
  
Abstract— This article presents a stochastic 

computational model for the analysis of the reliability of a 
drawn steel bar. The whole distribution of the limit state 
function is studied using global sensitivity analysis based 
on Cramér-von Mises distance. The algorithm for 
estimating the sensitivity indices is based on one loop of 
the Latin Hypercube Sampling method in combination 
with numerical integration. The algorithm is effective due 
to the approximation of resistance using a three-
parameter lognormal distribution. Goodness-of-fit tests 
and other comparative studies demonstrate the significant 
accuracy and suitability of the three-parameter lognormal 
distribution, which provides better results and faster 
response than sampling-based methods. Global sensitivity 
analysis is evaluated for two load cases with proven 
dominant effect of the long-term variation load action, 
which is introduced using Gumbel probability density 
function. The Cramér-von Mises indices are discussed in 
the context of other types of probability-oriented 
sensitivity indices whose performance has been studied 
earlier. 
 

Keywords— Global sensitivity analysis, steel, 
probability, failure, reliability, random sampling. 

I. INTRODUCTION 
eliability is described as the ability of a system or 
component to function under stated conditions for a 

specified period of time [1, 2]. Structural reliability is assessed 
using methods of probabilistic analysis [3]. 

Structural sensitivity analysis is a suitable complement to 
probabilistic reliability analysis [4]. The basic measure of 
reliability is the probability that failure of a load-bearing 

 

structure does not occur [5]. The most serious failure is loss of 
load-carrying capacity of a component or member within a 
structure or of the structure itself, see for e.g. [6]. Failure of a 
structure occurs when the material in the structure is stressed 
to its strength limit [7]. Although stresses cannot be directly 
investigated experimentally, limit states can be investigated by 
measuring permanent deformations or observing fractures [8]. 

Load-bearing structures must be designed with such 
geometric and material characteristics that the probability of 
failure is very low. For reliable design, probability of 7.2E-5 
or less is commonly required [5].  A specific type of failure of 
slender steel structures is loss of stability, which causes the 
structure to collapse before reaching its material strength limit 
[9]. In stochastic systems, stability often means insensitivity or 
low sensitivity of their output characteristics to the shapes of 
some input distributions [10].  

In operations research, sensitivity analysis is developed as a 
method of critical assessment of decisional variables, which 
have interrelations among them, and is capable of identifying 
those sensitive variables that have an influence on the final 
desired result [11-12]. One of the principal problems in 
system reliability studies is the problem of their sensitivity to 
the shape of input distributions [13-15]. The desired result 
may be the validation of the attributes of static [16] or 
dynamic [17] models that require simultaneous optimization, 
but also other performance characteristics associated with the 
structure, see for e.g. [18-19]. Assessment of decisional 
variables can be based on MCDM [20] and computer 
experiments [21]. 

The basic calibration tools of reliability according to 
standards for structural design are the partial safety factors of 
load and resistance [22-25]. The verification of reliability of 
standard design is commonly performed using probabilistic 
methods [26, 27], but only deterministic types of sensitivity 
studies, see for e.g. [28, 29]. The task of sensitivity analysis in 
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stochastic models oriented to structural reliability is to 
quantify the effects of input variables on the output 
characteristics, the choice of which is specific to the given 
type of structure and computational model, see e.g. [30-35]. 

According to conventional definition, reliability sensitivity 
analysis focuses on measuring the effects of uncertainty or 
distribution parameters of input variables on failure 
probability [36]. Sensitivity analysis subordinated to contrasts 
[37] appears to be an appropriate reliability-oriented method, 
which can be used to analyse both the probability of failure 
[38-39] and design quantiles [40-42]. Another method 
discussed is global sensitivity analysis based on Cramér-von 
Mises distance [43], which is focused on the distribution 
function of the response. Other types of sensitivity analysis 
based on measuring the absolute difference between the 
unconditional and conditional failure probability were 
published in [44-45]. Borgonovo moment independent 
importance measure [46] was not developed directly for the 
analysis of failure probability but can be mentioned as one of 
the few methods that permits the analysis of statistically 
dependent input random variables. The analysis and 
comparison of different techniques of sensitivity analysis and 
a discussion on their strengths and weaknesses has been 
published in [47]. 

If an analytical solution is not available, the failure 
probability can be estimated using methods such as Monte 
Carlo, Importance Sampling [48], Adaptive Sampling [49], 
Response Surface [50], artificial neural networks [51] or 
polynomial chaos expansions [52]. Unfortunately, a plan 
tailored to estimate a particular type of sensitivity index, or set 
thereof, may be suboptimal for other indices. In this paper, the 
effects of input random variables on the distribution function 
of the limit state are studied using Cramér-von Mises indices. 
One of the objectives of this paper is to develop a stochastic 
computational model of a load-bearing element that will 
facilitate the efficient evaluation of global sensitivity analysis 
and which will be used in further research. 

