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Abstract—We study the effect of using different rheological
schemes in models of Frenkel-Biot elastic waves of P-type in porous
media. Two rheological schemes are considered -one with the bubbles
and the other without. The bubble-including scheme consists of
segments representing the solid continuum and bubbles inside the
fluid, while the bubble-free scheme is represented by the standard
solid-fluid rheological model. We derived the dispersion relations for
the wave equations in their linear forms and analyzed the decay rate,
λ, versus the wave number, k. We compared the λ(k)-dependence
for the two rheologies under consideration using typical values of the
mechanical parameters of the model. We observed, in particular, that
an increase of the radius and the number of the bubbles leads to an
increase in the decay rate.
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I. INTRODUCTION

THE problem of elastic wave propagation through the
liquid-saturated granular medium has been studied in

many theoretical works. This phenomenon is usually described
by Biot’s equations of poroelasticity [1]–[4]. The Biot’s dy-
namic equations are commonly used to describe the wave
propagation in a porous solid fully saturated with a single-
phase fluid. Many researchers re-derived the Biot’s equa-
tions using different mathematical approaches, for example,
homogenization for periodic structures [5]–[7] and volume
averaging processes [8]. The Biot’s equations involve four
basic assumptions [9]: first, the porous rock is isotropic and
homogeneous; second, the porous rock is fully saturated with
only one fluid; third, the motion between the solid and fluid is
governed by the Darcy’s law and fourth, the wavelength of the
wave is larger than the size of the biggest grains or pores. From
the Biot’s theory, there are two types of longitudinal waves
propagating in a saturated porous medium. The first type is the
fast wave with week attenuation, called P1-wave, whereas the
second type is the slow wave with strong attenuation, called
P2-wave.

It is clear that the presence of bubbles affects the properties
of the gas-liquid mixture [10]–[15] such as compressibility,
pressure, velocity, and attenuation. For more details of the ef-
fects of the gas bubbles on the attenuation and wave velocities
in liquid-saturated porous rocks, the reader is referred to [16]–
[20].

This paper studies the influence of different rheologies
including the bubbles on the wave attenuation in the liquid-
saturated porous media. We will use an extended stress-strain
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relation relative to the standard linear solid model to take
into account the bubbles in modelling the P-type waves.
In [16], Dunin et al. used the simple stress-strain relation,
σ = Ee, in such modelling. However, Nikolaevskiy [21],
[22] used a considerably complicated stress-strain relation that
involves higher-order time derivatives of the stress σ and
strain e. This relation is the result of the rheological scheme
shown in Fig. 1. Eventually it leads to a higher-order partial
differential equation with respect to the velocity of the solid
matrix. However, the original rheological scheme [21] does
not include gas bubbles. Nikolaevskiy and Strunin [23] pointed
out the place in this scheme that the bubbles should take, see
Fig. 2. In the present work we aim to include the bubble into
the rheological scheme and, based on this, derive the P-wave
equations, where the coefficients will depend on the bubble-
related parameters.

Fig. 1. The model of the viscoelastic medium with internal oscillators [21].

Fig. 2. The modified model of Fig. 1 to include the bubble represented by
$ [23].

II. BASIC EQUATIONS OF MOTION

A. Conservation of mass and momentum
For a one-dimensional case the momentum and mass bal-

ance equations [24] are
∂

∂t
(1−m)ρ(s)v+

∂

∂x
(1−m)ρ(s)vv =

∂

∂x
σ−(1−m)

∂p

∂x
−I ,
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∂

∂t
mρ(f)u+

∂

∂x
mρ(f)uu = −m∂p

∂x
+ I ,

∂

∂t
(1 −m)ρ(s) +

∂

∂x
(1 −m)ρ(s)v = 0 , (1)

∂

∂t
mρ(f) +

∂

∂x
mρ(f)u = 0 ,

where, the subscripts s and f label the solid and gas-liquid
mixture respectively, ρ, v, and u are the corresponding den-
sities and mass velocities, m is the porosity, σ is the stress,
p is the pore pressure, and I is the interfacial viscous force
approximated by

I = δm(v − u), δ =
µ(f)m

`
,

where µ(f) is the gas-liquid mixture viscosity and ` is the
intrinsic permeability.

Now we add to the system (1) the equation of the dynamics
of a bubble [16]

R
∂2

∂t2
R+

3

2

(
∂

∂t
R

)2

+
4µ

ρ(L)

(
1

R
+
m

4`
R

)
∂

∂t
R

= (pg − p)/ρ(L) , (2)

where R is the bubble radius, p is the pressure in the liquid,
pg = p0(R0/R)χ is the gas pressure inside the bubble (here
χ = 3ς , ς is the adiabatic exponent), ρ(L) is the density of the
liquid without the bubbles, and µ is the viscosity of the liquid
without the bubbles. The density equations for the solid and
liquid without gas are

ρ(s) = ρ
(s)
0 (1 − β(s)σ) , (3)

ρ(L) = ρ
(L)
0 (1 + β(L)p) . (4)

The mean density of the gas-liquid mixture is

ρ(f) = (1 − φ)ρ(L) + φρ(g), (5)

where

φ = (4π/3)R3n0 .

