 ሻܠ௬ሺݏ ൌ෍ߛ௜
௬߮

ே

௜ୀଵ

ሺ‖ܠ െ ୧‖ሻܠ

 (2) 

Strain is the symmetric part of the gradient of the vector 
field of (3) and is the result of a differentiation procedure. 
Radial basis are derivated with respect to x and y. Taking the 
example of the GMQ kernel, it is straightforward to apply the 
chain rule which yields 

ሻܠሺݏ߲

ݔ߲
ൌ෍ߛ௜ ∙ ଶݎሺ߳ଶݍ ൅ ܴଶሻ௤ିଵ2߳ଶሺݔ െ ௜ሻݔ

ே

௜ୀଵ

 

 (3) 
ሻܠሺݏ߲

ݕ߲
ൌ෍ߛ௜ ∙ ଶݎሺ߳ଶݍ ൅ ܴଶሻ௤ିଵ2߳ଶሺݕ െ ௜ሻݕ

ே

௜ୀଵ

 

The differentiation procedure recurs as many times as the 
degree of derivative required. Differential equations of 
balance contain second degree derivatives of the components 
of displacement, thus the differentiation rule must be repeated 
twice. 
 
Table 1 most common radial basis functions  

RBF ࣐ሺ࢘ሻ 

Spline type (Rn) ݎ௡,  ݀݀݋	݊

Thin plate spline (TPSn) ݎ௡ logሺݎሻ ,  ݊݁ݒ݁	݊

Multiquadratic (MQ) ඥ1 ൅ ߳ଶݎଶ 

Inverse multiquadratic (IMQ) 
1

√1 ൅ ߳ଶݎଶ
 

Inverse quadratic (IQ) 
1

1 ൅ ߳ଶݎଶ
 

Gaussian (GS) ݁ିఢ
మ௥మ 

Generalized multiquadratic 
(GMQ) 

ሺ߳ଶݎଶ ൅ ܴଶሻ௤ 

III. NUMERICAL PROCEDURE 

This paper presents a progress with respect to the former 

work detailed in [40]. For sake of completeness, the following 
points outline the referenced method: 
1) Several 2D structural cases of stress concentration were 

solved via FEM.  
2) RBF interpolation supplied a smooth form of the 

displacement field, starting from FEM nodal values. 
3) Analytical differentiation of the interpolated 

displacements provided the strain field. 
4) Application of Hook’s law supplied the stress map 

throughout the model, which proved to be more accurate 
than that provided by FEM for the same case. 

The mentioned paper also showed the convergence of the 
method when increasing the level of mesh refinement up to a 
very dense discretization. 

The progress developed here consists in including local 
balance in the RBF interpolator. As in [40], we still consider 
two-dimensional plane stress problems. The material is 
homogeneous and isotropic. Under these assumptions, Hook’s 
law relates stress to strain vector as follows: 

൝	
௫ߪ
௬ߪ
߬௫௬

ൡ ൌ ൦

ா

ଵିఔమ
ఔா

ଵିఔమ
0

ఔா

ଵିఔమ
ா

ଵିఔమ
0

0 0 ܩ

൪ ൝
௫ߝ
௬ߝ
௫௬ߝ

ൡ                 (4) 

where E is the Young modulus, ν is the Poisson coefficient 
and the shear modulus is 

ܩ ൌ
ா

ଶሺଵାఔሻ
                       (5) 

Displacement derivatives form the strain components: 

௫ߝ ൌ
ݑ߲
ݔ߲

  

௬ߝ ൌ
ݒ߲
ݕ߲

 (6) 

௫௬ߝ ൌ
ݑ߲
ݕ߲

൅
ݒ߲
ݔ߲

  

Stresses inside the material should satisfy equilibrium 
equations, with no body force applied and for 2D plane stress 
cases, they assume the form: 
௫ߪ߲
ݔ߲

