
 

 

 
Abstract—This paper addresses the study of the stress field in 

composites continua with the multiscale approach of the DECM 
(Discrete Element modeling with the Cell Method). The analysis 
focuses on composites consisting of a matrix with inclusions of 
various shapes, to investigate whether and how the shape of the 
inclusions changes the stress field. The purpose is to provide a 
numerical explanation for some of the main failure mechanisms of 
concrete, which is precisely a composite consisting of a cement-
based matrix and aggregates of various shapes. Actually, while 
extensive experimental campaigns detailed the shape effect of 
concrete aggregates in the past, so far it has not been possible to 
model the stress field within the inclusions and on the interfaces 
accurately. The reason for this lies in the limits of the differential 
formulation, which is the basis of the most commonly used numerical 
methods. The Cell Method (CM), on the contrary, is an algebraic 
method that provides descriptions up to the micro-scale, 
independently of the presence of rheological discontinuities or 
concentrated sources. This makes the CM useful for describing the 
shape effect of the inclusions, on the micro-scale. When used 
together with a multiscale approach, it also models the macro-scale 
behavior of periodic composite continua, without losing accuracy on 
the micro-scale. The DECM uses discrete elements precisely to 
provide the CM with a multiscale approach. 
 

Keywords—Cell Method (CM), Discrete Element Method 
(DEM), multiscale modeling, periodic composite continua. 

I. INTRODUCTION 

HE DECM—a Discrete Element (DE) approach [1] of the 
Cell Method (CM) [2]-[6]—extends the microanalysis of 

the CM to the macro-scale, through a multiscale modeling [7]. 
This allows the modeling of complex composite structures to 
be tackled benefiting from the advantages of the CM algebraic 
approach [8], which also provides a simplified nonlocal 
analysis [9],[10]. 

The DECM code divides the structures into discrete 
elements, forms the local stiffness matrices, and iteratively 
examines the discrete elements, storing the stiffness matrices 
and performing the numerical analyses in separate workspaces 
for each discrete element. The analysis of distinct elements in 
distinct workspaces is advantageous from the numerical point 
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of view, since it allows the use of small stiffness matrices, 
leading to a significant reduction in computation time. The 
enforcement of both equilibrium and compatibility on the 
boundaries of the discrete elements then allows the individual 
workspaces to exchange information, restoring the continuity 
of the domain. 

The main reason for using the CM on the micro-scale, 
leaving to the DECM the task of managing the discrete 
elements to capture the behavior on the macro-scale, is that 
the algebraic approach of the CM overcomes some of the 
typical disadvantages of the differential formulation. In 
particular, the CM can easily treat any type of singularity, 
including concentrated forces and discontinuities in the 
rheological properties. Therefore—unlike the Finite Element 
Method (FEM), the most used differential method in 
numerical analysis—the CM allows the modeling of 
phenomena up to the scale of single inclusions or interfaces. 
This makes the DECM particularly useful for modeling 
periodic composite continua. The purpose of this paper is to 
exploit precisely this capacity of the DECM, in order to study 
the stress field in cement-based composites under compression 
loads, with particular attention to the shape of the coarse 
aggregates. 

Some experimental tests performed by various researchers 
in the past [11]-[19] already clarified how the strength of 
cement-based composites depends on the coarse aggregates, 
as well as on the water to cement ratio and the degree of 
compaction. For example, it is an established fact that cracks 
initiate at the interfaces between aggregates and mortar matrix 
[20]. Furthermore, the stress for which cracks develop [21]-
[23] and the crack propagation speed along the interfaces [24] 
vary with the aggregate properties. In particular, the critical 
stress level at the interfaces depends on the difference 
between the elastic moduli of the matrix and the aggregates, 
since large differences induce higher tangential, radial and/or 
shear stresses at matrix aggregate interface. When the strength 
of the aggregates is comparable to the strength of the matrix, 
the cracks can also propagate through the aggregates [23]. 
Otherwise, the cracks make their way mainly through the 
matrix, or the matrix/aggregates interfaces. The shape of the 
coarse aggregate is decisive in inducing crack initiation. In 
fact, the smooth gravel leads to cracks at lower stresses than 
the rough and angular crushed rock [25]. Moreover, in the 
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absence of an interface treatment that makes the interface 
stronger, the concrete with spherical aggregates show a wide 
debonding of the aggregates, whereas the concrete with 
crushed aggregates show large crushing of the aggregates 
[26]. In both cases, the strength of the concrete is much lower 
than the strength of the matrix. Actually, the main function of 
the aggregates is to make concrete economic by reducing the 
requirements of cement, the most expensive ingredient, in 
addition to giving volume stability and increasing durability. 

The aforementioned experimental observations also deserve 
a numerical evaluation. The DECM approach now allows us 
to investigate them in more detail. 

