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Approximations of the Sixth Order with the
Polynomial and Non-polynomial Splines and
Variational-difference Method

I. G. Burova

Abstract—This paper discusses the approximations with the local
basis of the second level and the sixth order. We call it the
approximation of the second level because in addition to the function
values in the grid nodes it uses the values of the function, and the first
and the second derivatives of the function. Here the polynomial
approximations and the non-polynomial approximations of a special
form are discussed. The non-polynomial approximation has the
properties of polynomial and trigonometric functions. The
approximations are twice continuously differentiable. Approximation
theorems are given. These approximations use the values of the
function at the nodes, the values of the first and the second
derivatives of the function at the nodes, and the local basis splines.
These basis splines are used for constructing variational-difference
schemes for solving boundary value problems for differential
equations. Numerical examples are given
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I. INTRODUCTION

HE advantages of finite-difference methods for the

approximate solution of boundary value problems for
differential equations are well known. The finite difference
matrix contains few nonzero elements. The elements of the
finite difference matrix, as well as the right-hand side of this
system, are calculated quite simply. Variational difference
methods have several advantages over the finite-difference
methods. For example, there are cases when the difference
approximation of an elliptic differential equation is non-
elliptic. A lot of attention to the construction and study of
variational-difference methods was given by Prof.
S.G.Michlin (see [1]). In the paper, the construction of
polynomial splines of the Hermitian type was considered.
Prof. = S.G.Mikhlin  constructed  variational-difference
approximations based on these splines. In recent years
variational-difference schemes are within the area of focus of
some papers (see, for example, [2], [3].
B-splines can be used to solve boundary value problems. In
study [4] the authors deal with the cubic B-spline method to
solve two-point boundary value problems. The cubic B-spline
approximation equation, based on quarter-sweep concept, are
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used to discretize the proposed problem and construct the
linear system. For example, the variational-difference method
and B-spline interpolation method with different degrees were
used in paper [5] for the design of the lenses surfaces.
Hermite-type splines make it possible to approximate not only
a function, but also its derivatives. Hermite splines are often
used to solve various problems (see [6]). Much attention is
paid to the construction of splines in the papers by prof.
Y.K.Demjanovich (see [7]). Among non-polynomial splines,
trigonometric splines are of significant interest. Cubic
Hermitian splines are widely known and often used. Cubic
Hermite curves are adopted in conjunction with the level set
method to represent curved interfaces in paper [8].

In paper [9] the authors construct spline interpolation with the
property of monotonicity and convexity preservation, using
two types of splines: the Cubic Spline (CS), and the Hermite
Cubic Rational polynomial Spline (CRS). Both curves are
based on the shape preserving the Hermite Variable Degree
Spline (VDS).

In 1964 Schoenberg introduced trigonometric spline functions
and proved the existence of locally supported trigonometric
spline and B-spline functions [10]. In some cases, the use of
trigonometric splines is preferable to the use of polynomial
splines.

This paper continues the series of papers on approximation
with local polynomial and non-polynomial splines (see [11],
[12], [13], [14], [15]). The proposed paper offers non-
polynomial splines of the Hermite type with the sixth order
approximation of the second level (height), as well as smooth
non-polynomial splines. The construction of these splines uses
the functions of the Chebyshev system.  These non-
polynomial splines solve the Hermite interpolation problem.
These local basis functions can be used in solving problems
of the mean-square approximation, solving boundary value
problems by the variational-difference method, and solving
integral equations. In this paper we consider the features of the
application of polynomial and non-polynomial splines of the
sixth order of approximation of the second level for solving
boundary value problems by the variational-difference
method. The advantages of using sixth-order splines of
approximation of the second height include the fact that we
obtain not only an approximate solution, but also
approximations to the first and second derivatives of the
solution.
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II. ABOUT VARIATIONAL-DIFFERENCE METHOD

A. General Information
First, we recall the features of solving boundary value
problems by the variational-difference method.
Denote by A a positive definite symmetric operator in a real
Hilbert space H. Thus, there exists a constant y such that the
inequality
(Au,u) = y(u,u), y>0, u € D(4) (1)
is valid where D (A) is the domain of definition of the operator
A dense in H. Consider the equation
Au=f, f €H. 2)
The bilinear form
[u,v] = (Au,v), u,v € D(4), 3)
defines a scalar product on D(A). Denote by H, the
completion of D(A) with respect to the norm generated by the
scalar product (3). Applying inequality (1) we see that for
Uy, Uy, € D(A) the followed inequality valid

[Un — U, Up — Up ] = YUy = Uy Uy — Uy ).

Thus, the convergence in H,. implies the convergence in H.
We have a chain of embeddings D(A) € Hy € H. From the
inequality (1) it is easy to obtain the following inequality

[u,u] = y(u,u),u c Hy.
We denote the energy functional by F(u),
F(u) = [u,u] — 2(u, f), u € Hy.