II. STOCHASTIC MODEL AND RELIABILITY ANALYSIS 
The aim of the study is to analyse the theoretical reliability 

of a steel structure, which is at the design stage. This is 
primarily ensured by design reliability conditions of 
standard EN 1990 [5]. 

A. Load Action  
Let a drawn bar be subjected to a combination of permanent 

load action G and long-term leading single variable load 
action Q. Permanent load action G can be considered with 
mean value µG, which is equal to the characteristic value Gk 
[53]. The random deviations of the permanent load action 
from the mean value should be symmetrical, which 
corresponds well with the Gauss probability density function, 
see Fig. 1. The standard deviation σG is selected under the 
assumption that approximately 50% of random realizations of 
G are found in the interval ±σG. 

 

 
Fig. 1 Density probability functions of permanent load actions 
 
The leading variable load action is introduced with Gumbel 

probability density function [54], see Fig. 2, which is the 
characteristic function for extreme value distributions [55, 
56]. The cumulative distribution function of Gumbel 
distribution is 
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for −∞ < x < ∞, −∞ < α < ∞ and β > 0. Parameters α and β 

can be expressed from 
 

βγαµ +=Q
, (2) 

6
πβσ =Q

, (3) 

 
where γ=0.5772156649 is the Euler–Mascheroni constant. 

The mean value µQ and standard deviation σQ are introduced 
as functions of the characteristic value Qk using the equations 
µQ=0.6 Qk, σQ=0.21 Qk, which were used in [53]. 

 

 

Fig. 2 Density probability functions of variable load actions 
 
It can be noted that Gauss and Gumbel probability density 

functions are distributions recommended in standard EN1990 
[5] and can be used in the studies presented here, see Table I. 
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TABLE I 
INPUT RANDOM VARIABLES OF LOAD ACTION 

Characteristic Pdf Mean 
value 

St. deviation 

Permanent load G 

Variable load action Q 

Gauss 
Gumbel-max 

Gk 

0.6⋅Qk 

0.1⋅Gk 

0.21⋅Qk 

 
However, other types of functions may also be used in 

justified cases or specific load cases. A detailed description of 
these and other less frequently used theoretical models of 
random variables can be found in International Standards ISO 
13822, ISO 12491, ISO 3534-1 and specialized literature [57]. 

B. Resistance  
The drawn bar is made from a steel sheet of length L, width 

b and thickness t. Width and thickness are the dimensions of 
the rectangular cross-section. The resistance R is expressed as 
the product of the yield strength fy and cross-sectional area A 
of the rectangular cross-section. 
 

AfR y ⋅= , (4) 

 
where  

 
btA ⋅= . (5) 

 
The yield strength, which is generally a random variable, is 

an important material characteristic of steel. In the past, 
numerous experimental tests on the material and geometric 
characteristics of structural steel have been performed [58], 
which provide important background information for the 
analysis of resistance. The input random variables are listed in 
Table II.  

TABLE II 
INPUT RANDOM VARIABLES OF RESISTANCE PARAMETERS 
Characteristic Pdf Mean value St. deviation 

Yield strength fy 
Specimen thickness t 
Specimen width b 

Gauss 
Gauss 
Gauss 

395.68 MPa  
16 mm 
80 mm 

25.13 MPa 
0.734 mm 
0.8 mm 

 
Input variable A has an asymmetric chi square probability 

density function. Resistance R is the product of the yield 
strength and the cross-sectional area given by Eq. (5). If we 
multiply three random variables fy⋅t⋅b with Gauss probability 
density functions, the computed resistance R does not have a 
Gauss probability density function (has an asymmetric 
distribution) and it is necessary to seek the most suitable 
distribution for the approximation of the distribution of R.  

It can be noted that the probability density distribution of R 
can be analysed by the numerical (but not analytical) 
integration of a triple integral or by approximating the Gauss 
probability density function from Table II using such 
functions that can be integrated analytically. This approach 
would have to be used if none of the known types of 
probability density functions proved to be suitable for 
approximating the probability density function of R. 

A suitable approximation of the probability density function 
of random variable R can be selected from numerous types of 
probability density functions among which certain types can 
be fitted more closely to the observed frequency of the 
resistance than others, depending on the characteristics of the 
phenomenon and of the distribution. One of the possibilities 
of approximating R in the case study analysed herein is by 
using the three-parameter lognormal distribution. The 
software Statrel [59] refers to the three-parameter lognormal 
distribution, which will be used below, as the shifted 
lognormal probability density function. 
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for x0 < x < ∞, where  
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where ax is standardized skewness and 
 

42 += xxx aaz . (11) 

 

C. Probability Analysis of Resistance 
The selection of the suitable probability density function of 

resistance was verified numerically by comparing the results 
of two probabilistic studies. It was tested whether the shifted 
lognormal probability density function gives a close fit and 
leads to good predictions.  