Here σ is the stress, φ is the volume gas content and n0 is
the number density of the bubbles per unit volume. In Eq. (5)
we can neglect the density of the gas ρ(g) due to the low gas
content. The change in φ is due to the change in the bubble
radius R. Then Eq. (5) becomes

ρ(f) = ρ
(L)
0 (1 + β(L)p)

(
1 − 4π

3
R3

0n0

)
. (6)

Similarly to [16] we also assume that the pore pressure p is
equal to the pressure in the liquid far from the bubble.

B. Rheological model to derive stress-strain relation

In this section we consider a simplified rheological model
compared to Fig. 1 and Fig. 2. It includes three elastic springs
with the elastic moduli E1, E2, and E3, and one dashpot with
viscosity µ as shown in Fig. 3. Applying the Newton’s laws ,
this scheme generates the following equations

e = e2 = e1 + e3 + e4 ,

E3e3 − µ
de4

dt
= 0 ,

E1e1 − E3e3 = 0 ,
E1e1 + E2e2 = σ .

(7)

Using system (7) we arrive at the following matrix system

E2 E1 0 0 0 0 0
0 0 0 0 E1 0 0
0 0 E3 0 0 0 −µ
−1 1 1 1 0 0 0
0 0 0 0 1 1 1
0 E1 −E3 0 0 0 0
0 0 0 0 E1 −E3 0





e
e1
e3
e4
de1
dt
de3
dt
de4
dt


=



σ
dσ
dt

− E2
de
dt

0
0
de
dt
0
0


.

(8)

Solving system (8) for e we get

e =
−((E1 + E3)E2 + E1E3)µ de

dt
+ E1E3σ + (E1 + E3)µ dσ

dt

E1E2E3
.

(9)
Equation (9) leads to the following stress-strain relation

σ + b1
dσ

dt
= E2e+ a1

de

dt
, (10)

where a1 = ((E1 +E3)E2 +E1E3)θ, b1 = (E1 +E3)θ, and
θ = µ/E1E3 .

Fig. 3. A simplified rheological model including the bubble.

The system of equations (1)-(10) is closed by the relation
between the deformation e and the velocity of the solid v,

De

Dt
≡ ∂e

∂t
+ v

∂e

∂x
=
∂v

∂x
. (11)

III. PROPAGATION OF P-WAVES INCLUDING GAS BUBBLES

Following Nikolaevskiy [22] we consider the slowly varying
wave in space and time. Accordingly we use the running
coordinate system with simultaneous scale change,

ξ = ε(x− ct) , τ =
1

2
ε2 t ,

∂

∂x
= ε

∂

∂ξ
,

∂

∂t
= ε

(
1

2
ε
∂

∂τ
− c

∂

∂ξ

)
,

(12)
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where ε is the small parameter. Thus, the constitutive law (10)
transforms into the following form

σ + b1 ε

(
1

2
ε
∂

∂τ
+ (v − c)

∂

∂ξ

)
σ

= E2e+ a1 ε

(
1

2
ε
∂

∂τ
+ (v − c)

∂

∂ξ

)
e . (13)

Now, we seek the unknown functions as power series

v = εv1 + ε2v2 + ... , m = m0 + εm1 + ε2m2... ,

σ = σ0 + εσ1 + ε2σ2... , p = p0 + εp1 + ε2p2... ,

φ = φ0 + εφ1 + ε2φ2... , R = R0(1 + εR1 + ε2R2...) , (14)

u = εu1 + ε2u2 + ... , e = e0 + εe1 + ε2e2... .

A. First linear approximation

Using Eqs. (14), we collect the linear terms ∼ ε in
Eqs. (1), (2), (11) and (13) to get

ρ
(s)
0 c

∂m1

∂ξ
− (1 −m0)c

∂ρ
(s)
1

∂ξ
+ (1 −m0)ρ

(s)
0

∂v1

∂ξ

= − 1
2 (1 −m0)

∂ρ
(s)
0

∂τ ,

−m0c
∂ρ

(f)
1

∂ξ
− ρ

(f)
0 c

∂m1

∂ξ
+m0ρ

(f)
0

∂u1

∂ξ

= − 1
2m0

∂ρ
(f)
0

∂τ ,

−(1 −m0)ρ
(s)
0 c

∂v1

∂ξ
=
∂σ1

∂ξ
− (1 −m0)

∂p1

∂ξ
,

−m0ρ
(f)
0 c

∂u1

∂ξ
= −m0

∂p1

∂ξ
,

µc

[
4

R0
+
m0R0

`

]
∂R0

∂ξ
= (p0 χR1 + p1) ,

1

2

∂e0

∂τ
− c

∂e1

∂ξ
+ v1

∂e0

∂ξ
=
∂v1

∂ξ
, σ1 − E2 e1

= −a1c
∂e0
∂ξ + b1c

∂σ0

∂ξ .

(15)

Further,

ρ
(s)
1 = −ρ(s)

0 β(s)σ1 ,

ρ
(f)
1 = ρ

(L)
0

(
β(L)κ1p1 − 4πn0κ2R

3
0R1

)
,

ρ
(f)
0 = κ1κ2ρ

(L)
0 ,

(16)

where
κ1 = 1 − 4π

3
R3

0 n0 , κ2 = 1 + β(L)p .

