
 

 

  

Abstract—The paper deals with a numerical approach of 

modeling of laminated composite plate. In the frame of the numerical 

approach of modeling, the shear deformation theory for laminates is 

used. A very simple approach to introduce the shear correction factor 

is by considering the weight function for the distribution of the 

transverse shear stresses trough the thickness. The influence of 

coupling effect for complex response of laminated composite plate is 

investigated. The response of unsymmetric and symmetric laminated 

composite plate is solved by using FEM and results are shown in 

graphical form.  
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I. INTRODUCTION 

he rapid growth in the use of composite materials in 

structures has required the development of the theory of 

mechanics of composite materials and the analysis of structural 

elements made of composite material [1-5]. For modelling of 

thick laminated composite plate, we have to take into account 

the shear deformation effects. The theory of laminate plates 

corresponds with the Reissner or Mindlin plate theory. Plate 

theories based upon Reissner-Mindlin assumption are called 

first order shear deformation theories [6].  

Composite materials are heterogeneous, but in simplifying 

the analysis of composite structural elements in engineering 

applications, the heterogeneity of the material is neglected and 

approximately overlayed to a homogeneous material. Each 

single layer of laminates or sandwich faces is in general a fibre 

reinforced lamina. For investigation structural members or 

structures made of composite material, micro-macro modelling 

techniques are useful [7-14].    
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The material response of a composite is determined by the 

material moduli of all constituents, the volume or mass 

fractions of the single constituents in the composite material, 

by the quality of their bonding, i.e. of the behaviour of the 

interfaces, and by the arrangement and distribution of the fibre 

reinforcement, i.e. the fibre architecture [15-21]. 

II. SHEAR DEFORMATION THEORY 

Based upon that kinematical assumption of the first order 

shear deformation theory the displacements of the plate have 

the form [1] 

( ) ( ) ( )y,xzy,xuz,y,xu x−= , 

( ) ( ) ( )y,xzy,xvz,y,xv y−= , 

( ) ( )y,xwz,y,xw = .                                                         (1) 

The strains relations are 
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The vector notation is following 

( ) ( ) ( )y,xzy,xz,y,x κεε += ,                                         (3) 
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The last two kinematic relations in (2) we note in vector 

notation 
T

yx
y

w
,

x

w








−




−




= γ .                                                (5) 

For the modelling of laminated 2-D structures we assume 

that each individual layer is considered to behave linear-elastic 

material, that all layers are assumed to be bonded together with 

a perfect bond and each lamina of composite material behaves 
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macroscopically as if it were a homogeneous orthotropic 

material. 

The stress resultant force vectors are [2] 
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The constitutive equations can be written in the condensed 

hypermatrix form [3] 

































=
















γ

κ

ε

A00

0DB

0BA

V

M

N

.                                           (9) 

The stretching, coupling and bending stiffnesses 

ijijij D,B,A stay unchanged in comparison to the classical 

laminate theory. The shear stiffness values can be improved 

with help of shear correction factors. The parameters 
*

k (Eq. 

6) are the shear correction factors.  

A very simple approach for calculation of shear stresses is 

to introduce a weighting function f(z) for the distribution of the 

transverse shear stresses trough the thickness h. 

Assume a function f(z) 
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it follows that transverse resultants are 
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yzxzxz AAV  4544 += , 

yzxzyz AAV  5545 += .                                                        (13) 

The shear stiffness coefficients A  are calculated by 
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where i, j = 4, 5.                              

This approach yields, for the case of single layer with 

GEE == 5544
 and 045 =E , the shear correction factor 

65=k . 

An improved shear stiffness matrix which include the 

transverse shear stress distribution follows with the help of the 

complementary strain energy 
*W  
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The equilibrium equations will be formulated for a plate 

element (Fig. 1) and yield three force and two moments 

equations 
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Fig. 1 Stress resultants applied to a plate element 

Substituting the kinematic relations into the constitutive 

equations and then these equations into (19) we obtain the 

governing equations, written in matrix form   
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The linear differential operators Lij are defined in [2]. The 

necessary and sufficient number of boundary conditions for 

plates is three at each of the boundaries.  