It is known that if equation (2) has a solution, then the
functional F(u) has the smallest value when u = u,. The
converse is also true, the element u, at which the minimum of
functional F(u) is reached is a solution to equation (2). Thus,
if uy. is an element on which the minimum of the energy
functional is realized, then we obtain the equation:

[ug, v] = (f,v), v € Hy.

Let space H™ be such that H™ c H,. Let a basis @, ..., ¢,
be chosen in the space H™. We take an approximate solution
U,U € H™  in the form:

n
U= Z Cip;, ¢; = const.
i=1

Now we receive
n n
FU) = Zci(pi’zcj(pj -2\
i=1 j=1

From the condition

n
Gipj
j=1
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dF(U)
=0,
aCi
We obtain the system of equations:

1,2,..,n,

n
Z Ci [‘Pi' <Pj] = (f, <,0j),j =12 ..,n
=1

Using the method described above, we will solve the boundary
problem:

d d
Au=——(p)T) + 1 = 1),

u(a) = 0,u(b) = 0.

In the case of setting the boundary conditions
u(a) = 0,u(b) = 0, the scalar product can be determined by
the formula (see [1]):

b dud
(Au,v) = f (p(x)%d—z + r(x)u(x)v(x)) dx.

b
(u,f)zf u f dx.

To solve the boundary value problem, we apply the
variational-difference method while wusing sixth-order
polynomial splines of approximation of the second level. In
the next section, polynomial and non-polynomial
approximations will be considered; a numerical example will
be considered in the fourth section.

III. ABOUT SIXTH ORDER SPLINE APPROXIMATION

Let n be a positive number, n > 3, and a, b real numbers.
Let function u(x) be such that u € C® ([a, b]). The nodes
X € [a,b], j=0,..,n, such that a < -+ < X <% <
Xj41 < .. < b. The formulas of the basis splines of the
second level and the sixth order of approximation wjq(x),
Wit10(x), wi1(x), wip11(x), wjp(x), wiyq2(x), on an
interval [x;, xj11]
are obtained by solving the following system of equations:

@i (x)wjo(x) + @i (X4 1)Wjp10(x) +
@' Cedwj 1 () + @' (X1 1)Wjpq,1 () +
Q"1 (xIwj 2 (%) + "1 (X1 1)Wjp12(x) = @; (%),
i=0,1,23,4,5.
The system of functions ¢; should be the Chebyshev system
on the interval [a, B8], where a, § are real numbers, a < f3.
Based on different systems ¢; we will obtain different basis
functions  wjo(x), Wjr10(x), wj1(x), wjp11(x), wj,(x),
Wj4+1,2(x). We construct the approximation of function U(x)
with these splines on the interval [x;,x;.4] in the form:
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U(x) = u(o)wjo(x) + uxj41)wjs1000)+u (x)w; 1 (x) +

+u’(xj+1)wj+1,1(x) + u”(xj) Wj2 (X)+u”(xj+1) Wjt1,2(X).

The following theorem is valid if ¢, =x% i=

0,1,23,4,5.

Theorem 1. Let function u(x) be such that u € C® ([a, b]).
Q; = x,i=0,1,2,3,4,5. Suppose the ordered distinct nodes
Xy are Xgi1 — X, = h. Then for x € [x;,x;,1] we have

[uC) = U] < KhS Il ul® iy,

Xjy1l

K; = 0.015625/6! .

Proof. On the interval [x;,x;.;] we have the following
relations: U(x;) = u(x;), U'(x;) = u'(x;), U"(x;) = u"(x;),
U(x41) = u(xj01), U"(3541) = u"(%541), U'(%j41) =
u’(x]-H). Thus we can construct the Hermite interpolation
polynomial U(x) on the interval [xj,x;,,] with the basis
functions:

(x=Xj1+1)?
Wj,o(x) = m
sz = 6X2 + 3XX]'+1 - 15xX] + 10X]2 + X]'2+1 - SX]'X]'+1,
_ (x=Xj-1)?
Wj,o(x) = m
Q2 = 6x* + 3xX;_; — 15xX; + 10X + X7 ; — 5X;X;_,,
-(x-X)3

Wj+1,o(x) = m

Syj = 6x% 4 3xX; — 15xX;,4 + X7 + 10X/, — 5X; X4,

P,j, where x € [X;,X.1],

Q2j, where x € [X;_1,X/],

52]', where x € [X]',X]'+1],

3
wj,(x) = H (x — X;)Pyj, where x € [X;,X;,4],
j=Xj+1
Py =3x —4X; + Xj,q,
_ —(X—Xj—1)3
Wj,1(x) = m X — Xj)Qlj' where x € [X]'_l,Xj],
J=Xj-

Qlj =3x — 4‘X] +Xj_1,

—(x—X]-)3

Wisp1(x) = RT=TT (x — Xj11)S1j, where x € [X;,X.1],

Slj = 3x — 4’X]‘+1 +)(]’

_ ("—Xj+1)3 A
wj,(x) = PR (x = X;)", where x € [X;.X;14],
_ (x=xj-0)* 2
ijz(X) = m(x — X]) , where x € [X]'_l,Xj],
— (=X j11)* 3
Wip12(x) = m(x - Xj) , where x € [X;,X;,4],

These basis functions can be obtained from the system of
equations, when ¢; = x°.