II. SIMILARITIES AND DIFFERENCES BETWEEN THE DECM 

AND PREVIOUS DEM APPROACHES 

The basic idea of the DECM is to perform the CM analysis 
on a set of subdivisions of the modeling domain, forming 
stiffness matrices for each subdomain. Contrary to a Finite 
Element (FE) approach, the DECM does not assemble the 
local matrices into a global matrix, but enforces equilibrium 
and compatibility through an iterative analysis on the 
subdomains, by means of stabilization cycles (Section III.A). 
This reduces the computation time significantly and allows the 
modeling of large structures. 

The distinct elements approach connotes the multiscale 
extension of the CM as a DE approach, in a broad sense. In 
fact, according to the original definition of discrete element 
method (DEM) proposed by Cundall and Hart, a DEM is any 
numerical technique that allows finite displacements and 
rotations of discrete bodies—including complete 
detachment—and automatically recognizes new contacts, as 
the simulation progresses. Well, the CM is actually able to 
manage finite displacements and rotations of deformable 
bodies, identify the points of enucleation of the cracks and 
model the propagation of the cracks, also in the cases of 
bifurcation of the cracks, automatically recognizing the 
positions in which the two edges of a crack come into direct 
contact [27]. Now the DECM inherits all these features from 
the CM. 

To tell the truth, there are many differences between the 
DECM and the previous DEM approaches. The first 
difference is the generation of the geometry of the model: 
unlike the other DEM approaches, the DECM does not 
reproduce the shape of the modeling continuum by filling a 
geometric shape of particles. In fact, the discrete elements of 
the DECM are continua, not particles, and the set of the 
discrete elements covers the entire modeling area. This makes 
it possible not to use the filling procedure, which is one of the 
most delicate and time-consuming phases of the DEM 
approaches. 

Even the subsequent calibrations and scaling processes of 
the DEM are time-consuming. Since they are a direct 
consequence of using a filling process, the DECM no longer 
needs them. In particular, unlike the DEM [28]-[31], the 
DECM does not need particular contact constitutive relations 
to establish interactions between the aggregates not in direct 

contact, when they are within a predetermined interaction 
area. In fact, the intrinsic nonlocal nature of the DECM 
variables—which include the lengths-scales-—makes it 
possible to automatically take into account medium- and long-
range interactions. 

It is worth noting that the discrete elements of the DEM can 
be both rigid and deformable. In particular, they are rigid 
[32],[33] or deformable [34] particles in the modeling of 
geomaterials and particulate matter, such as powders or 
granules, and deformable blocks in the modeling of continua 
[29],[35]-[39]. The second case, however, involves some 
additional computational problems with respect to the first 
one, due to the poor performance of the internal mesh used for 
deformable blocks [40]. Therefore, the DEM is not useful for 
studying the stress field within deformable blocks. Also for 
this reason, some DEM approaches use rigid blocks even for 
the modeling of continua, in particular for the modeling of 
historical masonry structures [41],[42]. In this latter case, 
however, the DEM analysis could underestimate the strength 
capabilities of a real building, predicting collapse conditions 
not confirmed by the experimental results [43]. 

The DECM overcomes the drawbacks associated with the 
use of deformable and rigid blocks for the modeling of 
continua, as it has no problem generating efficient meshes for 
the sub-domains, even when they consist of more than one 
material [44]. Consequently, the DECM can provide 
descriptions of the stress field within single inclusions and on 
the interfaces between different materials [7]. 

Another difference between the two approaches concerns 
the solving equations. All the DEM approaches developed so 
far perform the modeling in the time domain, even for static or 
quasi-static problems. In fact, the static DEM solution is 
actually a solution to the steady state of a dynamic problem, 
since the discrete elements move according to Newton’s 
second law of motion. This involves some disadvantages, 
from the numerical point of view, because the dynamic 
approach requires the calibration of the stable time step to 
allow the convergence of the numerical solution. Moreover, 
the computational cost of the dynamic relaxation technique 
also requires a preliminary evaluation of the minimum number 
of contact points to obtain the correct solution, when the 
discrete elements of the DEM are deformable. 

Unlike the DEM, the DECM solves static problems in the 
space domain. Therefore, the DECM does not require any 
calibration of the stable time step and has no limits in the 
number of contact points. This makes it easier to find the 
static solution with the DECM than with the DEM. 

Lastly, the time steps are often very small in dynamic 
analyses with the DEM, due to numerical stability 
requirements [45]. Moreover, determining the critical time 
step requires some approximations [46]. Consequently, the 
explicit time stepping DEM algorithms are quite effective just 
for quasi-static analyses. Performing dynamic analyses with 
the CM, on the contrary, does not require time-consuming 
calibrations of the critical time step [47]. 