൅
߲߬௫௬
ݕ߲

ൌ 0 

(7) ߲߬௫௬
ݔ߲

൅
௬ߪ߲
ݕ߲

ൌ 0 

Plugging (5)-(7) in (8), equilibrium equations can be written 
in terms of displacement derivatives: 
1

1 െ ߥ
ቆ
߲ଶݑ
ଶݔ߲

൅ ߥ
߲ଶݒ
ݕ߲ݔ߲

ቇ ൅
1
2
ቆ
߲ଶݑ
ଶݕ߲

൅
߲ଶݒ
ݕ߲ݔ߲

ቇ ൌ 0 

(8) 
1
2
ቆ
߲ଶݑ
ݕ߲ݔ߲

൅
߲ଶݒ
ଶݔ߲

ቇ ൅
1

1 െ ߥ
ቆ
߲ଶݒ
ଶݕ߲

൅ ߥ
߲ଶݑ
ݕ߲ݔ߲

ቇ ൌ 0 

RBF interpolation provides u and v in a continuous and 
differentiable form. Coefficients vectors γx and γy allow 
expressing the components of displacement as RBF series (see 
(3)). 
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They come from the inverse problems: 
࢞ࢽ ൌ  ࢛૚ିࡹ

(9) 
࢟ࢽ ൌ  ࢜૚ିࡹ

Vectors u and v contain the scattered data from which 
interpolation starts. The aim of the proposed method is to 
embed local balance in the series form of (3), retaining nodal 
displacements. Bearing this in mind, global vectors must 
contain displacements both at FEM nodes and in 
correspondence of new sites, whose associated values 
minimize error on balance. Let NF and Na be the number of 
FEM nodes and added points respectively, we pose 
࢛ ൌ ૙࢛ ൅  ࢇ࢛ࡿ

(10) 
࢜ ൌ ૙࢜ ൅  ࢇ࢜ࡿ

The row-vectors u0 and v0 have dimension NF+Na, with 
FEM nodal displacements in the first NF positions and zero 
afterwards. The vectors ua and va contain the Na values of 
displacement at additional points. The matrix S concatenates 
displacements in order to assemble the global vectors. It 
consists of two sub-matrices: 

ࡿ ൌ ቂ૙
ࡵ
ቃ (11) 

The matrix 0 is all-zeros NF×Na, I is the identity matrix with 
dimension Na×Na. Plugging (11) in (10) we obtain 
࢞ࢽ ൌ ૙࢛૚ିࡹ ൅ିࡹ૚	ࢇ࢛ࡿ 

(12) 
࢟ࢽ ൌ ૙࢜૚ିࡹ ൅ିࡹ૚	ࢇ࢜ࡿ 

RBF interpolation supplies the displacement field in a 
smooth form, for which derivation only acts on the matrix M 
of radial basis. The notations ∂M and ∂2M adopted below 
indicate the matrices containing the first and second order 
derivatives of the terms in M, computed at all the points of the 
system (i.e. FEM nodes and additional sites). We state the 
following equalities 

࢞ࢗ ൌ
1

1 െ ߥ
ቆ
߲ଶࡹ
ଶݔ߲

૙࢛૚ିࡹ ൅ ߥ
߲ଶࡹ
ݕ߲ݔ߲

૙ቇ࢜૚ିࡹ ൅ 

൅
1
2
ቆ
߲ଶࡹ
ଶݕ߲

૙࢛૚ିࡹ ൅
߲ଶࡹ
ݕ߲ݔ߲

 ૙ቇ࢜૚ିࡹ
(13) 

 

࢟ࢗ ൌ
1
2
ቆ
߲ଶࡹ
ݕ߲ݔ߲

૙࢛૚ିࡹ ൅
߲ଶࡹ
ଶݔ߲

૙ቇ࢜૚ିࡹ ൅ 

൅
1

1 െ ߥ
ቆ
߲ଶࡹ
ଶݕ߲

૙࢜૚ିࡹ ൅ ߥ
߲ଶࡹ
ݕ߲ݔ߲

 ૙ቇ࢛૚ିࡹ
(14) 