Using the theorem of the error of Hermite interpolation we
get that the error of the interpolation will be the following:
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uG) ~ UG = D (23 (x — x1,0)% £ = E0),

§ € [x5,%541] -

If we put x = x; + t h, t € [0,1], we obtain

(x = x;)3(x — xj41)® = h® t3(t — 1)® . It is easy to obtain
max. [£3(t — 1)3 | =0.015625.

tef0,1]

The proof is complete.

Remark. If x = x; + th, t € [0,1], then the basis splines are of
the form:
wjo(x; + th) = —(6t% + 3t + 1 (t — 1)3,
wir10(xj + th) = (6t2 — 15¢ + 10)¢3,
w;, (% + th) = —th(3t + 1 (t — 1)%,
wisr1 (% + th) = —h(t — 1)(3t — D)3,
w;,(x; + th) = —h?t2(t — 1)%/2,
wir12(% + th) = h263 (e — 1)2/2,

Solving the system of equations when ¢g = cos(sx), s =
0,1,2, ¢, =sin(sx), s=1,2, ¢s=x, we obtain the
formulas of nonpolynomial basis splines of the sixth order of
approximation of the second level:

Wiy = (16X,, — 16x + 15sin(X; — X;41)
—125sin(2X; — 2X;,,) + 8sin(x — X;)
+18(x — Xj4q) cos(X; — Xj4q) +
2(Xj41 — x) cos(3X; — 3X;41) + 3sin(3X; — 3X;441)
—12sin(x + X; — 2X;,,) + 4sin(x — 3X; + 2X;,,)
—12sin(x — 2X; + X;41) + 4sin(x — 3X;,; + 2X;)
+4 sin(2x — 2X;) — 6sin(2x — X; — Xj11)
—sin(2x — 3X; + Xj41) + 4sin(2x — 2X;4,)
—sin(2x + X; — 3Xj41) + 8sin(x — X;41))/d,

d =2(8(Xj41 — X;) + 15sin(X; — X;41)
—12sin(2X; — 2X;41) + 9(X; — Xj11)cos(Xj — X;41)
+(Xj41 — X;) cos(3X; — 3Xj44) + 3sin(3X; — 3X;,,),
W10 = (18(X; — x)cos(X; — Xj11)
+2(x — X;) cos(3X; — 3Xj44) + 3sin(3X; — 3X;,,)
+12sin(x + X; — 2X;41) + 12sin(x + X4, — 2X;)
—4sin(x — 3X; + 2X;,1) — 4sin(x — 3X;,1 + 2X;)
—4sin(2x — 2X;) — 4sin(2x — 2Xj4,)
+sin(2x — 3X; + Xj41) + sin(2x — 3Xj4, + X))
+6sin(2x — X; — Xj41) — 12sin(2X; — 2X;41)
—8sin(x — X;4,) — 8sin(x — X;) + 16(x — X;)
+15sin(X; — X;4,) /d,

Wj, = (9 cos(3X; — 3Xj41) — 9cos(X; — X;41)
+3cos(X; — 3Xj44 + 2x)
+24(X; — Xj11)sin(x + Xj1, — 2X))

+2(X; — Xjp1)sin(X; — 3X;44 + 2x)
+8(Xj+1 — X;)sin(x — 3X;41 + 2X))
+6(X; — Xj41)sin(2x — X; — Xj41)
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+12cos(x + X4 — 2X;) + 12cos(x + Xj — 2X;44) —6sin(2X; — 2X41))/(2d).
—12cos(x — 3Xj;1 + 2X;) — 12cos(x — 3X; + 2X;44)
+24(Xj — x) Sin(ZXj — 2Xj+1) Figures 1-9 show the plots of the basis functions W;; and the
+8( Xip1 — Xj)sin(Zx - 2X)) first and second derivatives of these functions, when h = 1.

+6(x — X;41)sin(3X; — 3X;,1)
+16(Xj41 — X;)sin(x — X))
+sin(Xj — X;41)(30x — 18X;,1y — 12X))
—6 cos(2x — X; — Xj41) + 3cos(2x — 3X; + X;41))/(2d),

0 .
Wjs1,2 =(9 cos(X; = Xj1) = 9 cos(3X; — 3X;.,) ;:ig.l. The plot of the W; 01
—3cos(Xj — 3Xj41 + 2x) + 16(X;41 — X;)sin(x — Xj14) g
+6(X; — Xj41)sin(2x — X; — X;41) W

+sin(X; — Xj,,1)(30x — 12X;,, — 18X)) E
+8(Xj1 — X;)sin(2x — 2X;,1) 08 04 07\ o4 0