Inserting Eqs. (16) into the system (15) gives the following
integrals,

(1 −m0)ρ
(s)
0 v1 + c(1 −m0)ρ

(s)
0 β(s)σ1 + cρ

(s)
0 m1 = 0 ,

m0ρ
(L)
0 κ1κ2u1 − cρ

(L)
0 κ1κ2m1 − cm0κ1ρ

(L)
0 β(L)p1

+4cκ2ρ
(L)
0 π n0m0R

3
0 R1 = 0 ,

c(1 −m0)ρ
(s)
0 v1 + σ1 − (1 −m0)p1 = 0 , (17)

cκ1κ2m0ρ
(L)
0 u1 −m0p1 = 0 ,

ce1 + v1 = 0, σ1 − E2 e1 = 0, p1 + p0 χR1 = 0 .

Now we have seven equations with seven unknowns: v1, u1,
p1, σ1, m1, R1, and e1. In order to find the velocity of the
wave from the system (17) we require that

det(anm) = 0 , (18)

where
a11 = c(1 − m0)ρ

(s)
o , a12 = 0 , a13 = (1 − m0) , a14 =

1 , a15 = 0 , a16 = 0 , a17 = 0 , a21 = 0 , a22 =
cκ1κ2m0ρ

(L)
0 , a23 = −m0 , a24 = 0 , a25 = 0 , a26 =

0 , a27 = 0 , a31 = (1 − m0) , a32 = 0 , a33 = 0 , a34 =
cβs(1 − m0) , a35 = c , a36 = 0 , a37 = 0 , a41 =
0 , a42 = κ1κ2m0 , a43 = −cκ1β

(L)m0 , a44 = 0 , a45 =
−cκ1κ2 , a46 = 4cκ2πm0noR0 , a47 = 0 , a51 = 1 , a52 =
0 , a53 = 0 , a54 = 0 , a55 = 0 , a56 = 0 , a57 = c ,
a61 = 0 , a62 = 0 , a63 = 0 , a64 = 1 , a65 = 0 , a66 =
0 , a67 = −E2 , a71 = 0 , a72 = 0 , a73 = 1 , a74 = 0 , a75 =
0 , a76 = χp0 , a77 = 0 .

This gives

c4
[
m0(1 −m0)ρ

(s)
0 ρ

(L)
0

(
κ1χβ

(L)p0 + 4κ2πn0R
3
0

)]
−c2

[
ρ

(L)
0

(
κ1χp0(κ2(1 − E2β

(s))(−1 +m0)2 + E2β
(L)m0)

+4E2κ2πm0n0R
3
0

)
+χ(1−m0)m0p0ρ

(s)
0

]
+E2χm0p0 = 0 . (19)

From equation (19) we find the velocity of the wave with the
bubbles,

c2 =
−β1 ±

√
β2

1 − 4α1γ1

2α1
, (20)

where

α1 = m0(1 −m0)ρ
(s)
0 ρ

(L)
0

(
κ1χβ

(L)p0 + 4κ2πn0R
3
0

)
,

β1 = −
[
ρ
(L)
0

(
κ1χp0(κ2(1 − E2β

(s))(−1 +m0)2

+E2β
(L)m0) + 4E2κ2πm0n0R

3
0

)
+ χ(1 −m0)m0p0ρ

(s)
0 )
]
,

γ1 = E2m0χp0 .

Thus, all the variables are expressed through any one selected
variable, for example, the velocity v1. From the last three
equations of system (17), we have

e1 = −v1

c
, σ1 = −E2

v1

c
, p1 = −p0 χR1 . (21)

Substituting of σ1, and p1 into the remaining equations of the
system (17), we obtain

(1−m0)ρ
(s)
0 v1−E2(1−m0)ρ

(s)
0 β(s)v1 +cρ

(s)
0 m1 = 0 . (22)

m0u1 − cm1 +

(
p0 χβ

(L)

κ2
+

4π n0R
3
0

κ1

)
cm0R1 = 0 . (23)

c(1 −m0)ρ
(s)
0 v1 −

E2

c
v1 + (1 −m0)p0 χR1 = 0 . (24)

cκ1κ2m0ρ
(L)
0 u1 +m0p0 χR1 = 0 . (25)

Equation (22) gives

m1 = −(1 −m0)(1 − E2β
(s))

v1

c
. (26)
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Then from (24) we get

R1 = −

(
c2(1 −m0)ρ

(s)
0 − E2

(1 −m0)p0 χ

)
v1

c
. (27)

Substituting (27) into the value of p1 from (21), leads to

p1 =

(
c2(1 −m0)ρ

(s)
0 − E2

(1 −m0)

)
v1

c
. (28)

Moreover, we derive the proportionality between v1 and u1 as

u1 =

(
c(1 −m0)ρ

(s)
0 − E2

c

κ1κ2ρ
(L)
0 (1 −m0)

)
v1

c
. (29)

B. Second linear approximation
In the second approximation for the full system we have

∂

∂ξ

(
(1 −m0)v2 + c(1 −m0)β(s)σ2 + cm2

)
= Λ(s) ,

∂

∂ξ

(
m0u2 −

[
m2 +

m0β
(L)p2

κ2
− 4πm0 n0R

3
0(R2 +R2

1)

κ1

+
4πm0 n0R

3
0 p0 χβ

(L)R2
1

κ1κ2

]
c
)