The first probability IPfR is calculated by numerical 
integration using the shifted lognormal probability density 
function. The second probability IIPfR is calculated by 
numerical integration of the function R=fy⋅t⋅b in three-
dimensional space. The value IIPfR can be described as a very 
good approximation of the “real” probability that could 
theoretically be achieved if the integration step approaches 
zero. 

 
( )ifR rRPP <= , (12) 

 
The suitability of the shifted lognormal probability density 

function is verified by comparing the values of IPfR and IIPfR. 
The inaccuracies of the estimates of both IPfR and IIPfR are 
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negligible because numerical integration was performed with 
7000000 (IPfR) and 70003 steps, see the variable max in the 
algorithm below. Throughout the article, numerical integration 
is performed on the interval mean value plus minus ten 
standard deviations of the integrated variable. The 
introduction of wider intervals has a negligible effect on 
increasing the accuracy of the results of the numerical 
integrations. 

Three nested loops are used in the algorithm of the 
numerical integration for the computation of IIPfR. The basic 
form of the numerical integration algorithm can clearly be 
written in the programming language Pascal as: 
 
function NormR2(x,m,S:extended):extended; 
begin 
   NormR2:=exp(-sqr(x-m)/(2*sqr(S)))/(sqrt(2*pi)*S); 
end; 
{Three nested loops numerical integration} 
Function Pf(R:Extended):Extended; 
var i1,i2,i3,max                            :integer; 
    a1,a2,a3,b1,b2,b3                      :extended; 
    PfR,Sm10,R04,R01,R02,R03   :extended; 
    m1,m2,m3,S1,S2,S3                 :extended; 
begin 
max:=7000; // steps of numerical integration 
m1:=395.68;m2:=16;m3:=80; 
S1:=25.13;S2:=0.734;S3:=0.8; 
R:=200E3;   // R is value of resistance 
Sm10:=10; 
R01:=m1-Sm10*S1; 
R02:=m2-Sm10*S2; 
R03:=m3-Sm10*S3; 
b1:=R01; 
PfR:=0;     // PfR is probability of R 
for i1:=1 to max do 
begin 
 a1:=b1;b1:=R01+(m1+Sm10*S1-R01)*i1/max; 
 b2:=R02; 
 for i2:=1 to max do 
 begin 
  a2:=b2;b2:=R02+(m2+Sm10*S2-R02)*i2/max; 
  R04:=(b1-a1)*(b2-a2); 
  b3:=R03; 
  for i3:=1 to max do 
  begin 
   a3:=b3;b3:=R03+(m3+Sm10*S3-R03)*i3/max; 
   if (a1+b1)*(a2+b2)*(a3+b3)/8<R then 
   PfR:=PfR+R04*(b3-a3)*NormR2((a1+b1)/2,m1,S1)* 
   NormR2((a2+b2)/2,m2,S2)*NormR2((a3+b3)/2,m3,S3); 
  end; 
 end; 
end; 
Pf:=PfR;    // Pf is probability of R 
end; 
 

The computational complexity of the algorithm is 1012 steps 
of mainly arithmetic operations. The algorithm runs for 70 
minutes on a single core CPU Intel Core i7-3740QM 

processor. It can be noted that a similar algorithm is applied in 
the DOProC method [60], which, however, has input random 
variables defined by histograms. The assumption of using 
three nested loops to estimate IIPfR is demanding on CPU time 
even though it is a relatively simple algorithm. The estimation 
of IIPfR is more numerically demanding the higher the value of 

IIPfR. Therefore, for IIPfR>0.5 it is possible to speed up the 
algorithm by modifying the condition into the form 
“(a1+b1)*(a2+b2)*(a3+b3)/8>=R“ and “Pf:=1-PfR;“, which is a 
key optimization. Additional optimizations were also 
performed. The computation of IPfR using the shifted 
lognormal probability density function is not so numerically 
demanding and was therefore performed using seven million 
steps. The computational complexity of the calculation of IPfR 
is approximately one hundred thousand times lower than the 
calculation of IIPfR. 

Table III contains a comparison of IIPfR values with IPfR 

values. From a numerical point of view, it is apparent that the 
estimate of IPfR is sufficiently accurate because the differences 
between the estimates of IPfR and IIPfR are minimal, with the 
exception of very small probabilities. Conformity in 
exponents with the power of E-19 is fully sufficient in terms 
of engineering probability of failures. Possible limitations 
pertain to probabilities with exponents lower than E-19, 
which, however, is irrelevant in engineering applications. 