—12 cos(x + Xj41 — 2X;) +12cos(x — 3Xj4; + 2X;) 5

+6 cos(2x — X; — Xj41) — 3cos(2x + Xj1, — 3X)) 157
+6(x — X;)sin(3X; — 3X;,4) Fig.2. The plot of the W’}
+24(X; — Xj41)sin(x + X; — 2X44)
+8(Xj41 — X;)sin(x — 3X; + 2X;4,) ¢
+2(X; = X;41)sin(2x — 3X; + X;41) :

+24(X;41 — x)sin(2X; — 2X;44)
+12 cos(x — 3X; + 2Xj,1) — 12 cos(x + X; — 2X;44) /(2d),

Wi, = ((30x — 12X; — 18X;,1)cos(X; — Xj41)
+2(x — X;41) cos(3X; — 3X;,,) + 16sin(x — X;)
+12(X; — x) cos(2X; — 2X;4,) — 8sin(x — Xj1,)

—3sin(3X; — 3Xj4,) — 12sin(x + X; — 2X;44)

—4sin(x — 3X; + 2X;,,) + 2sin(2x — 2X)
+8sin(x — 3X;4, + 2X;) + sin(2x — 3X; + X;41)
—12sin(2x — X; — Xj,1)+14sin(2x — 2X;,1)

—5sin(X; — 3Xj41 + 2x) + 20(Xj4; — X)
+12(Xj11 — X;) cos(x + Xj1q — 2X;) — 6sin(2X; — 2X;44)
+16(X; — Xj11) cos(x — X;) + 4(X; — Xj11)cos(2x — 2X;)

+4(Xj41 — X;) cos(x — 3X41 + 2X;) + 21sin(X; — Xj14)
+6(X;41 — Xj)cos(2x — X; — Xj41)
+2(X; — X;41) cos(2x + X; — 3Xj141) /(2d),

8 I ‘.4 0 o ] 0
Wis12 = ((18X; + 12X;,4 — 30x)cos(X; — Xj4q) 0.4
+2(X; — x) cos(3X; — 3Xj,1) — 14sin(2x — 2X;) Fig.5. The plot of the W'} ;

—3sin(3X; — 3Xj4,) — 8sin(x — 3X; + 2X;44)
+12sin(x + Xj41 — 2X;) + 4sin(x — 3X;,, + 2X;)
+12sin(2x — X; — Xj11) + 5sin(2x + Xj,, — 3X;)

—2sin(2x — 2Xj41) — sin(X; — 3Xj41 + 2x)
+6(Xj41 — X;) cos(2x — X; — X;41) — 16sin(x — Xj41)

+4(X; — Xj41) cos(2x — 2X;4,) + 8sin(x — X;)

+12(X;41 — X;) cos(x + X; — 2Xj,,) + 20x
+12(x — X;41) cos(2X; — 2X;,,) — 20X;
+4(Xj41 — Xj)cos(x — 3X; + 2X;44)
+16(X; — Xj11) cos(x — Xj41) + 21sin(X; — Xj41)
+2(X; — X;41)cos(2x + Xj1, — 3X))

Fig.6. The plot of the W"; ,
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04 03
Fig.7. The plot of the W ,

4
Fig.9. The plot of the W"; ,

Let x € [xj,xj.1]. We construct the approximation in the
form:

Ux) = u(xj)Wj,o(x) + u(xj+1)Wj+1,o(x) + u'(xj)Wj,1(x) +
+u’(xj+1)W}'+1,1 (x) + u”(xj) Wi. (x)+u”(xj+1)
Wit12 (x).

The following theorem is valid if ¢ = cos(sx), s = 0,1, 2,
@5 = sin(sx),s = 1,2, p5 = x.

Remark. It can be obtained, that when h — 0 the formulas
take the form:

Wio(x; + th) = —(6t2 + 3t + 1) (¢t — 1) + 0(h),
Wjt10(xj + th) = (6t% — 15t + 10)¢® + O(h),
Wi, (x; + th) = —thBt + (¢ — 1)° + 0(h?),

Wjt11(xj + th) = —h(t — D3t — 4t + 0(h?),

W, (% + th) = —h?t?(t — 1)*/2 + 0(h®),
Wis12(x; + th) = R2t3(t — 1)%/2 + O(h®),

Theorem 2. Let function u(x) be such that u € C® ([a, b]).
Q; = x,i=0,1,2,3,4,5. Suppose the ordered distinct nodes
X are Xpyq — X = h,h < 1.5. Then for x € [x;,xj,4] we
have

lu(x) — U(x)| < K,h® 1| u® + 5u® + 44@ i

K,>0.

Xje1l?

Proof. In the non-polynomial case when x € [xj,xj,1] we
have W; ; which are given above. The method for finding the
estimate is described in detail in [11]. Here we briefly dwell
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on the main points of the proof.