= Λ(L) ,

∂

∂ξ

(
c(1 −m0)ρ

(s)
0 v2 + σ2 − (1 −m0)p2

)
= Σ1,

∂

∂ξ

(
cκ1κ2m0ρ

(L)
0 u2 −m0p2

)
= Σ2 ,

∂

∂ξ
(p1 + p0 χR1) =

∂Γ

∂ξ
,
∂

∂ξ
(ce2 + v2) = F,

∂

∂ξ
(σ2 − E2 e2) =

∂T

∂ξ
,

(30)

where

Λ(s) =
1

2

∂

∂τ

[
(m1 + (1 −m0)β(s)σ1)

]
,

Λ(L) = −1

2

∂

∂τ

[
κ1

(
m1κ2 +m0β

(L)p1

)
− 4πn0κ2R

3
0R1

]
,

Σ1 = (1 −m0)ρ
(s)
0

1

2

∂v1

∂τ
, Σ2 = m0ρ

(f)
0

1

2

∂u1

∂τ
,

Γ = µc

(
4 +

m0R
2
0

`

)
∂R1

∂ξ
, F = − 1

2c

∂v1

∂τ
,

T = −a1c
∂e1

∂ξ
+ b1c

∂σ1

∂ξ
.

The determinant of the left-hand side of the system (30)
coincides with the determinant of (18), which equals zero.
Therefore, a non-zero solution for v2 exists only if the fol-
lowing compatibility condition takes place,

det(bnm) = 0 , (31)

where
b11 = ∂T

∂ξ , b12 = 0 , a13 = 0 , b14 = 1 , b15 = 0 , b16 =
0 , b17 = −E2 , b21 = Σ1 , b22 = 0 , b23 = (1 −m0) , b24 =
1 , b25 = 0 , b26 = 0 , b27 = 0 , b31 = Σ2 , b32 =
cκ1κ2m0ρ

(L)
0 , a33 = −mo , b34 = 0 , b35 = 0 , b36 =

0 , b37 = 0 , b41 = ∂Γ
∂ξ , b42 = 0 , b43 = 1 , b44 = 0 , b45 =

0 , b46 = χp0 , b47 = 0 , b51 = F , b52 = 0 , b53 = 0 , b54 =
0 , b55 = 0 , b56 = 0 , b57 = c , b61 = Λ(s) , b62 = 0 , b63 =
0 , b64 = c(1 − m0)β(s) , b65 = c , b66 = 0 , b67 = 0 ,

b71 = Λ(L) , b72 = m0 , b73 = − cβ(L)m0

κ2
, b74 = 0 , b75 =

−c , b76 =
4cπm0n0R

3
0

κ1
, b77 = 0 .

This gives the evolution equation for v ∼= v1

χ
(
cΣ2 +

(
E2F − c

(
Σ1 + Σ2 −

∂T

∂ξ

))
m0

)
p0

+c2
(
− 4κ2πm0

(
E2F − c

(
Σ1 −

∂T

∂ξ
+
∂Γ

∂ξ
+ c

∂Γ

∂ξ
m0

)
noR

3
0

)
+κ1χp0

((
−E2F − c

(∂T
∂ξ

−Σ1

))
β(L)m0 −κ2(1−m0)

((
E2F

+ c
∂T

∂ξ

)
β(s)(−1 +m0) + Λ(L) + Λ(s)

)))
ρ
(L)
0 = 0 . (32)

We re-write equation (32) in terms of v and re-arrange with the help
of Mathematica software,

1

2

[
c(1 −m0)ρ

(s)
0 g1 +c g2 +c2κ1κ2χp0ρ

(L)
0 ((1 −m0)2

−g3) − E2 g4

]∂v
∂τ

+ c2 [g4(a1 − b1E2) − 4g5]
∂2v

∂ξ2

+c g6
∂vv

∂ξ
= 0 , (33)

where

g1 = cm0

(
− χp0 + c2ρ

(L)
0 (κ1χp0β

(L) + 4κ2πn0R
3
0)
)
,

g2 = χp0m0

(
c(1 −m0)ρ

(s)
0 − E2

c

)
,

g3 = κ1κ2(1 −m0)2(1 − E2β
(s)) − (c2(1 −m0)ρ

(s)
0 −

E2)(κ1m0ρ
(L)
0 + 4κ2πn0R

3
0) ,

g4 = p0 χm0 + c2ρ
(L)
0

(
κ1p0 χ

(
κ2β

(s)(−1 +m0)2 − β(L)m0

)
−4πn0m0κ2R

3
0

)
,

g5 = c2πn0m0κ2R
3
0ρ

(L)
0 µ

(
4 +

m0R
2
0

`

)(c2(1 −m0)ρ
(s)
0 − E2

p0 χ

)
and g6 is the nonlinearity coefficient, which we do not present
here because our further analysis focuses on the linear part of
equation (33).

Finally, we re-write the wave equation (33) as

A1
∂v

∂τ
+A2

∂2v

∂ξ2
+AN

∂vv

∂ξ
= 0 , (34)

where

A1 =
1

2

[
c(1 −m0)ρ

(s)
0 g1 +c g2 +c2κ1κ2χp0ρ

(L)
0 ((1 −m0)2

−g3) − E2 g4

]
,

A2 = c2 [g4(a1 − b1E2) − 4g5] , AN = c g6 .