As already mentioned in Section I, the DECM approach is 
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particularly useful for modeling periodic continua and, 
specifically, periodic composite continua. In these cases, the 
DECM considers each basic unit of the periodic model as a 
distinct discrete element. Then, the DECM arranges the 
discrete elements into rows and columns, as if they were 
elements of an array, identifying the row and column indexes 
based on the coordinates of the boundary nodes. Therefore, 
the dimension of the array depends on the dimension of the 
problem: it is 2 for two-dimensional continua and 3 for three-
dimensional continua. For the sake of simplicity, the 
following Sections will deal with applications of the DECM to 
two-dimensional periodic composite continua, consisting of a 
matrix and inclusions of different shapes. 

III. PERIODIC ROUND INCLUSIONS 

Let the two-dimensional modeling domain be a 3 3  array 
of square discrete elements, with sides equal to  10 mm , and 
consider the two cases of presence (Fig. 1b) and absence (Fig. 
1a) of periodic round inclusions within the elements. The 
radius of the round inclusion in Fig. 1b is half the length of the 
side of the element,  5 mmR  , and the center of the inclusion 
coincides with the center of the element (Fig. 2). For both 
continua in Fig. 1, a constraint on the lower sides of the lower 
elements cancels the displacements in both directions. 

Both the matrix and the inclusions in Fig. 1b are elastic, 

with 7 22 10E   N m  for the matrix and 10 22 10E   N mm  

for the inclusions. The Poisson’s modulus is the same for both 
the matrix and the inclusions: 0.3  . Lastly, the discrete 
elements of Fig. 1a are also elastic, with the same elastic 

properties as the matrix of Fig. 1b: 7 22 10E   N m , 0.3  . 

 

 
The load condition for both specimens in Fig. 1 is a uniaxial 

compression load, uniformly distributed along the upper sides 
of the upper discrete elements, of intensity 

210yp p   kN m . Sections III.A and III.B will describe, 

respectively, how the DECM handles the discrete elements to 
set the solution and the results of the computation. 

A. How to Enforce Equilibrium and Compatibility on the 
Discrete Elements 

The boundary conditions on the sides of the discrete 
elements are unknown at the beginning of the computation, in 
terms of both forces and displacements, except for the sides of 
the outer boundary. Therefore, the DECM code must identify 
the boundary conditions for the inner sides of the domain, 
before proceeding with the computation. To this aim, the 
DECM code generates a series of twin nodes along the 
common sides of adjacent discrete elements. The twin nodes 
are pairs of nodes with the same coordinates, one on a discrete 
element and the other on the adjacent discrete element. 

At the beginning of the computation, both the nodal 
displacements and the nodal forces on the twin nodes are set 
equal to zero and each discrete element moves independently 
of the presence of adjacent elements. The DECM code 
performs an iterative analysis on the twin nodes, in order to 
find the pairs of nodal displacements and nodal forces that 
restore continuity between the discrete elements. 

The iterative analysis consists of two phases [7]: in the first 
phase, the DECM code processes the discrete elements with 
the same row index and, in the second phase, the DECM code 
processes the rows. Both phases, in turn, consist of two 
iterations, since the DECM code processes the discrete 
elements and the rows twice, in each phase. In particular, in 
the first phase (iteration on the column index), the DECM 
code processes the discrete elements, the first time, from left 
to right (with increasing values of the column index) and, the 
second time, from right to left (with decreasing values of the 
column index). Similarly, in the second phase (iteration on the 
rows), the DECM code processes the rows, the first time, from 
top to bottom (with increasing values of the row index) and, 
the second time, from bottom to top (with decreasing values of 
the row index). 

The iterative analysis begins by executing the first phase on 
the first row. In particular, in the iteration with increasing 

 

 
Fig. 2 the regular polygon that simulates the round inclusion (linear 
measurements in mm, 40 sides of equal length) 

 

Fig. 1 loading conditions for the 3 3  arrays: a) without inclusion
and b) with round inclusions (linear measurements in mm) 
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value of the column index, the DECM code imposes the 
forces on the left sides of the cn  elements and calculates the 

forces on the right sides (where the displacements are known). 
In the iteration with decreasing value of the column index, the 
code imposes the displacements on the right sides and 
calculates the displacements on the left sides (where the forces 
are known). 

The DECM code applies the left-to-right-to-left procedure 
to the first row iteratively, updating both displacements and 

forces through a bisection technique. The procedure ends 
when the minimum relative displacement between the twin 
nodes of the first row is less than a predetermined value. This 
restores compatibility on the inner vertical sides of the first 
row (see the first row in Fig. 3, for 1ik  ). 