We denote by ®;, i =1,2,3,...7, vector columns of the
form:
@, =(1,0,0,0,0,0,0)7,
@, = (sin(x), cos(x), —sin(x), —cos(x), sin(x), cos(x),

—sin(x))",
®; = (cos(x),—sin(x), — cos(x), sin(x), cos(x), — sin(x),
—cos(x))T,
@, = (sin(2x),2cos(2x), —4sin(2x), —8cos(2x),
16 sin(2x),32 cos(2x) , —64 sin(2x))7,
@ = (cos(2x),—2sin(2x), —4 cos(2x), 8sin(2x),
16cos(2x) — 32 sin(2x), —64 cos(2x))7,
®¢ =(1,%,0,0,0,0,0)7,
D, = (w,u’,u, u®, u®, 4G O,
Decomposing the determinant
Lu = (91, D,, @3, Dy, D5, Pg, 7)
into elements of the last column, we obtain
Lu = 5u™ +u® + 44"
Thus we have found a homogeneous equation Lu =

5u™® +u® + 44" = 0.

Now we need to find a solution to the inhomogeneous

equation Lu = g(x) by the method of varying arbitrary
constants.

Let u(x) = X C;(x)@;(x).

To determine the coefficients C;(x) we should solve a
system of linear algebraic equations:

e Ciei(x) =0,
6_,Ci0e"P(x) =0,k = 1,234,

Pt C’i(x)(pi(S) x) = g(x).

We denote by ¥;, i = 1,2,3, ... 6, vector columns of the form:
Y, = (1,0,0,0,O,O)T,
Y, = (sin(x), cos(x), — sin(x), — cos(x), sin(x) , cos(x))7,
W3
= (cos(x), —sin(x), — cos(x), sin(x), cos(x) , — sin(x))7,

Y, = (sin(2x),2cos(2x), —4sin(2x), —8cos(2x),
16 sin(2x), 32 cos(2x))7,
Y. = (cos(2x),—2sin(2x),—4 cos(2x), 8sin(2x),
16c0s(2x) — 32 sin(2x))7,
Y, =(1,x,0,0,0,0)7.
We denote by W (x) the determinant
W=|¥Y,¥, ¥, ¥, ¥, ¥l
Solving this system of equations, we obtain
We,i(x)g(x)
W (x)
Here Wy ;(x) is the algebraic complement of the elements
of the i-th column of the 7-th row of the determinant W (x).

We,i(x)g(x)
Thus, CL-(X) = f;]6IL/VT

C'i(x) =

+c;, where ¢; is an arbitrary

constant.
Using the results from paper [11] we get
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u = [ GO+ + a2 -
xj
Sll’l(t?)_ x) + t ; x)dt +ctc, Sin(x) +

c5 cos(x) + ¢, sin(2x) + c5 cos(2x) + cex,
where ¢;, i = 1,2, 3,4,5, 6, are some arbitrary constants.
Using the expression u(x) and derivative of it, we receive
the estimation of the error of the approximation with the non-
polynomial splines. The proof is complete.

2
Note, that when u(x) = x — cos(x) — sin(x) + % +1-

_ sin(2x) _ cos(2x)

" - we getu® +5u® +4u® =1,
Remark. It can be calculated that if h <1 then K = 0.4 -
1074,
The details will be discussed in another paper.

Now we can construct the piecewise function V(x), x €
[a,b], such that V(x) =U(x) for x € [x;,x,,]. This
piecewise function V(x) interpolates the function u(x) and
the first and the second derivative at the nodes. Thus, V (x) is
a continuous function and the first and the second derivatives
are also continuous ones. So we need the values of the first
and the second derivatives of u(x) at the nodes for the
construction of the approximation.

Let h=0.1, [a,b] =[—-1,1]. We denote by R = [rzllaﬁlu -
V|, Ry = max|u’' —V'|, R, = max|u"' — V"|. Actual errors in
[-1.1] [-11]

absolute values of the approximation with the non-polynomial
splines are given in Table 1. The actual errors in absolute
values of the approximation with the polynomial splines are
given in Table 2. The theoretical errors in absolute values of
the approximation with the polynomial splines are given in
Table 3. The theoretical errors in absolute values of the

approximation with the non-polynomial splines are given in
Table 4.

Table 1. Actual errors in absolute values of the approximation
with the non-polynomial splines

u(x) R R, R,
1/(1 0.172-107* | 0.540-1073 | 0.399-1071
+ 25x2)

sin(7x) 0.122-107* | 0.353-1073 | 0.222-1071!
— cos(9x)
x7 —x° 0.120-107% | 0.276-10"* | 0.191-107?