IV. P-WAVES WITHOUT GAS BUBBLES

A. Rheological model to derive stress-strain relation
By removing one elastic spring segment, which represents the gas

bubble, from the rheological model in Fig. (3) (see Fig. 4) we get
the following constitutive law [25]

σ + b1
dσ

dt
= E2e+ a1

de

dt
, (35)

where a1 = (E1 + E2)θ, b1 = θ, θ = µ/E1.
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Fig. 4. Rheological model for standard linear model.

B. The equations of dynamics
In the case without the bubbles, the equations of motion reduce to

the six equations

∂
∂t

(1 −m)ρ(s) + ∂
∂x

(1 −m)ρ(s)v = 0 ,

∂

∂t
mρ(L) +

∂

∂x
mρ(L)u = 0 ,

∂

∂t
(1 −m)ρ(s)v +

∂

∂x
(1 −m)ρ(s)vv

= ∂σ
∂x

− (1 −m) ∂p
∂x

− I ,

∂

∂t
mρ(L)u+

∂

∂x
mρ(L)uu = −m∂p

∂x
+ I ,

σ + b1
dσ

dt
= E2e+ a1

de

dt
,

De

Dt
≡ ∂e

∂t
+ v

∂e

∂x
=
∂v

∂x
.

(36)

The density equation (3) for the solid remains unchanged, but for
the gas-liquid mixture we neglect the volume gas content φ in
equation (5),

ρ(f) = ρ(L) = ρ
(L)
0 (1 + β(L)p) . (37)

C. First linear approximation
The linear terms in the order ∼ ε in system (36)

c(1 −m0)ρ
(s)
0 v1 + σ1 − (1 −m0)p1 = 0 ,

m0u1 − cm1 − cm0β
(L)p1 = 0 ,

(1 −m0)v1 + c(1 −m0)β(s)σ1 + cm1 = 0 , (38)

cm0ρ
(L)
0 u1 −m0p1 = 0 ,

σ1 − E2 e1 = 0 , ce1 + v1 = 0 .

In system (38), to find the velocity c we require

det(anm) = 0 , (39)

where
a11 = c(1 −m0)ρ

(s)
0 , a12 = 0 , a13 = (1 −m0) , a14 = 1 , a15 =

0 , a16 = 0 , a21 = 0 , a22 = m0 , a23 = −cβ(L)m0 , a24 =
0 , a25 = −c , a26 = 0 , a31 = (1 − m0) , a32 = 0 , a33 =
0 , a34 = cβ(s)(1 − m0) , a35 = c , a36 = 0 , a41 = 0 , a42 =

cmoρ
(L)
0 , a43 = −m0 , a44 = 0 , a45 = 0 , a46 = 0 , a51 =

0 , a52 = 0 , a53 = 0 , a54 = 1 , a55 = 0 , a56 = −E2 ,
a61 = 1 , a62 = 0 , a63 = 0 , a64 = 0 , a65 = 0 , a66 = c .

This gives

c4ρ
(s)
0 ρ

(L)
0 β(s)(1 −m0)m0 − c2

(
ρ
(L)
0

(
(1 − E2β

(s))(−1 +m0)2
)

+E2β
(L)m0 + ρ

(s)
0 m0(1 −m0)

)
+ E2m0 = 0 . (40)

Equation (40) gives the velocity of the wave without the bubbles,

c2 =
−β2 ±

√
β2
2 − 4α2γ2

2α2
, (41)

where

α2 = ρ
(s)
0 ρ

(L)
0 β(s)(1 −m0)m0 ,

β2 = −
(
ρ
(L)
0

(
(1 − E2β

(s))(−1 +m0)2 + E2β
(L)m0

)
+ρ

(s)
0 m0(1 −m0)

)
,

γ2 = E2m0 .

The terms for e1, σ1, p1, and m1 remain the same, while the
proportion between v1 and u1 becomes

u1 =

(
c(1 −m0)ρ

(s)
0 − E2

c

ρ
(L)
0 (1 −m0)

)
v1
c
. (42)

D. Second linear approximation
Collecting the quadratic terms∼ ε2 in system (36) gives
∂
∂ξ

(σ2 − E2 e2) = ∂T
∂ξ
, ∂

∂ξ
(ce2 + v2) = F ,

c(1 −m0)ρ
(s)
0

∂v2
∂ξ

+
∂σ2

∂ξ
− (1 −m0)

∂p2
∂ξ

= Σ1 ,

(cm0ρ
(L)
0

∂u2

∂ξ
−m0

∂p2
∂ξ

) = Σ2 ,

(1 −m0)
∂v2
∂ξ

+ c(1 −m0)β(s) ∂σ2

∂ξ
+ c

∂m2

∂ξ
= Λ(s) ,

m0
∂u2

∂ξ
− c

∂m2

∂ξ
− cm0β

(L) ∂p2
∂ξ

= Λ(L) ,

(43)

where the formulas of F , Σ1, and Λ(s) are the same, while the
formulas for Σ2, Λ(L), and T are changed to

Σ2 = m0ρ
(L)
0

1

2

∂u1

∂τ
,

Λ(L) = −1

2

∂

∂τ

(
m1 +m0β

(L)p1
)
,

T = −a1c
∂e1
∂ξ

+ b1c
∂σ1

∂ξ
.

