7e700ce4-379f-4de9-bc12-766cd315307820211020100408263naun:naunmdt@crossref.orgMDT DepositInternational Journal of Mechanics1998-444810.46300/9104http://www.naun.org/cms.action?id=2828128202112820211510.46300/9104.2021.15https://www.naun.org/cms.action?id=23280Application of Two-dimensional Finite Volume Method to Protoplanetary DisksTarikChakkourLGPM, CentraleSup´elec, Universit´e Paris-Saclay, Centre Europ´een de Biotechnologie et de Bio´economie (CEBB), 3 Rue des Rouges-Terres, 51110 Pomacle, FranceMany fascinating astrophysical phenomena can be simulated insufficiently by standard numerical schemes for the compressible hydrodynamics equations. In the present work, a high performant 2D hydrodynamical code has been developed. The model is designed for the planetary formation that consists of momentum, continuity and energy equations. Since the two-phase model seems to be hardly executed, we will show in a simplified form, the implementation of this model in one-phase. It is applied to the Solar System that such stars can form planets. The finite volume method (FVM) is used in this model. We aim to develop a first-order well-balanced scheme for the Euler equations in the the radial direction, combined with second-order centered ux following the radial direction. This conception is devoted to balance the uxes, and guarantee hydrostatic equilibrium preserving. Then the model is used on simplified examples in order to show its ca- pability to maintain steady-state solutions with a good precision. Additionally, we demonstrate the performance of the numerical code through simulations. In particularly, the time evolution of gas orbited around the star, and some proper- ties of the Rossby wave instability are analyzed. The resulting scheme shows consequently that this model is robust and simple enough to be easily implemented.102020211020202123324527https://www.naun.org/main/NAUN/mechanics/2021/a542003-027(2021).pdf10.46300/9104.2021.15.27https://www.naun.org/main/NAUN/mechanics/2021/a542003-027(2021).pdfS. Udry, D. Fischer, and D. Queloz, ”Protostars and planets v,” Reipurth, D. Jewitt, K. Keil, eds, pp. 685-699, 2007 10.1038/nature04669Z. Wang, D. Chakrabarty, and D. L. Kaplan, ”A debris disk around an isolated young neutron star,” Nature, vol. 440, no. 7085, pp. 772-775, 2006. 10.1086/173679P. Artymowicz and S. H. Lubow, ”Dynamics of binary-disk interaction. 1: gap sizes,” apj, vol. 421, pp. 651-667, Feb. 1994. 10.1038/355145a0A. Wolszczan and D. A. Frail, ”A planetary system around the millisecond pulsar psr1257+ 12,” Nature, vol. 355, no. 6356, pp. 145-147, 1992. 10.21494/iste.op.2017.0114T. Chakkour, ”Simulations numriques des tubes avec contraction brusque sur openfoam,” Thermodynamique des interfaces et mcanique des fluides, vol. 1, no. 1, 2017. M. Ishii, ”Thermo-fluid dynamic theory of two-phase flow., volume 22 of direction des tudes et recherches lectricit de france,” Eyrolles, Paris, 1975. 10.1063/1.1398042A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. S. Stewart, ”Two-phase modeling of deflagration-todetonation transition in granular materials: Reduced equations,” Physics of fluids, vol. 13, no. 10, pp. 3002- 3024, 2001. 10.1006/jcph.1999.6187R. Saurel and R. Abgrall, ”A multiphase godunov method for compressible multifluid and multiphase flows,” Journal of Computational Physics, vol. 150, no. 2, pp. 425-467, 1999. 10.1016/j.jcp.2004.07.019A. Murrone and H. Guillard, ”A five equation reduced model for compressible two phase flow problems,” Journal of Computational Physics, vol. 202, no. 2, pp. 664-698, 2005. C. Hayashi, K. Nakazawa, and Y. Nakagawa, ”Formation of the solar system,” in Protostars and planets II, pp. 1100-1153, 1985. 10.1002/fld.309R. J. LeVeque, ”Finite-volume methods for nonlinear elasticity in heterogeneous media,” International Journal for Numerical Methods in Fluids, vol. 40, no. 1-2, pp. 93-104, 2002. 10.1086/306900R. Lovelace, H. Li, S. Colgate, and A. Nelson, ”Rossby wave instability of keplerian accretion disks,” The Astrophysical Journal, vol. 513, no. 2, p. 805, 1999. 10.1086/320241H. Li, S. Colgate, B. Wendroff, and R. Liska, ”Rossby wave instability of thin accretion disks. iii. nonlinear simulations,” The Astrophysical Journal, vol. 551, no. 2, p. 874, 2001. T. Chakkour, ”Some notes about the continuous-intime financial model,” Abstract And Applied Analysis, vol. 17, 3/17. 