
 

 

 
Abstract— The motivation of the presented study was 

the observation of the existence of local loss of stability 

“tension buckling” in the experimental tests of composite 

and metallic plates with cut-outs subjected to tension. 

Because of this, the numerical analyses of the aluminum 

plate with elliptical or circular cutouts at the center and 

subjected to tensile load are studied in the paper. Although 

the whole structure is uniformly stretched, the 

circumferential compressive stresses in the vicinity of the 

cutout edge are observed. First of all, the linear buckling 

analysis is carried out for different sizes of the holes. Based 

on these results, the size of the hole is chosen, where the 

circumferential stress magnitude in the vicinity of the 

cutout is the lowest or even comparable to the yield stress 

of the material. The computations are made for three 

different values of thickness. Finally, the nonlinear 

buckling analysis is carried out without and with the 

plasticity effects included. Generally, in the case of the 

circular and vertically oriented elliptical cut-out, the loss 

of stability in the tensed plate is always observed. 

However, in elastic-plastic analyses, the values of the 

critical parameters significantly differ from the results 

obtained for elastic buckling. Finally, the critical 

geometries for further experimental tests were defined. 

 

Keywords— finite element method, geometrical 

imperfections, plates with holes, post-buckling behavior 

tension buckling 

I. INTRODUCTION 
The buckling phenomenon of thin-walled structures is 

associated with the existence of an external load, which causes 
the compression of a whole structure or its part. When the 
compressive stresses reach the critical level the shape of the 
structure can dramatically change. From the practical point of 
view in most cases, it means catastrophe. A large number of 

 
 

classical loss of stability examples are discussed by Bushnell 
[1] or, in the case of laminated plates and shells, by Muc et al. 
[2]. However, buckling can be also possible in the case of 
tension [3], torsion [4], and other loads [5]. Mainly, due to the 
shape of a structure or different geometrical discontinuities, 
the stress distribution is disturbed and the compression can be 
also present. The local buckling under tensile loads due to the 
compressive stresses in thin aluminum foil with nonlinearity 
(cracks) was observed and numerically studied by 
Shahmardani et al. [3]. What is essential, such effects were 
also observed in the experimental tensile tests performed by 
the authors for composite and steel plates without cracks but 
with different cutouts (Fig. 1). There are presented (Fig. 1) 
vertical in-plane surface strains caused by vertical tensile 
loading. Such strains were determined with the use of the 2D 
Digital Image Correlation. In the first example, the composite 
plate (Fig. 1a) with dimensions 200×200×2.35 mm with a 
circular hole Ø50 mm at the center was made of unidirectional 
E-glass woven roving and Epidian 601 [6]. In the mid-side 
part of the sample, above and below the circular hole, there are 
visible compression strains. Similar effects, however, clearly 
on a smaller scale, were also observed in plates made of 
S235JR+N steel with circular and rectangular (Fig. 1b) cutouts 
in the regime of the strain hardening of the material [7]. In 
examples (Fig. 1c and 1d), there are presented only 
compressive strains – the areas in which tensile strains 
occurred – are marked by dark red color. The tested steel 
plates had a 90 mm width and 2 mm thickness. The circular 
and rectangular holes were equal to Ø30mm and 30×30 mm, 
respectively. 
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(a) (b) 

  
(c) (d) 

Fig. 1 Vertical surface strains caused by tensile loading (loading 
direction was vertical): (a) composite plate with circular hole; (b) 

steel plates with rectangular and circular cut-outs; (c) steel plate with 
circular hole (only compressive strains are presented); (d) steel plate 

with rectangular hole (only compressive strains are presented). 
 