In analogy to (31), the compatibility condition for the system (43)
has the form

det(bnm) = 0 , (44)

where
b11 = ∂T

∂ξ
, b12 = 0 , b13 = 0 , b14 = 1 , b15 = 0 , b16 = −E2 ,

b21 = F , b22 = 0 , b23 = 0 , b24 = 0 , b25 = 0 , b26 = c , b31 =
Σ1 , b32 = 0 , b33 = (1 − m0) , b34 = 1 , b35 = 0 , b36 = 0 ,

b41 = Σ2 , b42 = cmoρ
(L)
0 , b43 = −m0 , b44 = 0 , b45 = 0 , b46 =

0 , b51 = Λ(s) , b52 = 0 , b53 = 0 , b54 = cβ(s)(1 − m0) , b55 =
c , b56 = 0 , b61 = Λ(L) , b62 = m0 , b63 = −cβ(L)m0 , b64 =
0 , b65 = −c , b66 = 0 .
Then the evolution equation for v ∼= v1 is

cΣ2 +

(
E2F − c

(
Σ1 + Σ2 −

∂T

∂ξ

))
m0β

(L)m0

+c2
((

−E2F − c

(
∂T

∂ξ
− Σ1

))
− (1 −m0)((

E2F + c
∂T

∂ξ

)
βs(−1 +m0) + Λ(L) + Λ(s)

))
ρ
(L)
0 = 0 .

(45)
Now, we re-write equation (45) in terms of v and re-arrange,

1

2

(
f1 + f2 −(f3 + f4 + E2f5)

)∂v
∂τ

+c2 f5 (a1 − b1E2)
∂2v

∂ξ2
+ c f6

∂vv

∂ξ
= 0 , (46)
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where

f1 = cm2
0

(
c(1 −m0)ρ

(s)
0 − E2

c

)
,

f2 = c2m0(1 −m0)2ρ
(L)
0 ,

f3 = c2m0ρ
(L)
0

(
(1 −m0)2(1 − E2β

(s))

−m0β
(L)(c2(1 −m0)ρ

(s)
0 − E2))

)
,

f4 = c2m2
0ρ

(s)
0 (1 −m0)(1 − c2ρ

(L)
0 β(L)) ,

f5 = m0

(
m0 + c2ρ

(L)
0 (β(s)(−1 +m0)2 −m0β

(L))
)
,

and f6 is the nonlinearity coefficient. The above equation then
becomes

B1
∂v

∂τ
+B2

∂2v

∂ξ2
+BN

∂vv

∂ξ
= 0 , (47)

where

B1 =
1

2

(
f1 + f2 −(f3 + f4 + E2f5)

)
,

B2 = c2 f5 (a1 − b1E2) , BN = c f6 .

V. LINEARIZED MODEL

In this section we consider the linearized version of the model-
s (34) and (47). Our main interest is its dissipative part responsible
for decay (attenuation) of the wave.

A. Evaluation of the parameters and the wave velocity
From [15], [16], [26], the values of the parameters are: den-

sities, ρ(L)
0 = 1000 kg/m3 for water, ρ(g) = 2 kg/m3 for gas,

ρ
(s)
0 = 2500 kg/m3 for solid; porosity m0 = 0.25; compressibility
β(L) = 2 × 10−9 Pa−1 for water, β(L) = 2.4 × 10−6 Pa−1 for gas,
β(s) = 2×10−10 Pa−1 for solid; steady pressure p0 = 103 Pa; bubble
radius R0 = 10−4 m; volume gas content φ0 = 10−3; viscosity
µ = 10−3 Pa·s; adiabatic exponent ζ = 1.4, and permeability
` = 1.8 × 10−11 m2. Using the data from [23], [27], [28], [29],
the values of the parameters of the rheological scheme in Fig. 3 are

(a) E1 = 1/β(L) = 4 × 105 Pa , E2 = c2ρ0 = 2 × 107 Pa ,

E3 = 3χp0 = 4 × 107 Pa ,

where we used, just for the purpose of evaluating of Ei and Mi,
the typical velocity c ∼ 100 m/s and the linear size of the oscillator
Ls = 0.3 cm from [27], [30].

We will also explore the values of Ei obtained by a different
method, namely by using the formula c2ρ for all three phases, with
ρ being the density of the liquid, solid and gas, respectively,

(b) E1 = c2ρ(L) = 1000 × 104 Pa ,

E2 = c2ρ(s) = 25 × 106 Pa , E3 = c2ρ(g) = 2 × 104 Pa .

According to [1], [2], the equation (20) gives the velocity of P-waves
with the bubbles: for the P1-wave c ≈ 103 m/s and c ≈ 116 m/s for
the both variants (a) and (b) respectively; for the P2-wave c ≈ 3 m/s
for the both variants (a) and (b). We see that the velocity of P2-wave
is indeed smaller than the velocity of P1-wave.

The results of equation (41) gives the velocity of P-waves without
the bubbles. For the P1-wave using the variants (a) and (b) gives
c ≈ 1050 m/s, while for the P2-wave c ≈ 70 m/s and c ≈ 78 m/s
for the both variants (a) and (b) respectively. These results confirm
that the presence of gas bubbles significantly decreases the P-waves
velocities [20].

Furthermore, we observed that the velocity (41) of the P-waves
without the bubbles is almost the same as the velocity of P-waves
with the bubbles (20) when we set (n0 = 0 and R0 = 0) for the
both variants (a) and (b).