Then, the DECM code starts processing the rows (second 
phase). In particular, in the iteration with increasing value of 
the row index, the code imposes the forces on the cn  upper 

sides of the rows and calculates the forces on the cn  lower 

 

       

 

       

 

       

 

      

1ik    2ik  3ik 

4ik    5ik  6ik 

7ik    8ik  9ik 

10ik    11ik  12ik 

 
Fig. 3 deformed configurations provided by the ‐thik  top-to-bottom-to-top iteration, for 1 12ik   (thin line: undeformed 

configurations; thick line: deformed configurations, amplification factor of the displacements: 400k  ) 
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sides (where the displacements are known). In the iteration 
with decreasing value of the row index, the code imposes the 
displacements on the cn  lower sides and calculates the 

displacements on the cn  upper sides (where the forces are 

known). Whenever the code updates the row index, it also 
performs a new left-to-right-to-left procedure on the cn  

elements of the new row (second and third rows in Fig. 3, for 
1ik  ). The top-to-bottom-to-top procedure updates the loads 

and the displacements of the rn  rows iteratively, using a 

bisection technique. The procedure ends when the minimum 
relative displacement between all twin nodes is less than the 
same predetermined value of the first phase. This restores 
compatibility on the inner horizontal sides of the rows. 

Fig. 3 shows the deformations of the discrete elements after 
the first 12 top-to-bottom-to-top iterations, for the 3 3  array 
of Fig. 1b. 

B. Stress Field Analysis within the Discrete Elements 

Figs. 4-6 show the three stress components for the specimen 
without inclusions, while Figs. 7-9 show the stresses of the 
specimen with round inclusions. To allow a direct 
comparison, the upper and lower limits of the color scales are 
the same for each stress component, even for the following 
Sections. The stress values that exceed the upper limits are in 
dark red and the stress values below the lower limits are in 
dark blue. 

From the comparison between Figs. 4 and 7, it follows that 
the normal stress y  tends to concentrate within the round 

inclusions, which causes y  to decrease in the matrix around 

the inclusions. As shown in [7], a similar behavior also occurs 
for shear loads. In particular, both for shear and axial loads, 
the normal stresses concentrate near the boundaries of the 
inclusions but y  reaches its maximum value (in absolute 

value) at the ends of the constraint. Moreover, the maximum 
normal stress y  (in absolute value) is lower in the case with 

inclusions than in the case without inclusions. This is a 
consequence of the combined action of the stiffness difference 
(between matrix and inclusions) and the Poisson effect. In 
fact, due to the greater macroscopic stiffness of the specimen 
with inclusions, the horizontal displacements caused by the 
Poisson effect are smaller for the specimen in Fig. 1b than for 
the specimen in Fig. 1a. Therefore, also the horizontal 
components of constraining reaction that cancel the horizontal 
displacements are smaller for the specimen with inclusions 
than for the specimen without inclusions. Due to the Poisson 
effect, the cancelation of smaller horizontal displacements 
causes less extra-strains in the longitudinal direction and, 
ultimately, a lower concentration of y  at the ends of the 

constraint. 
Furthermore, the high stiffness of the inclusions leads the 

matrix enclosed between inclusions of the same column to 
compress more than the remaining material of the matrix. 
Consequently, the matrix between inclusions of the same 

column bears normal stresses y yp   (in absolute value), 

greater than the average axial stress of the matrix. The high 
stiffness of the inclusions also leads the matrix to the right and 
left of the inclusions to compress less than the remaining areas 
of the matrix. Therefore, the matrix enclosed between 
inclusions of the same row bears normal stresses y yp   (in 

absolute value), which are lower than the average axial stress 
of the matrix and change sign near the inclusions. This effect 
is similar to that observed in [48] for radiant heat floors. 

 

 

 

 

 
Fig. 6 shear stress xy  with no inclusions: 2

 
max

3.575 kN mxy   

 

 
Fig. 5 normal stress x  with no inclusions: 2

 
max

5.413 kN mx   

 

 
Fig. 4 normal stress y  with no inclusions: 2

 
max

18.406 kN my 
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The reason for the complex stress field x  in Fig. 8 is the 

Poisson effect on the bi-material cross-sections. In fact, a 
single column of three elements with round inclusions and 
subjected to a uniformly distributed compressive axial load 
deforms as shown in Fig. 10 (for the uniformly distributed 
tensile axial load, see [44]). That is, the transverse strain x  is 

positive and reaches its maximum value where the axial strain 

y  is maximum (in absolute value), due to the lower stiffness 

on the cross-section. Therefore, the deformation of the cross-
sections is greater for the higher values of y , which is 

maximum on the cross-sections that do not intersect the 
inclusions and are at a distance from the constraint at least 
equal to half the length of the constraint. 