Table 2. The actual errors in absolute values of the

approximation with the polynomial splines

u(x) R R; R,
1/(1 0.169-107* | 0.545-1073 | 0.410-107*
+ 25x2)

sin(7x) 0.130-10"* | 0.377-1073 | 0.235-107*
— cos(9x)
x7 —x° 0.102-107°% | 0.244-107* | 0.166- 1072
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Table 3. The theoretical errors in absolute values of the
approximation with the polynomial splines
u(x) R

1/(1 + 25x%) 0.244-1073
sin(7x) — cos(9x) 0.141-107*
x7 —x° 0.120-1075

Table 4. The theoretical errors in absolute values of the
approximation with the non-polynomial splines

u(x) R

1/(1 + 25x2) 0.447 - 1073
sin(7x) — cos(9x) 0.241-107*
x7 —x° 0.266-1075

IV. NUMERICAL EXAMLES

Consider the solution of the following boundary value
problem:

u" = f(x),

where f(x) = (sin®(x)((sin(x) — sin(1))3)"".

Divide the interval [0,1] into n parts. Thus, we have
constructed a grid of nodes x;, j=0,..n+1. We are
interested in the values of the function in the internal nodes x;,
Jj =1, ...n. The values of the function in the nodes x, x,, 41 We
know. In order to solve this problem with variational-
difference method we have to calculate the integrals:

u(0) =u(1) =0,

(w0 wy] = f;jil(w'j.i)z dx,i=012,
[Wj,i;Wj+1,i] = f;;jﬂ w'iWidx, i =0,1,2,
[Wj,i; Wj+1,k] = f;joW'j,iW'jH,k dx.

Next, we need to solve the system of equations MC = F.The
matrix of the system of equations will have the form:

Mll MlZ M13
M21 M22 M23 .
M31 M32 M33

The matrices M;; , i,j = 1,2,3, have a tridiagonal structure.
So, for example, the matrix M, has the form:

[W-1,0Wj-1,0]  [Wj-1,0Wjo] 0
[Wj,o’ Wj—1,0] [Wj,o' Wj.O] [WJ'.O' Wi+1r0]

0 [Wi+1»0' Wj.O] [Wj+1,0' Wj+1,o]
The right side F of the system MC = F has the form
F = (F, F, F3),

where the elements of Fy, k = 1,2,3, are as followed:

Xit+1
F, = f fF(xw; dx.
X,

i-1



INTERNATIONAL JOURNAL OF MECHANICS
DOI: 10.46300/9104.2020.14.8

Having solved the system of equations we find the
unknown C = (Cy, Cy, C3), where C; = ¢y, ..., Cp;. Next, we
construct the solution on each interval separately in the form

U(x) = ¢joWj0(X) + Cjp1,0Wjs1,0(x) + ¢ 1w, (x) +
+Cj41,1Wja1,1(X) + €2 W) 2 (0)+Cj1q2, w().

By the construction, the function U(x) is a twice
continuously differentiable function. Note that we obtain an
approximation to the first and second derivatives of the
solution in the form:

U'(x) = ¢joW'jo(%) + Cigr,oWjp10(x) + 5w’ 1 () +

+Ci1,1W 41,1 (X) + € W2 () FCip1 W1 2(X),
U"(x) = ¢jow"jo(x) + ¢jp1,o0W"j41,0(x) + w1 (x) +

+Cp1,1W 111 (0) + 2 W2 (0)FC 112 W12 (X).

Example 1. Let u = sin®(x)(sin(x) —sin(1))3, f(x) =
u"'(x). Let n = 10. Figure 10 shows the plot of the solution of
the boundary value problem and the approximate solution
when the polynomial splines were used. Figure 11 shows the
plot of the first derivative of the solution of the boundary
value problem and the first derivative of the approximate
solution. Figure 12 shows the plot of the second derivative of
the solution of the boundary value problem and the second
derivative of the approximate solution.

-0.002-

Figure 10. The plot of the solution of the boundary value
problem and the approximate solution.

Figure 11. The plot of the first derivative of the solution of
the boundary value problem and the first derivative of the
approximate solution.

Figure 12. The plot of the second derivative of the solution
of the boundary value problem and the second derivative of
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the approximate solution.

It should be noted that if at the ends of the interval
[a, b] the solution of the equation and the first two derivatives
of the solution equal to zero, then the difference method can
give an approximate solution better than the variational-
difference method. The first example illustrates this situation
(see Fig.13).

x
0.2 04 06 08 1

g 20 86 0 ]
-0.001 4
0002
0.003
0004
-0.005

\/

Figure 13. The plots of the solution of this problem using
the difference method (points) and the solution u(x) (blue
line).

Now consider the case when only the solution equals to
zero at the ends of the interval [a, b].

Example 2. Now let u = x(x — 1) sin (%), fx) = (u(x))"”,
n = 10, Figure 14 shows the plot of the solution of the
boundary value problem and the approximate solution when
the polynomial splines were used. Figure 15 shows the plot of
the first derivative of the solution of the boundary value
problem and the first derivative of the approximate solution.
Figure 16 shows the plot of the second derivative of the
solution of the boundary value problem and the second
derivative of the approximate solution.