B. Dissipation rate
In this section we are again interested in the effect of the bubbles

on the wave dissipation. Therefore, we consider the linearized wave
equations (34) and (47). The linearized form of Eq. (34) can be
written as

∂v

∂τ
= −A2

A1

∂2v

∂ξ2
. (48)

Now using the Fourier modes v ∼ exp(λt + ikx), we get the
dissipation relation

λ(k) =
A2

A1
k2 , (49)

where λ is the decay rate and k is the wave number. For the case
without the bubbles the linearized form of equation (47) is

∂v

∂τ
= −B2

B1

∂2v

∂ξ2
. (50)

Then the dissipation relation is

λ(k) =
B2

B1
k2 . (51)
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Fig. 5. The decay rate by formula (49) for variant (a), k∗ = 0.25 1/m.

The plot in Fig. 5 shows the decay rate at fixed k∗ = 0.25
1/m [21] against R0 and n0. As mentioned earlier, the decay rate
is significantly affected by the increase in R0 and becomes large in
absolute value; this is because the bubbles affect the system through
the pressure p1 = −p0 χR1. As for n0, one should disregard the
region of small n0 in Fig. 5 where the equations of continuum
mechanics cease to be valid. This is because the used assumption
that each bubble is embedded in its own fluid particle (see Eq. (2))
is no longer inapplicable due to the large size of the particle.
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Fig. 7. The decay rate by formulas (49) and (51) for variant (a): R0 varies,
n0 = 4× 1010.
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Fig. 6. The decay rate by formulas (49) and (51) for variant (a): n0 varies,
R0 = 10−4.

Figs. 6 and 7 compare the decay curves of the wave with the
bubbles and the wave without the bubbles. The dashed line describes
the case without the bubbles and the solid lines correspond to the
wave with the bubbles. Fig. 6 is for varying n0 and fixed R0. Fig. 7
is for varying R0 and fixed n0. We clearly see that the curves lie
entirely below zero, which means that the wave decays and the
decay rate depends on the number and radius of the bubbles. This
result agrees with the conception emphasized in [32], [33] about the
essentially dissipative nature of the freely propagating elastic wave.
Similar results are obtained for variants (b) as shown in Figs. 8–10.
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Fig. 8. The decay rate by formula (49) for variant (b), k∗ = 0.25 1/m.
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Fig. 9. The decay rate by formulas (49) and (51) for variant (b): n0 varies,
R0 = 10−4.
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Fig. 10. The decay rate by formulas (49) and (51) for variant (b): R0 varies,
n0 = 4× 1010.

VI. CONCLUSIONS

We studied the effect of the rheology including bubbles on the
Frenkel-Biot P-waves in porous rocks. Using two-segment rheology,
we derived the P-type wave equations with and without the bubbles
describing the velocity of the solid matrix in the medium. The
linearized versions of the equations are compared in terms of the
decay rate λ(k) of the Fourier modes. For the both cases with and
without the bubbles, the λ(k)-curve lies entirely below zero. We
discovered that —λ(k)— increases with the increase of the radius
and the number of the bubbles.

NOMENCLATURE
β(s) Compressibility for solid, Pa−1

β(L) Compressibility for water and gas, Pa−1

ρ
(s)
0 Density for solid, kg/m3

ρ
(L)
0 Density for water, kg/m3

ρ
(g)
0 Density for gas, kg/m3

R0 Bubble radius, m
µ Viscosity, Pa·s
` Permeability, m2

p Pressure, Pa
σ Stress, Pa
φ Volume gas content
n0 Number of bubbles , 1/m3

m0 Porosity
ζ Adiabatic exponent
k Wave number, 1/m
λ Decay rate, 1/s

REFERENCES

[1] Biot, M. A. ”Theory of propagation of elastic waves in a fluid-saturated
porous solid. I. Low-frequency range.” The Journal of the Acoustical
Society of America 28.2 (1956): 168-178.

[2] Biot, M. A. ”Theory of propagation of elastic waves in a fluid-saturated
porous solid. II. Higher frequency range.” the Journal of the Acoustical
Society of America 28.2 (1956): 179-191.

[3] Biot, M. A. ”Mechanics of deformation and acoustic propagation in
porous media.” Journal of Applied Physics 33.4 (1962): 1482-1498.

[4] Biot, M. A. ”Generalized theory of acoustic propagation in porous
dissipative media.” The Journal of the Acoustical Society of America
34.9A (1962): 1254-1264.

[5] Lvy, Thrse. ”Propagation of waves in a fluid-saturated porous elastic
solid.” International Journal of Engineering Science 17.9 (1979): 1005-
1014.

[6] Auriault, J. L. ”Dynamic behaviour of a porous medium saturated by
a Newtonian fluid.” International Journal of Engineering Science 18.6
(1980): 775-785.

[7] Burridge, Robert, and Joseph B. Keller. ”Poroelasticity equations derived
from microstructure.” The Journal of the Acoustical Society of America
70.4 (1981): 1140-1146.

INTERNATIONAL JOURNAL OF MECHANICS Volume 13, 2019

ISSN: 1998-4448 162



[8] Pride, Steven R., Anthony F. Gangi, and F. Dale Morgan. ”Deriving
the equations of motion for porous isotropic media.” The Journal of the
Acoustical Society of America 92.6 (1992): 3278-3290.