In the following we restrict to plates that are midplane 

symmetric (B=0), and the constitutive equations are then 

simplified to 

















=









κ

ε

D0

0A

M

N
, 

γAV = ,                                                                              (21) 

with 

















=

66

2212

1211

00

0

0

A

AA

AA

A ,    

















=

66

2212

1211

00

0

0

D

DD

DD

D , 














=

5555

4444

0

0

Ak

Ak
A .                                                (22) 

Substituting the constitutive equations for Mx, My, Mxy, Vxz, 

Vyz into the three equilibrium equations (19) of the moments 

and transverse force resultants results in the set of governing 

differential equations for a symmetric laminated composite 

plate subjected to a lateral load p3 and including transverse 

shear deformation 
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In the next section, the governing equations are solved by 

using FEM for given boundary conditions.  

III. NUMERICAL EXPERIMENTS, RESULTS AND 

DISCUSSION 

Firstly, the proposed model is verified for the square 

unsymmetrical laminated composite plate [45/0/45/0/45/0] 

(Fig. 2).  

The material properties of each layer are E1 = E2 = 76 GPa, 

G12 = 2.3 GPa,  = 0.34, G23 = 2.3 GPa, G13 = 2.3 GPa. 
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Fig. 2 Problem sketch and finite element mesh 
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Results:  

 

 
 

Fig. 3 Displacements w across the section I-J [mm] 

 

      

 
 

Fig. 4 Displacements u across the section I-J [mm] 

 

 

   
 

Fig. 5 Stresses x for the bottom of the first layer across the section I-

J [MPa] 

 

The used coordinate system (x,y,z) is according the 

displacements (u,w,v), respectively (Figs. 3, 4 and 10). 

 

 

 
 

Fig. 6 Stresses xy for the bottom of the first layer across the section I-

J [MPa] 

 
 

   
 

Fig. 7 Stresses yz for the bottom of the first layer across the section 

A-C [MPa] 

 

 

 
Fig. 8 Stresses z for the bottom of the first layer across the section 

A-C [MPa] 

 
Secondly, the proposed model is verified for the square 

symmetrical laminated composite plate [45/0/45] (Fig. 9).  
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The material properties of each layer are E1 = 128 GPa, E2 = 

11GPa, G12 = G23 = G13 = 45 GPa,  = 0.25. 
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Fig. 9 Problem sketch and finite element mesh 

 

Results: 

       

  
 

Fig. 10 Displacements w across the section I-J [mm] 

 

 

 
Fig. 11 Stresses xy at the top of the third layer across the section I-J 

[MPa] 

     
Fig. 12 Stresses z at the top of the third layer across the section I-J 

[MPa] 

 

  

 
 

Fig. 13 Stresses yz at the top of the third layer across the section I-J 

[MPa] 

 

      

 
 

Fig. 14 Stresses x at the top of the third layer across the section I-J 

[MPa] 
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Fig. 15 Stresses xz at the top of the third layer across the section I-J 

[MPa]  

 

In the first example, there is solved unsymmetric laminated 

composite plate under in-plane loads. We can see, that there is 

coupling (B  0) between in-plane and bending deformations 

of the laminate structure (Figs. 3-8). 

In the second example, there is solved symmetric laminated 

composite plate under bending loads. We can see, that there is 

not coupling (B=0) between in-plane and bending 

deformations of the laminate structure (Figs. 10-15). 

Transversal shear stresses yz in both, symmetric and 

unsymmetric laminates are negligibly instead of free edge 

regions (Figs. 7, 13), that are critical in design process. 

IV. CONCLUSION 

 

The numerical approach of modelling of laminated 

composite plates was investigated in this paper. Within the 

numerical approach of modelling, there was described the 

shear deformation theory of first order for laminates. For this 

approach of modeling, there was solved the unsymmetric and 

symmetric laminated composite plate. In the first numerical 

example, there is solved unsymmetric laminated composite 

plate under in-plane loads. We saw that there is coupling effect 

between in-plane and bending deformations of the laminate 

structure. In the second example, there is solved symmetric 

laminated composite plate under bending loads. We saw that 

there is not coupling effect between in-plane and bending 

deformations of the laminate structure. The symmetric 

laminates are designed for flat structural elements and 

unsymmetric laminates for curved structural elements. 
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