 

࢞ࡾ ൌ
1

1 െ ߥ
߲ଶࡹ
ଶݔ߲

ࡿ૚ିࡹ ൅
1
2
߲ଶࡹ
ଶݕ߲

 (15) ࡿ૚ିࡹ

 

࢟ࡾ ൌ
1
2
߲ଶࡹ
ଶݔ߲

ࡿ૚ିࡹ ൅
1

1 െ ߥ
߲ଶࡹ
ଶݕ߲

 (16) ࡿ૚ିࡹ

 

ࢀ ൌ
1
2
߲ଶࡹ
ݕ߲ݔ߲

ࡿ૚ିࡹ ൅
1

1 െ ߥ
߲ଶࡹ
ݕ߲ݔ߲

 (17) ࡿ૚ିࡹ

Using (14)-(18), residuals of balance equations (9) assume 
the compact form 

 

࢞ࢋ ൌ ࢇ࢛࢞ࡾ ൅ ࢇ࢜ࢀ ൅  ࢞ࢗ
࢟ࢋ (18) ൌ ࢇ࢜࢟ࡾ ൅ ࢇ࢛ࢀ ൅  ࢟ࢗ

We consider the sum of the squared norms of ex and ey as a 
measure of the overall error on balance e: 
૛‖࢞ࢋ‖ ൌ ሺࢇ࢛࢞ࡾ ൅ ࢇ࢜ࢀ ൅ ࢇ࢛࢞ࡾሺࢀሻ࢞ࢗ ൅ ࢇ࢜ࢀ ൅  ሻ࢞ࢗ

(19) 
ฮ࢟ࢋฮ

૛
ൌ ൫ࢇ࢜࢟ࡾ ൅ ࢇ࢛ࢀ ൅ ൯࢟ࢗ

ࢀ
൫ࢇ࢜࢟ࡾ ൅ ࢇ࢛ࢀ ൅  ൯࢟ࢗ

݁ ൌ ૛‖࢞ࢋ‖ ൅ ฮ࢟ࢋฮ
૛
 (20) 

Sought vectors ua and va are those that minimize e: 

ە
۔

ۓ
߲݁
ࢇ࢛߲

ൌ ૙

߲݁
ࢇ߲࢜

ൌ ૙
 

 

(21) 

For sake on conciseness, we adopt 
࢞࢖ ൌ െ൫࢞ࡾ

்࢞ࢗ ൅  ൯ (22)࢟ࢗࢀࢀ

 
࢟࢖ ൌ െ൫࢟ࡾ

்࢟ࢗ ൅  ൯ (23)࢞ࢗࢀࢀ

 
࢞ࡽ ൌ ࢞ࡾ

࢞ࡾ் ൅  (24) ࢀࢀࢀ
 
࢟ࡽ ൌ ࢟ࡾ

࢟ࡾ் ൅  (25) ࢀࢀࢀ
 
࢞ࡰ ൌ െ൫࢞ࡾ

ࢀ் ൅  ൯ (26)࢟ࡾࢀࢀ
 
࢟ࡰ ൌ െ൫࢟ࡾ

ࢀ் ൅  ൯ (27)࢞ࡾࢀࢀ

Equations (23)-(28) allow to express ua and va in the short 
form 

ࢇ࢛ ൌ ൫࢞ࡽ െ ࢟ࡽ࢞ࡰ
ି૚࢟ࡰ൯

ି૚
൫࢟ࡽ࢞ࡰ

ି૚࢟࢖ ൅  ൯࢞࢖
(28) 