[9] Mller, Tobias M., Boris Gurevich, and Maxim Lebedev. ”Seismic wave
attenuation and dispersion resulting from wave-induced flow in porous
rocksA review.” Geophysics 75.5 (2010): 75A147-75A164.

[10] Silberman, Edward. ”Sound velocity and attenuation in bubbly mixtures
measured in standing wave tubes.” The journal of the Acoustical Society
of America 29.8 (1957): 925-933.

[11] Wijngaarden, L. van. ”On the equations of motion for mixtures of liquid
and gas bubbles.” Journal of Fluid Mechanics 33.3 (1968): 465-474.

[12] Wijngaarden, L. van. ”One-dimensional flow of liquids containing small
gas bubbles.” Annual review of fluid Mechanics 4.1 (1972): 369-396.

[13] Anderson, A. L., and Hampton, L. D. ”Acoustics of gas-bearing sedi-
ments I. Background.” The Journal of the Acoustical Society of America
67.6 (1980): 1865-1889.

[14] Commander, Kerry W., and Andrea Prosperetti. ”Linear pressure waves
in bubbly liquids: Comparison between theory and experiments.” The
Journal of the Acoustical Society of America 85.2 (1989): 732-746.

[15] Dunin, S. Z., and Nikolaevskii, V. N. ”Nonlinear waves in porous media
saturated with live oil.” Acoustical Physics 51.1 (2005): S61-S66.

[16] Dunin, S. Z., Mikhailov, D. N., and Nikolayevskii, V. N. ”Longitudinal
waves in partially saturated porous media: the effect of gas bubbles.”
Journal of Applied Mathematics and Mechanics 70.2 (2006): 251-263.

[17] Leighton, T. G. ”Theory for acoustic propagation in marine sediment
containing gas bubbles which may pulsate in a nonstationary nonlinear
manner.” Geophysical Research Letters 34.17 (2007).

[18] Mantouka, A., and T. G. Leighton. ”Theory for the dynamics of
acoustically-excited gas bubbles in porous media (with specific appli-
cation to marine sediment).” (2008).

[19] Toms, J., et al. ”Comparative review of theoretical models for elastic
wave attenuation and dispersion in partially saturated rocks.” Soil Dy-
namics and Earthquake Engineering 26.6-7 (2006): 548-565.

[20] Gubaidullin, A. A., O. Yu Boldyreva, and D. N. Dudko. ”Waves in
porous media saturated with bubbly liquid.” Journal of Physics: Confer-
ence Series. Vol. 899. No. 3. IOP Publishing, 2017.

[21] Nikolaevskii, V. N. Dynamics of viscoelastic media with internal oscil-
lations, S.L. Koh et al. (eds.), Recent Advances in Engineering Science,
Springer-Verlag, Berlin, 1989, 210–221.

[22] Nikolaevskiy, V. N. ”Non-linear Evolution of P-waves in ViscousElastic
Granular Saturated Media.” Transport in Porous Media 73.2 (2008): 125-
140.

[23] Nikolaevskiy, V. N., and Strunin, D. V. ”The role of natural gases in
seismics of hydrocarbon reservoirs.” Elastic Wave Effect on Fluid in
Porous Media, Proceedings 2012 (2012): 25-29.

[24] Nikolaevskiy, Viktor N. Mechanics of porous and fractured media. Vol.
8. World Scientific, 1990.

[25] Findley, William N., and Francis A. Davis. Creep and relaxation of
nonlinear viscoelastic materials. Courier Corporation, 2013.

[26] Mikhailov, D. N. ”The influence of gas saturation and pore pressure
on the characteristics of the Frenkel-Biot P waves in partially saturated
porous media.” Izvestiya, Physics of the Solid Earth 46.10 (2010): 897-
909.

[27] Nikolaevskiy, V. N. ”Viscoelasticity with internal oscillators as a possible
model of seismoactive medium.” Doklady Akademii Nauk SSSR 283.6
(1985): 1321-1324.

[28] Nikolaevskiy, V. N. ”A real P-wave and its dependence on the presence
of gas.” Izvestiya, Physics of the Solid Earth 52.1 (2016): 1-13.

[29] Nikolaevskiy, V. N., and Stepanova, G. S. ”Nonlinear seismics and the
acoustic action on the oil recovery from an oil pool.” Acoustical Physics
51.1 (2005): S131-S139.

[30] Vilchinska, N., Nikolajevskiy, V. N , and Lisin, V. ”Slow waves and
natural oscillations in sandy marine soils.” Izvestiya Acad. Nauk SSSR,
Oceanology 4.

[31] Ali, A. A., and Strunin, D. V. ”The role of rheology in modelling elastic
waves with gas bubbles in granular fluid-saturated media.” Journal of
Mechanics of Materials and Structures 14.1 (2019): 1-24.

[32] Strunin, D. V. ”On dissipative nature of elastic waves.” Journal of
Coupled Systems and Multiscale Dynamics 2.2 (2014): 70-73.

[33] Strunin, D. V., and Ali, A. A. ”On nonlinear dynamics of neutral modes
in elastic waves in granular media.” Journal of Coupled Systems and
Multiscale Dynamics 4.3 (2016): 163-169.

INTERNATIONAL JOURNAL OF MECHANICS Volume 13, 2019

ISSN: 1998-4448 163