TABLE III 
COMPARISON OF PROBABILITY COMPUTATIONS 

 
Resistance ri 

IPfR  
Shifted lognormal pdf 

IIPfR 
Numerical integration 

using three nested loops  
0 
100 kN 
200 kN 
300 kN 
400 kN 
500 kN 
600 kN 
700 kN 

2.6215E-65 
2.7419E-37 
1.3556E-19 
5.8430E-09 
2.7029E-03 
4.4285E-01 
9.8810E-01 

9.99996E-01 

0 
3.1258E-47 
1.1362E-19 
5.2958E-09 
2.6880E-03 
4.4288E-01 
9.8812E-01 

9.99996E-01 
 
The resistance must be positive. This is one of the 

arguments that sometimes calls into question the suitability of 
approximating resistance using the shifted lognormal 
probability density function in the event that it is also defined 
for negative values. The shifted lognormal probability density 
function used in this paper is defined on the interval (-579.377 
kN; ∞). It is evident from Table III that the probability that the 
resistance has a negative value is IPfR=2.6215E-65. This is a 
negligible value. If we introduce a trimmed shifted lognormal 
probability density function, the value of the obtained 
probability is practically the same. This implies that trimming 
is not necessary. The shifted lognormal probability density 
function can be used as it is. 

Table IV contains a comparison of IIPfR with probability 
IIIPfR obtained by approximation using Gauss probability 
density function, which is not considered appropriate. It is 
apparent that the estimate IPfR (Shifted lognormal probability 
density function) is significantly more accurate in comparison 
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with IIIPfR, see Table IV. Estimates of IIIPfR obtained by 
approximation using Gauss probability density function have 
discrepancies from the target IIPfR for small probabilities. 

TABLE IV 
COMPARISON OF PROBABILITY COMPUTATIONS 

 
Resistance ri 

IIIPfR  
Gauss pdf 

IIPfR 
Numerical integration 

using three nested loops 
0 
100 kN 
200 kN 
300 kN 
400 kN 
500 kN 
600 kN 
700 kN 

5.4609E-37 
1.5929E-24 
9.6066E-15 
1.2498E-07  
3.9107E-03 
4.3580E-01 
9.9027E-01 

9.999999E-01 

0 
3.1258E-47 
1.1362E-19 
5.2958E-09 
2.6880E-03 
4.4288E-01 
9.8812E-01 

9.99996E-01 
 
The comparative studies confirmed that the shifted 

lognormal probability density function is a suitable 
approximation of resistance computed from Eq. (4). The 
following chapter validates this conclusion using goodness-of-
fit tests. 

D. Sampling Based and Statistical Analysis of Resistance 
The goodness-of-fit test can be used to test if sample data 

fit a distribution from a random observation. The random 
observations were obtained using the Latin Hypercube 
Sampling Method (LHS) [61, 62]. One million steps of the 
LHS method were used to simulate the random realizations 
of R. The use of the LHS method for such a large number of 
samples has proven appropriate since the results obtained 
using the LHS method are always better than the results 
obtained using the simple Monte Carlo method, including the 
large numbers of runs, which is useful in global sensitivity 
analyses of the limit state function distribution [38]. 

 

 
Fig. 3 Approximation of the histogram of resistance  

The results of the statistical analysis of resistance R 
obtained using the LHS method are shown in Table V. Three 
variants of the approximation of the histogram of resistance 
computed using the input random variables listed in Table II 

are shown in Fig. 3. 
Arithmetic mean µR, standard deviation σR and standard 

skewness aR are important results of the statistical analysis, 
which are also applicable as parameters of the tested shifted 
lognormal probability density function. The values of µR, σR 
and aR can be computed analytically from the function Y 
 

321 XXXY ⋅⋅= , (13) 
 
of three random variables X1, X2, X3 with Gauss probability 
density functions. Each random variable Xi is characterized by 
its arithmetic mean µi and standard deviation σi. Arithmetic 
mean µY, standard deviation σY and standard skewness aY of 
random variable Y are then expressed by the following 
equations: 
 

321 µµµµ ⋅⋅=Y , (14) 
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The statistical characteristics of resistance R Eq. (4) 

computed in this study using Eq. (14), (15), (17) and Table II 
are µR=506.47 kN, σR=40.031 kN and aR= 0.11065. The 
comparison of µR, σR and aR with the results in Table V shows 
perfect agreement between the analytical solution and the 
statistical analysis. 