ࢇ࢜ ൌ ൫࢟ࡽ െ ࢞ࡽ࢟ࡰ
ି૚࢞ࡰ൯

ି૚
൫࢞ࡽ࢟ࡰ

ି૚࢞࢖ ൅  ൯࢟࢖

It is worth to notice that the matrices ࢞ࡽand ࢟ࡽ and their 
inverse forms are symmetric, given (25) and (26). Since	
࢞ࡰ

ࢀ ൌ  as deducible from (27) and (28), also the matrices ,࢟ࡰ

൫࢞ࡽ െ ࢟ࡽ࢞ࡰ
ି૚࢟ࡰ൯ and ൫࢟ࡽ െ ࢞ࡽ࢟ࡰ

ି૚࢞ࡰ൯ are symmetric. 
Tailored algorithms exist for the inversion of symmetric 
matrices, which allow the process to run in a relatively short 
time. 

IV. VALIDATION 

Two plane cases of structures with a strong stress 
concentration supply a robust test bench for the proposed 
method: a plate with a single hole in traction and a planar 
structure under compression with three holes drilled. For both 
geometries, a series of FEM analyses allowed to test the 
convergence up to a very fine mesh considered as golden 
standard (GS). The mesh size is controlled by the number of 
elements along a quarter of the hole circumference. In [40] the 
upscaling of FEM results occurred thanks to the enhanced 
continuity of the RBF interpolator. Here, the process is 
controllable with the number of spare points and it relies on 
local balance, further than on the favourable mathematical 
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properties of RBF. The adopted kernel for both methods 
relying on RBF is the generalized multiquadratics (GMQ) 
with q = 1.5, R = 0.1, ϵ = 1 for the plate and ϵ = 0.1 for the rib. 
The FEM framework used to produce numerical results is 
Ansys APDL. 

FEM results for the GS are compared with the ones 
obtained with the proposed method. The quality of the output 
is verified globally, over an area around the geometrical 
singularity. For this assessment, stress evaluation at the nodes 
of the GS mesh proceeded employing the proposed method. In 
this way, the point-wise difference with the GS FEM value 
gives an error for each stress component. The L2 norm of the 
vector containing all these quantities is normalized on the L2 
norm of the vector with GS nodal stresses, to measure the 
global error. The same procedure holds to compute the global 
error also for the RBF method described in [40] and when 
original FEM stresses are interpolated at GS nodes by means 
of shape functions. 

Addition of spare points follows a systematic workflow, 
which makes use of Delaunay triangulation. Triangular 
patches are built using FEM nodes, additional spare points are 
the centroids of the generated triangles. This process leads to 
the construction of a sufficiently ordered grid, without the risk 
of generating coincident points, both vital requirements for a 
satisfactory RBF interpolation. An excessive number of 
additional points leads to the ill conditioning of the matrices 
containing Euclidean correlations. 

A strong advantage of the method is that the addition of 
spare points can affect only critical areas, like the ones hosting 
stress concentrations, with a wise usage of computational 
resources. A more extensive validation of the proposed 
method, including effects on the stress peak value and pros 
and cons related to the introduction of additional points, can 
be found in [41]. 

A. Hole in a plate under traction 

This case is the same first analysed in [40], for sake of 
completeness dimensions are reported below: 
• B = base = 30 mm 
• H = height = 15 mm 
• d = diameter of the hole = 10 mm 

The nominal tensile stress is 1000 MPa, which is the 
traction applied at the boundary. The geometry has two axes 
of symmetry, which allows the numerical model to be just a 
quarter of the whole structure, given proper constraints at the 
boundaries (Fig. 1). Three-noded triangular elements were 
used (SHELL41) with stiffness only on the plane of definition 
and unitary thickness. The area in which additional points are 
introduced is restrained at a radius of 10 mm around the hole 
centre. 