10.1007/s10473-019-0519-5T. Chakkour, ”Inverse problem stability of a continuous-in-time financial model,” Acta Mathematica Scientia, vol. 39, no. 5, pp. 1423-1439, 7/19. T. Chakkour, ”Implementing some mathematical operators for a continuous-in-time financial model,” Engineering Mathematics Letters, vol. 17, no. 2, pp. 1-14, 2/17. 10.3847/1538-4357/aab70bR. Nakatani, T. Hosokawa, N. Yoshida, H. Nomura, R. Kuiper, ”Radiation hydrodynamics simulations of photoevaporation of protoplanetary disks by ultraviolet radiation: Metallicity dependence,” The Astrophysical Journal, vol. 857, no. 1, p.57, 2018. 10.46300/9104.2020.14.1T. Chakkour, F. Benkhaldoun, ”Slurry Pipeline for fluid transients in pressurized conduits,” International Journal of Mechanics, vol. 14, 2020. 10.1016/j.cjph.2021.09.006P. Sarma, P. K. Karmakar, ”Nonlinear dynamics of structure formation in protoplanetary disks,” Chinese Journal of Physics, vol. 74, pp. 9-19, 2021. T. Chakkour, ”Reengineering of aerodynamic flowfield module,” Engineering Mathematics Letters. Article ID 4, 2018: http-scik. T. Watanabe, ”Numerical Simulation of Droplet Combustion using Volume-of-Fluid Method,” WSEAS Transactions on Heat and Mass Transfer, vol. 14, pp. 38-44, 2019. M. Y. SIKKANDAR, N. M. SUDHARSAN, S. BEGUM, E. NG, ”Computational Fluid Dynamics: A Technique to Solve Complex Biomedical Engineering Problems-A Review,” WSEAS Transactions on Biology and Biomedicine, vol. 16, pp. 121-137, 2019. 10.1051/0004-6361/201527815R. K¨appeli, S. Mishra, ”A well-balanced finite volume scheme for the euler equations with gravitationthe exact preservation of hydrostatic equilibrium with arbitrary entropy stratification,” Astronomy & Astrophysics, vol. 587, pp. A94, 2016. 10.3847/1538-4357/ab91b7O. Gressel, J. P. Ramsey, C. Brinch, R. P. Nelson, N. J. Turner, S. Bruderer, ”Global hydromagnetic simulations of protoplanetary disks with stellar irradiation and simplified thermochemistry,” The Astrophysical Journal, vol. 896, no. 2, p.126, 2020. 10.1093/pasj/psx143R. T. Tominaga, S. I. Inutsuka, S. Z. Takahashi, ”Non-linear development of secular gravitational instability in protoplanetary disks,” Publications of the Astronomical Society of Japan, vol. 70, no. 1, 2018. 10.3847/1538-4357/aaca99R. Li, A. N. Youdin, J. B. Simon, ”On the numerical robustness of the streaming instability: Particle concentration and gas dynamics in protoplanetary disks,” The Astrophysical Journal, vol. 862, no. 1, 2018. 10.1134/s1063772918010018T. G Elizarova, , A. A. Zlotnik, M. A. Istomina. ”Hydrodynamical aspects of the formation of spiralvortical structures in rotating gaseous disks,” Astronomy Reports, vol. 62, no. 1, pp. 9-18, 2018. 10.3847/1538-4365/ab0a0eP. Bentez-Llambay, L. Krapp, M. E. Pessah, ”Asymptotically Stable Numerical Method for Multispecies Momentum Transfer: Gas and Multifluid Dust Test Suite and Implementation in FARGO3D,” The Astrophysical Journal Supplement Series, vol. 241, no. 2, p.25, 2019. 10.1016/j.jcp.2018.11.018L. Grosheintz-Laval, R. K¨appeli, ”High-order wellbalanced finite volume schemes for the Euler equations with gravitation,” Journal of Computational Physics, vol. 378, pp. 324-343, 2019. 10.1016/j.jcp.2017.09.063G. Li, Y. Xing, ”Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation,” Journal of Computational Physics, vol. 352, pp. 445-462, 2018. 10.1016/j.jcp.2017.12.026A. Chertock, S. Cui, A. Kurganov, S. N. Ozcan, E. ¨ Tadmor, ”Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes,” Journal of Computational Physics, vol. 358, pp. 36-52, 2018. 10.1016/j.jcp.2017.01.043B. Xie, X. Deng, Z. Sun, F. Xiao, ”A hybrid pressure-density-based mach uniform algorithm for 2d euler equations on unstructured grids by using multi-moment finite volume method,” Journal of Computational Physics, vol. 335, pp. 637-663, 2017. 10.1016/j.jcp.2018.05.019K. Carlberg, Y. Choi, S. Sargsyan, ”Conservative model reduction for finite-volume models,” Journal of Computational Physics, vol. 371, pp. 280-314, 2018. 10.1142/s242478631650016xT. Chakkour, E. Frenod, ”Inverse problem and concentration method of a continuous-in-time financial model,” International Journal of Financial Engineering, vol. 3, no. 2, pp. 1650016, 2/16. 10.1007/s41115-017-0002-8D. S. Balsara, ”Higher-order accurate space-time schemes for computational astrophysicsPart I: finite volume methods,” Living reviews in computational astrophysics, vol. 3, no. 1, pp. 1-138, 2017.