TABLE V 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 3 

Characteristic Value 
Valid observations 
Minimum                
Maximum                
Range                  
Median 
Arithmetic mean 
Geometric mean         
Mean square 
Variance               
Stand. deviation       
Coef. of variation     
Third moment           
Stand. skewness        
Fourth moment          
Stand. kurtosis        
Variance of mean 
Var. of variance       
Var. of 3. moment      
Var. of 4. moment 

1000000 
323.62 
710.63 
387.01 
505.73 
506.47 
504.89 
1602.4 
1602.4 
40.030 

0.79037E-01 
7041.1 

0.10977 
0.77691E+07 

3.0257 
0.16023E-02 
0.60313E+08 

26005. 
0.68249E+09 
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E. Goodness-of-fit Tests of Resistance 
Goodness-of-fit tests are statistical tools that can reliably 

reject approximations that are not perfectly adapted to data 
obtained using the LHS method. Measures of goodness-of-fit 
typically summarize the discrepancy between observed values 
and the values expected under the model in question. 
Goodness-of-fit tests may reject unsuitable types of 
approximations with a selected probability, but they cannot 
confirm the appropriate types of probability density functions. 
Thus, the aim of the study can only be to reject inappropriate 
types of probability density functions for the approximation of 
the resistance. The tested models in question are shifted 
lognormal, Gauss, Lognormal, Hermite, Gamma and Beta 
probability density functions. Chi-square, Kolmogorov-
Smirnov and Anderson-Darling goodness-of-fit tests are used, 
see Table VI. Testing for the shifted lognormal probability 
density function is depicted in Fig. 4, Fig. 5 and Fig. 6. The 
tests were performed using the program Statrel 3.10. 
 

 
Fig. 4 Chi-square goodness-of-fit test [59] of shifted Lognormal pdf 

 
Fig. 5 Kolmogorov-Smirnov goodness-of-fit test [59] of 

shifted Lognormal pdf 

Based on the results of three goodness-of-fit tests, it can be 
concluded that the shifted lognormal probability density 
function cannot be rejected for the approximation of the 
probability density function of R. 

 

 
Fig. 6 Anderson-Darling goodness-of-fit test [59] of 

shifted Lognormal pdf 

It is evident from the results in Table VI that the 
conclusions of Chi-square and Kolmogorov-Smirnov tests are 
the same and are consistent with the results of the studies in 
the previous chapters. The Anderson-Darling test did not 
reject the hypothesis in any case, even though, for example, in 
Table IV it was clearly shown that the choice of Gauss 
probability density function is not suitable for the 
approximation of the probability density function of R. In 
addition to the shifted lognormal probability density function, 
four-parameter Hermite probability density function could 
also be considered. 

TABLE VI 
GOODNESS-OF-FIT TEST OF HISTOGRAM IN FIG. 3 

Probability 
density function Chi-square 

test 

Kolmogorov-
Smirnov 

test 

Anderson-
Darling 

test 
Shifted Lognormal                
Gauss 
Lognormal                
Hermite (Statrel) 
Gamma 
Beta 

Not rejected 
Rejected 
Rejected 

Not rejected 
Rejected 
Rejected 

Not rejected 
Rejected 
Rejected 

Not rejected 
Rejected 
Rejected 

Not rejected 
Not rejected 
Not rejected 
Not rejected 
Not rejected 
Not rejected 

III. PROBABILITY ASSESSMENT OF RELIABILITY 
Reliability can be understood as the ability of a structure or 

a structural member to fulfil stated requirements for which it 
has been designed. Reliability is generally expressed in terms 
of probability. The ultimate limit states are defined as states 
that are associated with collapse or with similar forms of 
structural failure.  

Loads higher than resistance can be understood as random 
failure, which occurs in dependence on random material and 
geometric characteristics of structural members and load 
actions. The probability of failure can be written as:  
 

( )RQGPPf >+= , (18) 

 
where G, Q and R are random variables defined in the 
previous chapter. The statistical characteristics of random 
variables G and Q are defined in Table I and are functions of 
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parameter δ as mentioned below, see also [53]. The statistical 
characteristics of the resistance function R=fy·t·b are defined 
in Table I. Practically Eq. (13) can be evaluated in the form  
 

( )0<−= QDPPf
, (19) 

 
where distance D=R-G is considered as a random variable 
with shifted lognormal probability density function Eq. (6). 
Arithmetic mean µD, standard deviation σD and standard 
skewness aD are expressed by the following equations: 
 

GRD µµµ −= , (20) 
 

22
GRD σσσ += , (21) 

 

3

3

D

R
RD aa

σ
σ

⋅= , (22) 

 
The use of the shifted lognormal probability density 

function for DRG is justified similarly as for R in chapter II. 
It can be shown that if the shifted lognormal probability 
density function Eq. (6) is suitable for R, then it is also 
suitable for D, because a lower value of skewness (if σD>σR 
then aD<aR) leads to a better approximation according to Eq. 
(6). The probability of failure Eq. (19) can be computed 
numerically from the integral: 
 

( ) ( )∫
∞

∞−

Φ= yyyP QDf dϕ , (23) 

 
where ϕQ(y) is Gumbel probability density function, ΦD(y) is 
cumulative distribution function of the shifted lognormal 
distribution and y denotes a general point of the observed 
force variable, through which both variables D and Q are 
expressed. Integration in Eq. (23) is performed numerically by 
Simpson’s rule using more than ten thousand integration 
steps. Numerical integration Eq. (23) allows relatively 
accurate computation of very small values of Pf in situations 
where computation using Monte Carlo numerical simulation 
methods is extremely numerically demanding or impossible. 