 

 

 
In the 3 3  array, the material continuity along the 

common vertical sides of adjacent elements of the same row 
prevents the cross-sections from deforming as in Fig. 10 (Fig. 
11). Consequently, adjacent discrete elements interact with 
each other through mutual actions, which modify the stress 
field along the inner vertical sides of the discrete elements and 
give rise to the positive and negative normal stresses x  in 

Fig. 8. 
In brittle materials, which generally have a low tensile 

strength, the positive values of x  on the vertical inner sides 

can trigger the propagation of vertical cracks between the 
discrete elements. 

Furthermore, the high difference in stiffness between the 
matrix and the inclusions causes some negative x  to 

concentrate on the upper and lower portions of the interfaces 
between matrix and inclusions, in both the 3 1  (Fig. 10) and 
the 3 3  arrays (Fig. 8). 

 

 

          
Fig. 10 deformed configuration and normal stress x  for a 3 1
array with round inclusions and constrained displacements on the 
base (displacement amplification factor: 400k  , distributed 

compressive axial load 210yp p   kN m , 2
 

max
5.996 kN mx  ) 

 

 
Fig. 9 xy  values with round inclusions: 2

 
max

3.312 kN mxy   

 

 
Fig. 8 x  values with round inclusions: 2

 
max

6.346 kN mx   

 

 
Fig. 7 y  values with round inclusions: 2

 
max

16.178 kN my   
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A further effect of the stiffness difference between matrix 

and inclusions is the pronounced curvature of the upper side 
in the 3 1  array (Fig. 10), replicated on the upper sides of the 
3 3  array (Fig. 11). It is worth noting that a downward 
curvature also characterizes the arrays without inclusions, but, 
in the latter case, the curvature is very weak (see Fig. 12 for 
the 3 3  array of Fig. 1a). Consequently, the normal stresses 

x  reach values close to zero on the upper nodes of the arrays 

without inclusions (Fig. 5). On the contrary, the pronounced 
curvatures in Figs. 10 and 11 imply the presence of high 
values of tensile stresses x  on the upper sides, in particular 

above the inclusions (Figs. 8,10). This is dangerous for brittle 
specimens, since high values of tensile stresses x  can trigger 

vertical cracks with enucleation on the upper sides. 

 
The difference in stiffness is also responsible for the shear 

stresses xy  that arise along the boundaries of the inclusions 

(Fig. 9), significantly modifying the typical behavior of xy  

for specimens without inclusions (Fig. 6). The presence of 
shear stresses along the boundaries of the inclusions is 
particularly harmful for the interfaces, as it can cause the 
detachment of the inclusions from the matrix. Furthermore, 
also the matrix in the upper part of the first row can damage 

due to the high values of xy  caused by the inclusions. This is 

a further effect of the mutual actions between adjacent 
elements of the same row. 

Lastly, the effect of the round inclusions on the maximum 
value of xy  at the ends of the constraint is similar to that 

already observed for y , since the maximum shear stress on 

the constrained corners is lower for the specimen with 
inclusions (Fig. 9) than for the specimen without inclusions 
(Fig. 6). In contrast, the maximum absolute value of x  is 

greater for the specimen with inclusions (Fig. 8) than for the 
specimen without inclusions (Fig. 5). However, the points 
where x  reaches its maximum value in the presence of 

inclusions are no longer the ends of the constraint—as instead 
is the case in Fig. 5—since x  concentrates on the points of 

the constraint that lie below the inclusions (Fig. 8). Therefore, 
the lower corners of the specimen benefit from the presence of 
the inclusions in any case. 

In conclusion, in the case of uniaxial loading, the round 
inclusions decrease the concentration of the three components 
of stress at the ends of the constraint, delaying damaging 
effects on the lower corners of the specimen. On the other 
hand, however, the stress concentration along the boundaries 
of the inclusions can cause detachments between matrix and 
inclusions. This explains the experimental evidence that 
cracks initiate on the interfaces between mortar matrix and 
aggregates. Lastly, some vertical cracks can enucleate on the 
upper sides or between the inclusions of the same row. 

It is worth noting that the stress concentrations at the 
boundaries of the inclusions, the upper sides, and the inner 
vertical sides cause cracks to start propagating at lower axial 
loads, compared to the case without inclusions. This confirms 
the experimental results on concrete with untreated matrix-
aggregate interfaces [26], according to which the strength of a 
composite consisting of matrix and inclusions is much lower 
than the strength of a specimen consisting only of the matrix. 

IV. PERIODIC IRREGULAR INCLUSIONS 

In order to verify how the crushed rocks modify the stress 
field with respect to rounded river gravels, the DECM code 
presented in this paper uses a new inclusions tool, which starts 
from a round inclusion to generate inclusions with random 
shapes. In particular, the inclusions tool generates a round 
inclusion that is actually a regular polygonal inclusion with a 
large number of sides (the number of sides in Fig. 2 is equal to 
40). Then, the inclusions tool eliminates a random number of 
nodes located at random positions. This results in randomly 
shaped irregular polygons that can also include some rounded 
sides (Fig. 13). 