-0.005
0401
0,015

-0z

0z 04
Figure 14. The plot of the solution of the boundary value
problem and the approximate solution.

Figure 15. The plot of the first derivative of the solution of
the boundary value problem and the first derivative of the
approximate solution.
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Figure 16. The plot of the second derivative of the solution of the
boundary value problem and the second derivative of the
approximate solution.

Remark. The result of application of the is better
variational-difference method than when we use the difference
method with the second order approximation, when h = 0.01.

The approximate solution of this problem using the
difference method with the second order approximation
(points) and u(x) are given in Fig.17.

x
0.2 04 06 08 1
B A i

/

Figure 17. The plots of the solution of this problem using
the difference method (points) and the solution u(x) (blue
line).

V. THREE TIMES CONTINUOUSLY DIFFERENTIABLE
APPROXIMATION

Now we consider the question of whether it is possible to
obtain an approximation of three times continuously
differentiable using the obtained basis functions. We have
obtained the function U(x), x € [xj, xj+1], such that

u() = U(x), v'(x)=0'(x), u"(x) =U"(x;),

u(tie1) = U(x41), w(3541) = U'(x544),

u'(%41) = U (%),
using the formula:

Ux) = ulo)wjo(0) + u(xj41)Wji1,000) + ' (o) w1 (x) +
+u,(xj+1)wj+1,1(x) + u”(xj) Wj2 (x)+u”(xj+1) Wjt1,2(x)

on every interval x € [x;j, Xj41].

Consider the algorithm for constructing a thrice continuously

differentiable polynomial spline P(x). To construct a thrice

continuously differentiable non-polynomial spline, the

construction is similar.

Our aim is to construct a piecewise function P(x) so that it
will not only have the first and the second continuous
derivative but also the third continuous derivative. Moreover,
it will interpolate the function u(x) and its first derivative in
the nodes x;. The way of constructing such piecewise
functions in a polynomial case is known (see, for example,
papers of Kvasov B.I., Zavyalov Yu.S., Miroshnichenko
V.L)).
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We shall construct a piecewise function P(x), x €
[a, b],which equals to

u (2 )wj (%) + u(xj11)Wjr1,0(0) + ' (3w 1 (x) +
+u’(xj+1)Wj+1,1 () + ¢; Wj () +Cj 1 Wjiq 2 ().

on every x € [x;, xj4¢]. The parameters c;, c;,; are defined by
the condition that the third derivative of P(x) is continuous.
The piecewise approximation P(x) will be such that it is
continuous and the first two derivatives of the piecewise
interpolation will also be continuous.

Let ¢j_4, ¢j, ¢j11 be some parameters to be determined, and
x=x+ th,
0,..

t € [0,1]. On every interval [x]-,xj+1], j=
,n — 1, we construct the approximation in the form:

P;(x) = cjwj 2 () + ¢j4aWjer2 () + ulx; w0 () +
u(xj+1)Wj+1(t) + u'(xj)Wj,l () + u'(xj+1)Wj+1,1(t)-

We differentiate three times this expression and the similar
one when x € [xj_l,x]-]. After that, set them equal to each
other in the common node x;j=1,..,n—1. Thus we
construct the equation:

Cioaw'"j_12(1) +cw"’, (1) +

u(x_ )W j—10(1) + uxj )W o (1)+
u’(xj—l)W”’j—1,1(1) + u’(xj+1)W’”j,1(1) =
cieW'"j411(0) + w1 (0) +
u(xj)w”’j‘o(O) + u(xj+1)W”’j+1,o(0) ++
R u'(xj+1)w”']-+1‘1(0),+
where functions w;_; , (xj_1 + th), Wi, (xj_1 + th),

wi_11 (%21 + th), wj, (xj-1 + th), wj_y0(xj_1 + th),
wio(xj_1 +th), constructed when x;_;+th=1x, xE€
[xj_l,xj]. We need two extra conditions at the ends of the
interval [a,b]. Let P;"(a) = u"'(a) and P;"'(b) = u"'(b).
Taking into account the interpolation conditions P;(x;) =
u(x;), P'(x))=u'(xj), j=0,..,n, and the boundary
conditions P;"(x;) = u"(xj), j=0,n, we construct the
piecewise function Q(x). This function and its first two
derivatives will be continuous. It interpolates the function u in
the nodes x;, j = 0, ..., n. So we need the expressions for the
w;;.  The third
derivative of the basis functions w;;. can be easily obtained.
Thus we have to solve the system of algebraic equations GC =

F, where the square matrix G = {g}};, F = {f}}Z{, where

third derivative of the basis functions

fi = =Y + ulxz)Yq +ulxe)Y—q +
u’(xl)le + u,(XZ)YﬁH + u,(XO)le—l) —u"(x0)Cj41,

fae1 = —W(— )Y + u(x) Vg + ulxy_2)Y-4 +
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ul(xn—l)y}l + u,(xn)y}il + ul(xn—z)y}l—l) - u”(xn)cj+1'

fi = =(x)Y; + w(xj1)Yr + u(x-1)Yg +
w ()Y + 0 (41 Vi + 0/ (x520) Yy,
j=2,.,n—2.