The methodology for the verification of standard design 
reliability is described in detail, for example, in [53]. Mean 
values µG, µQ and standard deviations σG, σQ of random 
variables G and Q are functions of characteristic values Gk 
and Qk according to Eq. (24) and Eq. (25), where δ is the 
parameter of the study. 
 

kk

k

QG
Q
+

=δ , (24) 

 
dkk RQG =⋅+⋅ 5.135.1 , (25) 

 
where Rd=355E6·16E-3·80E-3=454.4E3N is the design 

resistance according to EUROCODE 3. The values 1.35 and 
1.5 are partial safety factors of permanent and long-term 
variable load action [53]. Table VII contains the results of 
probabilistic analysis computed in relation to parameter δ, 
which has a step of 0.1. 

In Table VII minimum Pf occurs for δ=0.2 and maximum 
for δ=1.0. It is evident that the proportions between permanent 
and long-term variable load action strongly influence Pf. One 
way to optimize Pf for different load combinations is the 
calibration of partial safety factors. However, this would 
require a more complex standard assessment, which is 
debatable. 

TABLE VII 
RESULTS OF FAILURE PROBABILITY ANALYSIS 

δ µG σG µQ σQ Pf 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

336.6 
299.6 
263.4 
228.0 
193.4 
159.4 
126.2 
93.7 
61.8 
30.6 
0.0 

33.7 
30.0 
26.3 
22.8 
19.3 
15.9 
12.6 
9.4 
6.2 
3.1 
0.0 

0.0 
20.0 
39.5 
58.6 
77.3 
95.7 
113.6 
131.2 
148.4 
165.2 
181.8 

0.0 
7.0 

13.8 
20.5 
27.1 
33.5 
39.8 
45.9 
51.9 
57.8 
63.6 

0.000439 
0.000068 
0.000022 
0.000029 
0.000065 
0.000135 
0.000248 
0.000406 
0.000604 
0.000839 
0.001105 

IV. GLOBAL SENSITIVITY ANALYSIS 
The aim of global sensitivity analysis is to quantify the 

effects of input random variables on the limit state function 
taking into account the whole distribution of random 
variables. One approach to estimating these effects is through 
the application of Cramér-von Mises indices [44]. 

The adaptation of Cramér-von Mises indices to the analysis 
of whole distribution of random variables can be performed 
using Eq. (19) or Eq. (23). The estimation of the first-order 
indices is based on the computation of probability Φ  DQ(τ) and 
conditional probability ( )τDQΦ  when input Xi is fixed [44]. 
Input random variables G, Q, fy, t2, b are assumed to be 
statistically independent. 
 

( ) ( )ττ ≤−=Φ QDPDQ
, (26) 

 
( ) ( )iDQ XQDP ττ ≤−=Φ , (27) 

 
( ) ( )( )[ ]

( ) ( )( ) ( )τ
ττ
ττ

DQ
R DQDQ

DQDQ
i

E
S Φ

Φ−Φ

Φ−Φ
= ∫ d

1

2

. (28) 

 
where the Cramér-von Mises distance is  
 

( ) ( )( )[ ] ( )τττ DQ
R

DQDQCVM ED ΦΦ−Φ= ∫ d
2 . (29) 

 
Estimates of Eq. (26) and Eq. (27) are computed by 

numerical integration. The mean value E[⋅] is estimated using 
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500 steps of the LHS method. Higher-order sensitivity indices 
Sij, Sijk, etc., are computed similarly, however, by fixing two, 
three, etc., input variables [43]. If two of the three random 
variables of R Eq. (4) are fixed, then the approximation using 
the shifted lognormal probability density function is not 
needed and the Gauss probability density function is used. 
Sensitivity indices Si, Sij, Sijk, etc., are based on Hoeffding 
decomposition and thus the sum of all indices must be equal to 
one [43]. It can be noted that the numerical complexity of the 
estimates of Cramér-von Mises indices can be reduced by 
using polynomial chaos expansions [52] as presented in [63].  