 
Fig. 1 APDL case geometry for the plate with one centered hole 

 

B. Wing rib with three lightening holes under compressive 
load 

The second case addressed is a flat wing rib with three 
lightening holes drilled [40], [57]. Also in this case it is 
possible to take advantage of the double symmetry of the 
structure, reducing the extension of the numerical counterpart. 
The dimensions of the model are 
• H1 = 196.5 mm, height of the left edge and of module 1  
and 2 
• H2 = 229.5 mm, height of the right edge 
• d = 200 mm, diameter of the holes 
• B1 = 393 mm, base of module 1, two times the base of 
module 2 
• B2 = 627 mm, base of the model 
A dimensioned sketch of the rib is in Fig. 2. 

SHELL41, 4-noded quadrilateral elements with unitary 
thickness were deployed for the discretization of the model. 
The rib is subject to a compressive load of 100 MPa, acting 
along the curved edge. In Fig. 3 the coloured map obtained for 
the GS is visible, showing the x-component of the stress (σx). 
The RBF post-processing method is applied to both module 1 
and module 2 (highlighted in Fig. 2), including stress raisers 
of different severities. The areas concerned with point addition 
are the circular belts around the holes, with external radius 150 
mm. 

 
Fig. 2 APDL case geometry for the rib with three lightening holes 
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Fig. 3 stress level curves for σx obtained by the FEM model for the 

rib with three lightening holes 
 

We used meshes with an increasing level of refinement to 
retrieve FEM data necessary to run the method. The procedure 
is assessed considering the global accuracy of the full stress 
field. 

 

 
 

C. Validation results 

The application of the method involving RBF + LB leads to 
an evolution of the stress contour affecting a certain area, it 
seemed relevant to investigate the quality of the modified 
stress field with respect to a reference, throughout the whole 
portion considered. Table 2 refers to the plate with a hole in 
traction. Table 3 reports the results for module 1 of the drilled 
rib, Table 4 exposes the results for module 2 in the same way. 
The first column from left reports the level of discretization of 
the starting mesh given as the number of subdivisions along a 

quarter of the hole, the second and third columns list the 
percentage errors with respect to GS for FEM interpolation of 
stresses (by means of shape functions) and for the RBF 
method. The case of RBF + LB is shown in column four. For 
all the analysed instances, RBF + LB proved effective in 
reducing the global error with respect to concurrent methods, 
even if its action is restricted to a limited portion around the 
holes. Fig. 4 reports a comparison of stress maps for σx against 
the GS (c). In a), σx obtained with APDL for the model with 6 
divisions of the hole edge is interpolated at the nodes of the 
GS mesh by means of triangular shape functions. b) and d) 
show σx maps as output of RBF and RBF + LB methods 
respectively. The introduction of LB gave the stress contour in 
correspondence of the hole an aspect more similar to GS with 
respect to the case of plain RBF. 

The proposed procedure combining RBF and balance 
equations achieved the lowest global errors for all the 
considered examples. 

Matrix inversions for the methods based on RBF are 
performed thanks to the tool embedded in the MATLAB 
Arithmetic Package, which exploits the Cholesky 
decomposition or the LDL decomposition, a closely related 
variant of the classical Cholesky decomposition. 
 
Table 2 plate with a hole in traction. Global errors 

Subdivisions 
of the hole’s 

edge 

L2 error % 
FEM 

L2 error %  
RBF 

L2 error % 
RBF+LB 

 
4 24.60% 24.15% 23.86% 
6 21.63% 21.74% 19.52% 
8 12.69% 11.38% 10.26% 

10 10.90% 9.88% 8.49% 

 

 
Fig. 4 stress level curves of σx for the plate with one centred hole. a) σx obtained with FEM for 6 subdivision of the hole edge is 

interpolated at GS nodes using triangular shape functions. b) σx obtained with RBF, input displacements are from the model with 6 
subdivisions of the hole edge. c) σx obtained with FEM for the GS mesh. d) σx obtained with RBF + LB. Input data are the same of c.  
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Table 3 wing rib, module 1. Global errors 