We have .91.1 = Cj, gj,j+1 = Cj+1, gj—l,f = Cj—l' We obtain
the following expressions for the polynomial case with
equidistant nodes: ¢; = 9/2, ¢j44 = —=3/4, ¢j_1 = —3/4, Y, =

= — Y =—15/k% ¥ =0, YA, = 6/h, YL, =
—6/h.
Using the expression on every interval [xj, xj+1]
Pi(x) = w2 () + ¢jaWya1,2(8) + u(x;)w; o () +
U241 )W (8) + 1 (o)W1 (0 + 1 (141 )Wyar,1 (8)
we obtain the smooth approximation.

Let h =0.1,[a,b] = [-1,1]. Figure 18 shows the plot of
the error of the approximation of the third derivative of the
function u(x) = sin(3x) + cos(2x) with the polynomial
splines U(x). This plot is discontinuous. Figure 19 shows the
plot of the error of the approximation of the third derivative of
the function u(x) = sin(3x) + cos(2x) with the polynomial
splines Q(x). Figure 20 shows the plot of the error of the
approximation of the second derivative of the function u(x) =
sin(3x) + cos(2x) with the polynomial splines Q(x). Figure
21 shows the plots of the error of the approximation of the
function u(x) = sin(3x) + cos(2x) with the polynomial
splines Q(x) and U(x). Figure 22 shows the plots of the error
of the approximation of the first derivative of the function
u(x) = sin(3x) + cos(2x) with the polynomial splines Q(x)
(thick blue) and U(x) (thin red).

Yiyg =

Figure 18. The plot of the error of the approximation with
splines U (x) of the third derivative of the function
u(x) = sin(3x) + cos(2x).

Figure 19. The plot of the error of the approximation with
splines Q(x) of the third derivative of the function u(x) =
sin(3x) + cos(2x).
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0.0001°
Figure 20. The plot of the error of the approximation of the
second derivative of the function u(x) = sin(3x) + cos(2x).

Figure 21. The plots of the error of the approximation of the
function u(x) = sin(3x) + cos(2x) with the polynomial
splines Q(x) (thick black) and U(x) (thin blue).

1.5¢-06 |

-1.5¢-06

Figure 22. The plots of the error of the approximation of the
first derivative of the function u(x) = sin(3x) + cos(2x)
with the polynomial splines Q(x) (thick blue) and U(x) (thin
red).

We obtain the following expressions for the non-polynomial
case with equidistant nodes:

Y;_y = —h(4 cos(h) — 2cos*(h) — 2)/(4(h cos?(h)
— 3 sin(h)cos(h) + hcos(h) —2 h
+ 3sin(h))),

Y; = —h (=8 cos(h) + 4cos?(h) + 4)/(4(hcos?(h)
— 3 sin(h)cos(h) + hcos(h) —2 h
+ 3 sin(h)),

+1 = =

Y

h(4cos(h) — 2cos?(h) — 2)/(4(hcos?(h)
— 3sin(h)cos(h) + hcos(h) —2 h
+ 3sin(h))),

Yﬁu = —h(6sin(h) — 3 h — 6 h cos(h) + 3sin(h)cos(h))/
(4(h cos?(h) — 3sin(h)cos(h) + hcos(h) —2 h

+ 3sin(h))),

Y, h(—6sin(h) + 3 h + 6 hcos(h)
— 3sin(h)cos(h))/

(4(hcos?(h) — 3sin(h)cos(h) + hcos(h) — 2 h + 3sin(h))),
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c;= —h(—8cos(h) + 16cos?(h) + 6 hsin(h)cos(h) +

6 hsin(h) — 8)/(4(hcos?(h) — 3sin(h)cos(h) + hcos(h) —
2 h + 3sin(h))),

¢ jy1 = —h(4cos(h) + cos?(h) + 3hsin(h)
—5)/(4(hcos?(h) — 3sin(h)cos(h)
+ hcos(h) — 2h + 3sin(h))),

¢j-1 = —h(4 cos(h) + cos?(h) + 3h sin(h)
—5)/(4(h cos?(h) — 3sin(h) cos(h)
+ h cos(h) — 2h + 3 sin(h))).
Table 5 shows the actual errors of the smooth polynomial

and non-polynomial approximations, h = 0.4, [a, b] = [—1,1].

Table 5. The actual errors of the smooth polynomial and

non-polynomial approximations, h = 0.4, [a, b] = [-1,1].

Function u(x) Polynomial Non-polynomial
splines splines
sin(3x) 0.772-107* 0.387-107*
sin(7x) 0.249-1071 0.236-107t
— cos(9x)
x7 —x° 0.110 - 1072 0.121- 1072
1/(1 + 25 x?) 0.358- 1071 0.361- 1071
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