In the study presented here, five input random variables 
yield five first-order sensitivity indices, and this leads to a 
total of 25-1 sensitivity indices; therefore, 31 sensitivity 
indices are estimated. Computer parallel processing can be 
employed to evaluate sensitivity indices using the LHS 
method. The computation of a sensitivity index is a random 
realization of this index when the LHS method is used. The 
use of new (pseudo-) random numbers (new random 
realizations of input random variables) gives a new random 
realization of the sensitivity index. The theoretically accurate 
value of the sensitivity index can be obtained (theoretically) 
either (i) using an infinite number of steps of the LHS method 
or (ii) by evaluating an infinite number of random realizations 
of the sensitivity index (using a finite number of steps of the 
LHS method to compute one realization of the sensitivity 
index). In approach (ii), the precise value of the sensitivity 
index can be obtained as the arithmetic mean (theoretical) of 
an infinite number of random realizations of the sensitivity 
index. Although we do not have the possibility to perform an 
infinite number of random realizations of sensitivity indices, a 
finite number can be realized, where each index can be 
evaluated on one CPU core. The advantage of approach (ii) is 
that the random realizations of sensitivity indices can be 
computed parallelly on the computer. In practice, the estimate 
of each index is computed using eight random realizations, 
which are computed on eight CPU cores for eight different 
sets of (pseudo-) random numbers (LHS runs). 

The resulting estimate of sensitivity indices is computed as 
the arithmetic mean of these eight estimates, resulting in 
higher accuracy. The sum of all numerically estimated indices 
is 1.000664, which is one of the indicators of sufficient 
accuracy of the results.  

Cramér-von Mises sensitivity indices are computed for 
δ=0.5 and δ=0.7, see Fig. 7 and Fig. 8. The first-order indices 
account for more than 50% of the influence on the output 
distribution in both cases. The results show the dominant 
effect of long-term variable load action Q and yield strength 
fy. The long-term variable load action Q has a dominant effect 
even in the case of δ=0.5, Gk =Qk = 159.4 kN, see Fig. 7. The 
cause of the dominance is the variation coefficient of Q, 
which has a value of 0.35, while G has a variation coefficient 
of 0.1. Another cause of the dominance of Q is Gumbel 
probability density function, which is used in probability 
theory and statistics to model the distribution of the maximum 
number of samples of different distributions [55, 56]. In the 

case of δ=0.7, the dominance of Q is more pronounced in both 
the first-order effects and in interactions with other variables, 
see Fig. 8. The second most influential variable is the yield 
strength, see Fig. 7 and Fig. 8 Conversely, the specimen width 
b has practically no significant influence. Introducing b as a 
deterministic variable anywhere in the domain would have a 
much smaller effect on limit state distribution than if we did 
the same with any other input random variable. 

 

 
Fig. 7 Cramér-von Mises indices for δ=0.5 

 
Sobol’s decomposition is a proven and widely used method 

of global sensitivity analysis with many useful applications, 
see e.g. [64-67]. The sensitivity analysis results have been 
used as the basis for decision making on the modification 
of technological procedures for manufacturing beams [68]. 
Although these are methods of different types, the comparison 
of quantile-oriented sensitivity analysis and Sobol' sensitivity 
analysis showed that there are no large differences between 
the order of importance of the input variables, but certain 
differences in the size of the indices exist [42]. 

It can be discussed whether Cramér-von Mises indices are 
suitable fsor studying structural reliability. Estimates of 
Cramér-von Mises indices are based on integration over 
dΦ  DQ(τ) using Eq. (26), (27), i.e., for all τ belonging to R. As 
a result of integration over all τ, change in the mean value of 
D or Q is not reflected in the values of the indices. The 
Cramér-von Mises sensitivity analysis takes into account the 
whole distribution of random variables. Thus, Cramér-von 
Mises indices do not examine the effects on one Pf value, but 
examine the effects on all Pf values from all τ. 

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2020.14.14 Volume 14, 2020

ISSN: 1998-4448 114



 
Fig. 8 Cramér-von Mises indices for δ=0.7  

 
Contrast-based sensitivity indices [37], which examine the 

effects of input variables on one target Pf and are directly 
related to the assessed reliability, do not have this shortcoming 
[38-39]. Contrast-based sensitivity indices belong to the 
category of so-called reliability-oriented sensitivity 
analysis [69]. It can be noted that contrast-based sensitivity 
indices [37-39] can be written in a very transparent form 
Eq. (30), but only if the values of Pf, PfXi etc. are very small. 
It can be noted that Eq. (30) has no integration over τ, 
respectively, t is still zero. 
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where Z=D-Q, if Z<0 then failure occurs, otherwise there is 

no failure, and corr is Pearson correlation coefficient. 
Numerical experience with the LHS method shows that the 

convergence of Cramér-von Mises indices [43] is much better 
than the convergence of probability-oriented contrast 
sensitivity indices [37]. The sequence in Eq. (29) is strongly 
convergent as Monte Carlo runs go to infinity and is 
asymptotically Gaussian. In contrast, the convergence of Ci 
Eq. (30) and all other higher order contrast-based sensitivity 
indices is very slow and requires an extreme number of 
sampling runs or direct integration calculations. 