 

 
Fig. 12 deformed configuration of the 3 3  array without inclusions
(displacement amplification factor: 400k  ). 

 

 
Fig. 11 deformed configuration of the 3 3  array with round
inclusions (displacement amplification factor: 400k  ). 
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The inclusions tool randomly sets the number of sides of 

the irregular inclusions between a minimum of 3 and a 
maximum equal to the number of sides of the almost round 
inclusion. 

The plots of the normal stresses y  for inclusions with a 

number of sides equal to 35, 30, ad 25 (Figs. 14, 15, and 16, 
respectively) show that y  now concentrates at the corners of 

the inclusions. Actually, in the case of polygonal inclusions, 

y  reaches its maximum value (in absolute value) precisely at 

the corners of the inclusions and no longer at the ends of the 
constraint. Moreover, from the comparison between Figs. 14, 
15, and 16, it follows that the maximum value of y  increases 

by decreasing the number of sides of the inclusions. This 
means that the interfaces between matrix and inclusions can 
incur into crushing phenomena, when the number of sides of 
the inclusions is low. Therefore, higher levels of roughness of 
the inclusions make the interfaces more vulnerable. 

 

 

 
The number of sides of the inclusions is not the only factor 

that influences the value of the maximum y  (in absolute 

value). In fact, given the number of sides, the maximum y  

depends on the regularity of the randomly generated inclusion. 
Fig. 17 shows the stress field y  for inclusions with a 

number of sides equal to 25 and a degree of irregularity 
greater than that of the 25-sided elements of Fig. 16: the 
maximum value of y  clearly increases with the degree of 

irregularity, since a greater degree of irregularity implies 
higher concentrations of stresses at the corners of the 
inclusions. Therefore, the irregularity of the inclusions is a 
further factor that influences the vulnerability of the 
interfaces. Moreover, from the comparison between the 
maximum values of y  in Figs. 14, 15, 16, and 17, it seems 

that the irregularity is even more decisive than the number of 
sides in causing the concentration of stress at the corners of 
the inclusions. 

 

 
Fig. 16 y  values: inclusions with 25 sides, 2

 
max

18.840 kN my 

 

 
Fig. 15 y  values: inclusions with 30 sides, 2

 
max

18.681 kN my 

 

   
Fig. 13 two different random-shaped inclusions, generated by
eliminating some nodes from the round inclusion in Fig. 2 

 
Fig. 14 y  values: inclusions with 35 sides, 2

 
max

18.034 kN my 
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The irregularity of the inclusions has an effect also on x  

and xy . In fact, as already observed for y , Figs. 18 and 19 

show that a greater degree of irregularity of the inclusions 
increases the maximum values of both x  and xy , which tend 

to concentrate at the corners of the inclusions, within the 
inclusions. If compared to the stress fields for round 
inclusions (Figs. 7-9), this shifts the vulnerability from the 
interfaces to the inclusions and explains the two failure 
mechanisms observed in [26] for concrete: wide debonding of 
the aggregates for spherical aggregates and large crushing of 

the aggregates for crushed aggregates. Since the strength of 
the inclusions is greater than the strength of the interfaces, the 
concentration of the stresses within angular inclusions also 
explains why the smooth gravel leads to cracks at lower 
stresses than the rough and angular crushed rock [25]. 

 

V. IRREGULAR INCLUSIONS OF RANDOM SHAPE 

 

 
Fig. 19 xy  values: inclusions with 25 sides and degree of irregularity 

that increases from the upper 3 3  array ( 2
 

max
3.733 kN mxy  ) to 

the lower 3 3  array ( 2
 

max
5.248 kN mxy  ) 

 

 
Fig. 18 x  values: inclusions with 25 sides and degree of irregularity

that increases from the upper 3 3  array ( 2
 

max
6.510 kN mx  ) to 

the lower 3 3  array ( 2
 

max
6.860 kN mx  ) 

 

 
Fig. 17 y  values: inclusions with 25 sides and a greater degree of

irregularity than Fig. 16, 2
 

max
22.876 kN my   
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The inclusions tool presented in Section IV can also 
diversify the random shapes of the polygonal inclusions into 
each discrete element. This allows a more realistic modeling 

of the stress fields in cementitious matrices with aggregates of 

natural origin. Moreover, diversifying the random shapes 
allows us to compare the stress fields inside and around 
inclusions of different shapes, also highlighting the local 
effect on the stress field deriving from particularly sharp 
inclusions. 