Such, above given, observations were the motivation for 

presented numerical analyses and further experimental issues. 
As another example here can be quoted paper by Yao [8], 
where is discussed the buckling of truncated hemisphere 
subjected to axial tension. A similar effect is also presented by 
Magnucki et al. [9], in the case of the buckling of an untypical 
dished head of cylindrical vessels under internal pressure. The 
loss of global stability in the case of the tensile load is also 
possible due to Poisson's effect. Friedl et al. [10] considered 
the relatively long rectangular isotropic plate clamped at both 
ends and subjected to tensile load. The applied support of the 
plate caused that the compressive stresses arise in the direction 
perpendicular to the tension. It leads to buckling, where 
courses of wrinkles are parallel to the long free edges of the 
plate. Zhang and Fu [11, 12] introduced the new 
micromechanical model of the woven fabric to investigate the 
buckling of a fabric sheet when it is subjected to uniaxial 
tension. Finally, it is worth stressing here that the loss of 
stability by bifurcation is also possible when the compression 
is not present at all. Zaccaria et al. [13] investigated the 
bifurcation of a single degree of freedom elastic system 
subjected to tensile dead loading. The system consists of two 
rigid rods joined through a slider. Additionally, a rotational 
elastic spring is attached at the left hinge. The bifurcation is 
related to the presence of the constraint at the middle of the 
structure. This constraint transmits only the rotation.  

The above-mentioned examples of buckling are rather 
connected with the shape of the structure but not with the local 
discontinuity of the structure. The simplest structure, where the 
local discontinuity may cause the buckling, is a rectangular 
plate under uniform tension. A crack [3] or a cutout [7] of a 
different shape can play a role of geometric discontinuity. In 
the first case, the local buckling in the vicinity of the crack 
edge can speed up the process of the crack length increases. 
Markström and Storåkers [14] present the buckling 

characteristics of cracked elastic plates subjected to uniaxial 
loads. The analysis is made with the use of the finite element 
method based upon linear bifurcation theory. The centrally 
cracked plates, as well as, three types of edge cracked 
members are studied. Sih and Lee [15] use the finite element 
method to determine and graphically display the various 
buckled displacement modes of a plate with a central crack. 
The critical buckling loads are found to decrease with 
increasing crack length. Shaw and Huang [16] also use the 
finite element method. The applied approach is based on Von 
Karman’s linearized theory for buckling of plates subjected to 
a pre-buckling state of plane stress. Moreover, several singular 
elements based on the Willian series are used. In this study, the 
effect of crack length, the effect of boundary condition, the 
effect of Poisson's ratio, and the effect of biaxial force on 
critical loads are studied. The effect of initial imperfection is 
also considered. Riks et al. [17] propose the procedure based 
on the finite element method for the analysis of buckling and 
post-buckling behavior of centrally localized cracks in the case 
of stretched plates. The obtained results show that the loss of 
stability can cause a considerable amplification of stress 
intensity around the crack tip. This phenomenon increases with 
the length of the crack. The influence of the local crack 
buckling on the energy release rate is studied by Barut et al. 
[18] in the case of a thin, rectangular, composite plate. The 
analysis is carried out with the use of the finite element method 
in a nonlinear range. The obtained results show that the local 
buckling load of the cracked plate increases as the crack 
orientation changes from a transverse crack to a longitudinal 
crack aligned with the direction of the applied tension load. 
Moreover, the local crack buckling increases the energy 
release rate thus resulting in a reduction in residual strength. 
Guz and Dyshel [19] and Dyshel [20] study the buckling and 
cracking of thin aluminum panels with an edge crack in 
tension. The impact of end conditions on the loss of stability 
resistance is investigated. Next, Guz and Dyshel [21] 
investigate the two-layered plate, which consists of steel and 
aluminum alloy AMg6M with a central crack. The authors 
introduce the simple closed analytical formula describing the 
value of the critical tension load. This formula is based on the 
rule of mixtures. A good agreement between theoretical and 
experimental results is obtained. The loss of stability is not 
always observed. However, if this phenomenon occurs, it will 
speed up the crack length increasing. Brighenti [22-24] 
performs the numerical buckling analysis (eigenvalue problem 
as well as nonlinear analysis with the contact between the edge 
of the crack taken into account) of the isotropic plate with 
crack with the use of finite element method. The analysis 
reveals that in the case of compression, the loss of stability has 
a global character independently of the type of support of the 
structure. However, in the case of tension, this phenomenon 
has a local character. Moreover, for a longer crack, the value 
of the critical tension load decreases. The most dangerous 
cracks are oriented in the perpendicular direction with respect 
to the direction of tension. The author studies also the 
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influence of Poisson's effect. This effect is not significant. 
Next, the simple analytical formula describing the value of the 
critical load is also introduced. Finally, plasticity is also taken 
into account. Rad and Panahandeh-Shahraki [25, 26] perform 
a similar analysis for the plate made of functionally graded 
material (FGM) with a crack. The obtained results generally 
agree with those, which are described above. The experimental 
analysis of the stretched plate with crack is presented by Seif 
and Kabir [27]. The authors investigated the influence of the 
symmetric and anti-symmetric form of buckling in the vicinity 
of the crack on the fracture and fatigue behavior. Results show 
that the buckling can reduce the fracture capacity and the 
fatigue life by 35% and 59% respectively. The anti-symmetric 
buckling has a greater influence on the fracture capacity loss 
due to the mix mode of I-III but it has an opposite effect on the 
fatigue crack growth due to the sliding crack closure. The 
obtained experimental results are also compared with the 
numerical ones.  