It can be noted that algorithms for effective estimations of 

contrast-based sensitivity indices [37] using polynomial chaos 
expansions [52] or neural networks [70] would be desirable so 
that more complex problems could be solved. 

V. CONCLUSION 
The methodology of stochastic reliability analysis, which 

consists of the probabilistic analysis of failure and global 
sensitivity analysis, is described in this article. Global 
sensitivity analysis is based on the computation of the Cramér-
von Mises indices whilst taking into account the whole 
distribution of random variables. 

In the presented case study, resistance is a function of the 
product of three random variables with Gauss probability 
density functions (yield strength, specimen thickness, 
specimen width), load action is a function of the sum of two 
random variables (permanent load action, variable action). 
Arithmetic mean, standard deviation, and standard skewness 
of resistance are calculated analytically using the mean values 
and standard deviations of yield strength, specimen thickness 
and specimen width.  

It is shown that the use of the shifted lognormal probability 
density function is suitable for the approximation of the 
relative frequency of random resistance. This was confirmed 
by comparing the results of statistical and probabilistic 
analyses with the results of numerical integration and 
goodness-of-fit tests. Eight deterministic values of the load-
carrying capacity are selected and the probability that the 
random resistance is less than the selected values is computed 
eight times. The probability obtained using the shifted 
lognormal probability density function is in perfect agreement 
with the result of numerical integration, which from an 
engineering point of view can be considered as a practically 
accurate (but also very numerically demanding) solution. 
Gauss probability density function did not show such 
agreement. Goodness-of-fit tests have shown that the use of 
the shifted lognormal probability density function for the 
approximation of the probability density of resistance is better 
than using the Gauss Lognormal, Gamma or Beta probability 
density function. Alternatively, the Hermite probability 
density function can also be considered, which could be 
explored in the future. These conclusions were made for the 
case study presented here. 

Computation of the probability of failure is based on the 
approximation of resistance using a three-parameter 
lognormal distribution, which is referred to as the shifted 
lognormal probability density function. The presented solution 
is highly effective for the case study presented in this paper. In 
the presented case study, the advantages of the presented 
method are the very fast and accurate estimation of the 
probability of failure. The stochastic model based on the 
shifted lognormal probability density function and Gumbel 
probability density function gives very good accuracy of the 
estimate of the probability of failure and at the same time has 
relatively low demands on CPU time of the computer. Both of 
these properties are desirable in reliability-oriented sensitivity 
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analyses (ROSA), where the probability of failure is the 
subject of interest. In practical applications, neither 
probabilistic nor reliability-oriented sensitivity analysis is 
possible without fast and accurate computation of the 
probability of failure. 

The probabilistic analysis of reliability showed that the 
reliability given by the concept and methodology of the 
EUROCODE 3 standard is significantly misaligned. The 
smallest reliability (maximum failure probability) was 
theoretically obtained at one hundred percent loading from 
long-term variable load action with zero permanent load 
action. On the other hand, the greatest reliability (minimum 
failure probability) was theoretically obtained at twenty 
percent loading from long-term variable load action with 
eighty percent permanent load action. The conclusions of the 
probabilistic analysis pertain to drawn steel elements, but the 
same methodological procedures apply to the ultimate limit 
state of other materials. 

Global sensitivity analysis was used to evaluate the effects 
of input random variables on the limit state function and 
identify the order of their importance. The sensitivity study 
was performed using Cramér-von Mises indices taking into 
account the whole distribution of random variables. Cramér-
von Mises indices are not directly focused on failure 
probability, so in the future it is necessary to focus more on 
reliability-oriented sensitivity analysis, for e.g., based on 
contrast functions. 

The results of the global sensitivity analysis show that the 
long-term variable load action has the greatest influence even 
in the case that the characteristic values of the permanent load 
action and the long-term variable load action are the same. If 
the characteristic value of long-term variable load action is 
greater, then the dominance of long-term variable load action 
increases. The crucial influence of the long-term variable load 
action is confirmed by the first-order and higher-order 
sensitivity indices. The cause of the dominance of the long-
term variable load action can be the relatively high coefficient 
of variation, but also the specific shape of the Gumbel 
probability density function. Substituting the Gumbel 
probability density function with another type of probability 
density function suitable for the extreme value distributions 
may also be discussed. 
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