Subdivisions 
of the hole’s 

edge 

L2 error % 
FEM 

L2 error %  
RBF 

L2 error % 
RBF+LB 

 
4 24.58% 26.61% 23.35% 
6 15.48% 14.99% 12.92% 
8 11.04% 10.33% 8.71% 

10 14.04% 7.52% 6.06% 
 
Table 4 wing rib, module 2. Global errors 

Subdivisions 
of the hole’s 

edge 

L2 error % 
FEM 

L2 error % 
RBF 

L2 error % 
RBF+LB 

 
4 20.19% 24.28% 20.62% 
6 12.98% 13.76% 10.79% 
8 9.14% 8.81% 6.84% 

10 7.03% 6.34% 4.76% 
 

V. J-INTEGRAL EVALUATION 

A. Computation of the J-Integral 

The J-integral was introduced by Rice [58] and can be 
calculated as: 

ܬ ൌ නൣߪ௜௝ݑ௝,ଵ െܹߜଵ௜൧ݍଵ,௜	݀ܣ
஺

 (30) 

Where ܹ is the stress work energy density, ߪ௜௝ and ݑ௝ are 
the stress and displacement components, ݍଵ	 is an arbitrary 
function, ܣ is an annular portion including the crack-tip. 
Several forms are suggested in literature for the J-integral 
calculation, comprising of linear, surface and volume forms 
[59]. For a 2D case, the surface integral form (30) 
demonstrates higher stability and can benefit from a stress 
state known at a wider surface, not requiring the exact 
pointwise values of stress immediately around the crack tip. 
Dealing with a very coarse application, in which the stress 
results are approximated with respect to analytical results, the 
surface integral approach of the above form was employed as 
suggested by [60]. The surface integral domain is evaluated 
over any closed looped surface around the crack-tip as shown 
in Fig. 5. 

 

 
Fig. 5 annular portion around a crack-tip in a thin plate 

 
The only prescription for the function ݍଵ	 is to smoothly 

blend from a unitary value at the inner radius to a null value at 
the outer circumference. A semi-analytical meshless approach 
was then developed using RBF for the evaluation of the terms 
appearing in equation (30). As previously proposed, RBF 
alone can interpolate FEM displacements at nodes and, given 
their analytical form, be differentiated to obtain strain and 
stress fields, otherwise additional points are introduced aiming 
at enhanced local balance by means of equilibrium in the 
strong form. Both analytical formulations based on RBF, the 
simple and the enriched one, are suitable to easily supply all 
the terms required for Eq (30). As regards the arbitrary ݍଵ	 
function, it seemed reasonable to choose the same RBF kernel 
employed for the interpolation of displacements, which was 
determined once defined the desired values at source points 
along the boundaries of the annular sector. Exploiting the 
meshless properties of RBF, the target points for the semi-
analytical calculation of Eq.(30) were organized according to a 
regular grid contained in a annular subdomain as shown in 
Fig. 6. 

 