Figs. 20-22 show the deformations and the stress fields for 
the same 3 3  array with three different sets of random 
inclusions (the distributed load and constraint conditions are 
the same for the three cases). As we already observed for 
periodic irregular inclusions, the three components of stress 
concentrate within the more pointed inclusions. The exact 
position of stress concentration depends on the component of 
stress and the orientation of the inclusion with respect to the 
load direction. In particular, y  concentrates on the sides that 

are almost parallel to the load, while x  concentrates on the 

sides that are almost orthogonal to the load. The stress xy  has 

a more complex behavior and can both concentrate on the 
boundary and spread into the inclusion. In this latter case, in 
fact, the direction of the sides is not as decisive as, rather, the 
relative positions of the pointed corners. 

In conclusion, the three components of stress are highly 
variable in the arrays with irregular inclusions of random 
shape, as also results from the great variability of the 
maximum stress values for the three cases (Figs. 20-22). 
Therefore, in addition to the shape effect that concerns the 
geometric characteristics of the specimen [49], the stress fields 
also suffer from a shape effect related to the geometric 
characteristics of the inclusions. A secondary effect of this is 
that the deformed configurations lose symmetry, despite the 

symmetry of the axial load. In particular, the asymmetry of the 
deformed configurations for the three sets of inclusions 
decreases from Fig. 20 (plotted for the set of inclusions with 

the highest degree of irregularity) to Fig. 22 (plotted for the set 

of inclusions with the lowest degree of irregularity). 
The concentration of stresses within the inclusions makes 

the angular inclusions more vulnerable than the rounded 
inclusions, as observed also experimentally [26]. In the case 
of brittle inclusions, the most serious dangers for the angular 
inclusions derives from the tensile stresses x  and the shear 

stresses xy , which can both split the inclusions. On the 

contrary, the occurrence of crushing of the inclusions due to 
high values of negative y  is more rare. 

 

 

          
Fig. 20 first set of inclusions: amplification factor 400k  , 2

 
max

51.760 kN my  , 2
 

max
49.073 kN mx  , 2

 
max

19.188 kN mxy   

          
Fig. 21 second set of inclusions: amplification factor 400k  , 2

 
max

77.917 kN my  , 2
 

max
56.033 kN mx  , 2

 
max

24.422 kN mxy   
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Similar considerations apply to non-square arrays. In Fig. 

23, for example, the 6 4  array with irregular inclusions of 
random shape does not deform symmetrically, while the 6 4  
array with round inclusions has a symmetric deformation. 
However, since each column has twice the number of 
elements compared to the previous examples, the maximum 
difference in the average degree of irregularity calculated 
along the columns (that is, in the direction of the axial load) is 
lower for the 6 4  array than for the 3 3  array. Therefore, 
on average, the columns subjected to axial load deform more 
similarly in the 6 4  array than in the 3 3  array. In other 

 

  
Fig. 23 deformed configurations for the 6 4  arrays with round
inclusions (left) and irregular random inclusions (right): 
amplification factor 400k   

 

 
Fig. 26 xy  values with round inclusions ( 2

 
max

3.539 kN mxy  , 

left) and irregular random inclusions ( 2
 

max
20.156 kN mxy  , right)

 

 
Fig. 25 x  values with round inclusions ( 2

 
max

6.541 kN mx  , 

left) and irregular random inclusions ( 2
 

max
42.831 kN mx  , right)

 

Fig. 24 y  values with round inclusions ( 2
 

max
16.579 kN my  , 

left) and irregular random inclusions ( 2
 

max
97.797 kN my  , right)

          
Fig. 22 third set of inclusions: amplification factor 400k  , 2

 
max

39.958 kN my  , 2
 

max
17.624 kN mx  , 2

 
max

6.391 kN mxy   
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words, the deformed configurations are the more symmetric 
the greater the number of irregular inclusions in the columns. 

In the 6 4  array with round inclusions the constraint 
modifies the stress field up to a distance almost equal to half 
the length of the constraint (Figs. 24-26). Beyond this distance 
and excluding the first row, the stresses have a periodic 
behavior, symmetric for y  (Fig. 24) and x  (Fig. 25) and 

skew-symmetric for xy  (Fig. 26). 

For inclusions of random shape, on the contrary, it is not 
possible to identify an extinction distance from the constraint, 
beyond which the three components of stress become 
periodic. In fact, the local perturbations due to the irregularity 
of the inclusions do not allow the stress fields to assume a 
recurrent behavior. For the same reason, it is not even possible 
that the stress fields of x  and y  are symmetric or that the 

stress field of xy  is skew-symmetric. 