 
Fig. 6 case geometry for the plate with a side crack with highlighted 

in red the points employed for J-integral calculation 
 

B. Fracture mechanics test case 

The RBF-based upscaling method described was tested on a 
literature benchmark involving a mode I crack opening on a 
rectangular plate. Referring to [61], the reference J-integral 
value was retrieved for the structure shown in Fig. 6 whose 
dimensions are:  
• B = base = 2 m 
• H = height = 8 m 
• C = crack extension =  0.5 m 
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The uniformly distributed tearing load at both extremities is P 
= 106 N. To better demonstrate the proposed procedure on 
very coarse meshes not suitable to be employed for fracture 
mechanics calculation, a regularly spaced, quadrilateral grid 
was used to represent the computational domain also near the 
crack tip, using 4-nodes linear SHELL41 plate elements. 
Several mesh densities were considered to properly test the 
method, comparing the outcomes in terms of J-integral with 
the same mesh but modelled with parabolic SHELL183 plate 
elements. The adopted kernel was the generalized 
multiquadratics (GMQ) with q = 1.5, R = 0.1, ϵ = 1. 
The J-integral calculation, as shown in the previous paragraph, 
was performed employing different paths to test the robustness 
of the algorithm. Both procedures, RBF and RBF+LB are 
employed to evaluate the values of J-integral. The technique 
enhancing local balance adopted as additional points the 
centroids of the patches obtained by triangulating FEM nodes. 
The proposed post-processing method, requiring points 
augmentation is performed over a reduced portion, 1 m high 
from the crack tip.  Several plots moving the center of the 
annular sector away from the crack-tip are reported from Fig. 
7 to Fig. 10 where J-integral values are reported versus the 
element edge of the starting FEM meshes. In the same graphs, 
FEM evaluations of J-integral from the parabolic mesh 
adopting the same element distribution are showed for 
comparison. RBF proved effective in converting scattered 
FEM results to a continuous form enabling a semi-analytical 
evaluation of the J-integral. The upgraded procedure 
embedding local balance succeeded in increasing the 
reliability of RBF results, moving results closer to the 
reference benchmark most of the times. Results computed 
over sectors closer to the crack-tip are more accurate with 
respect to reference value, at a larger distance a loss in 
accuracy is observed but a convergent behavior of the output 
with respect to mesh spacing appears. Elapsed times to run the 
procedures based on RBF interpolation on such coarse meshes 
are extremely short: 0.003 s for plain RBF and 0.035s for 
RBF+LB considering an element edge of 0.2 m.  Larger 
numbers of additional points were tried leading to negligible 
progress with respect to reported results, with the only effect 
of longer computational times, thus discussion is omitted. 

 
Fig. 7 values of J-integral extracted with FEM deploying quadratic 
elements, RBF and RBF+LB are compared to the reference value. 

The annular portion is at a distance of 0 m from the crack-tip, inner 
radius is 0.2 m, outer radius is 0.45 m 

 

 
Fig. 8 values of J-integral extracted with FEM deploying quadratic 
elements, RBF and RBF+LB are compared to the reference value. 
The annular portion is at a distance of 0.067 m from the crack-tip, 

inner radius is 0.267 m, outer radius is 0.517 m 
 
 

 
Fig. 9 values of J-integral extracted with FEM deploying quadratic 
elements, RBF and RBF+LB are compared to the reference value. 
The annular portion is at a distance of 0.13 m from the crack-tip, 

inner radius is 0.33 m, outer radius is 0.58 m 
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Fig. 10 values of J-integral extracted with FEM deploying quadratic 
elements, RBF and RBF+LB are compared to the reference value. 

The annular portion is at a distance of 0.2 m from the crack-tip, inner 
radius is 0.4 m, outer radius is 0.65 

 
Finer meshes were excluded since a higher proximity of 

nodes exacerbates the discontinuity starting from the crack-tip, 
which clashes with the smoothness of RBF approximation 
[62]. Tests conducted showed that such a strong singularity 
can be absorbed as long as a buffer distance is kept between 
RBF centers, with still a good consistency of the derived 
fields. 

VI. CONCLUSIONS 

In this paper a method to improve the stress state on a 2D FE 
coarse linear mesh for fracture mechanics applications was 
shown. By taking as input the displacements obtained on a 
coarse mesh from a FEM structural analysis, results are 
processed using a technique based on RBF interpolation which 
enforces balance in strong form. New points are added to the 
plain RBF interpolation to enhance equilibrium. After a prior 
validation on two 2D structural cases involving strong stress 
concentrations, a fracture mechanics application aiming at the 
determination of the J-integral was tackled. Proposed 
procedure demonstrated to be suitable for the J-integral 
determination on cases in which the coarse Q1 numerical grid 
is not suitable for fracture mechanics applications, obtaining 
results comparable to the ones achieved by using higher-order 
elements. Such method, being meshless, can be employed as a 
local inspection tool only where needed and even after 
structural analyses run. 
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