The multiscale approach with separate workspaces to store 
the data of each discrete element makes it possible to focus 
attention on individual discrete elements, just as it is possible 
to extract the entry in the i‐th  row and j‐th  column of a two-

dimensional array. By way of example, Figs. 27-29 show the 
discrete plots of the three stress components for the  4,1  

entry of the 6 4  array with random-shaped inclusions. 
The combination of xy  and tensile x  within the inclusion 

of the  4,1  entry makes this angular inclusion particularly 

vulnerable to splitting along the vertical direction, which is the 
direction of the axial load. In particular, the most likely 
enucleation point of splitting is the upper corner of the 
inclusion. Furthermore, the combination of xy  and tensile y  

in the matrix near the upper-right side and the high values of 

xy  in the matrix near the lower-right side of the inclusion are 

possible causes of detachment along the right boundary of the 
inclusion. 

It is worth noting that the stresses y  in Fig. 27 change sign 

crossing the upper-right side of the inclusion, a side that is 
almost parallel to the axial load, due to the high difference in 
stiffness between matrix and inclusion. A high gradient of y  

also characterizes the lower-right side of the inclusion, but to 
a lesser extent as this second sub-vertical side forms a wider 
angle with the load direction. Lastly, the y  stress field 

within the inclusion finds its privileged direction in the most 
sub-vertical line among those that connect the corners of the 
inclusion boundary. 

 

 

 

 
Fig. 28 discrete stress field x  for the  4,1  entry of the 6 4  array 

with irregular random inclusions in Fig. 25 

 

 
Fig. 27 discrete stress field y  for the  4,1  entry of the 6 4  array 

with irregular random inclusions in Fig. 24 
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VI. CONCLUSION 

This paper shows the results of a DECM analysis for 
periodic composite continua consisting of a matrix with 
dispersed inclusions, such as concrete solids with aggregates 
of various shapes. The analysis allows the modeling of both 
micro- and macro-behaviors of periodic composite continua, 
thanks to the multiscale approach with discrete elements (DE) 
and the micro-scale analysis of the Cell Method (CM). 

The simulations carried out for uniform uniaxial loads with 
various shapes of the inclusions confirm many experimental 
results—known from uniaxial tests on concrete—that so far 
did not find a numerical explanation. In particular, the paper 
highlights how the roundness and roughness of the inclusions 
affect the stress field: 
 Round inclusions modify the stress field significantly, in 

particular when the difference in stiffness between matrix 
and inclusions is high. The alterations in the stress field 
consist of stress concentrations on the matrix-inclusions 
interfaces, between the inclusions aligned along the 
direction orthogonal to the uniaxial load, and on the upper 
sides of the specimens. These stress concentrations are 
detrimental for composite continua, particularly if they 
consist of brittle materials, and can both cause detachments 
of the inclusions and trigger the propagation of cracks for 
lower load values than in specimens without inclusions. 
Since the matrix-inclusions interfaces are generally weaker 
than the matrix and the inclusions, the cracks initiate on the 
interfaces. Furthermore, the crack initiation for relatively 
low load values means that the strength of composite 

continua is lower than the strength of the matrix. 
 Irregular inclusions modify the stress field more 

significantly than round inclusions, increasing stress 
concentrations on the matrix-inclusions interfaces, in 
particular near the corners of the inclusions. This decreases 
the load of crack initiation on the interfaces further. 
Therefore, as with round inclusions, the strength of the 
specimens with angular inclusions is less than the strength 
of the matrix. 

 Irregularities in the shape of the boundary amplify the 
shape effect of angular inclusions. In fact, for each assigned 
number of sides of the angular inclusion, the stresses 
concentrate more at the corners when the irregularity degree 
of the polygonal boundary is greater. 

 With round inclusions, the stresses tend to concentrate on 
the matrix-inclusions interfaces and in the matrix in the 
immediate vicinity, while, with angular inclusions, the 
stresses tend to concentrate within the inclusions. This 
means that the failure mechanism depends on the shape of 
the inclusions, leading to the debonding of the inclusions 
when they have a round shape and to the crushing or 
splitting of the inclusions when they have a polygonal 
shape. Since the matrix-inclusions interfaces are weaker 
than the inclusions, the first failure mechanism occurs for 
lower load values compared to the second failure 
mechanism. Therefore, the strength of specimens with 
round inclusions is less than the strength of specimens with 
angular inclusions. 
The DECM numerical analysis has also clarified some 

peculiar aspects of the positions of concentration of x  and 

y  along the boundaries of the inclusions, never highlighted 

by experimental tests. That is, the normal stress in the 
direction of the axial load concentrates on the sides that are 
almost parallel to the load and the normal stress in the 
direction orthogonal to the axial load concentrates on the sides 
that are almost orthogonal to the load. 

The latter and the previous numerical results significantly 
improve the knowledge of the stress field in composite 
continua, compared to the FE (Finite Element) analyses. The 
DECM code also offers a more performing numerical analysis 
with discrete elements since, unlike other DEM (Discrete 
Element Method) codes, it performs the static analysis directly 
in the space domain. This allows us to avoid many typical 
drawbacks of the DEM analysis. 
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