To sum up, it is worth stressing that the existence of the 
crack in the stretched plates causes that the local buckling in 
the vicinity of the crack edges is possible. The lowest buckling 
load is obtained for crack orientation, which is perpendicular 
to the direction of tension. The local loss of stability, 
especially anti-symmetric mode, speeds up the crack length 
increasing. In the case of cutouts of a different shape, similar 
effects should be observed. For the first time, the problem of 
the loss of stability at holes under a global tensile load was 
described by Cherepanov [28] in 1963. Since then only a few 
works deal with this problem. Here can be quoted works by 
Backer [29], Datta and Carlson [30], or Datta [31] published at 
the beginning of the ‘70s of the last century. Next, Larsson 
[32] in 1989 computes the buckling load for pierced linear 
elastic rectangular composite plates having centrally located 
circular holes with the aid of the finite element method. The 
obtained predictions are verified experimentally. Moreover, 
buckling modes are also examined, in particular with respect 
to symmetries and anti-symmetries. Shimizu et al. [33] 
perform the finite element analysis on the elastic buckling of 
plates, each of which has a hole and is subjected to tensile 
loading. In this paper, stress distributions and buckling 
behaviors are studied. Aspect ratios, shapes of holes, and so 
on, are adopted as parameters. Through the analysis, variations 
of buckling coefficients and buckling modes against aspect 
ratios are obtained. The effects of the hole shapes on the 
buckling strength are also discussed. In the next paper by 
Gilabert et al. [34] the effect of imperfect boundary conditions 
and the finite size of the plate are analyzed by comparing a 
numerical finite element computation and some experiments 
carried out in the simplest case of a circular hole. Experiments 
with cracks clearly show the distortion of the buckling pattern 
as a function of the crack orientation with respect to the 
applied uniaxial tensile stress.  

The influence of the different shapes of the holes on critical 
buckling load in the case of a square isotropic plate is studied 
by Prabhakara and Datta [35]. The circular and elliptical holes 

and rectangular slots with rounded ends are taken into 
consideration. The finite element method is applied. The value 
of critical buckling load is obtained as a result of eigenvalue 
analysis. The tension buckling is also investigated in the case 
of doubly curved composite panels subjected to partial edge 
loading. Kumar et al. [36], [37] use the finite element method 
to solve the eigenvalue problem describing the value of critical 
load as well as the dynamic behavior of the structure. The 
computations are carried out for composite panels with and 
without centrally placed circular holes. The critical buckling 
load increases with the increase of the curvature of the panel. 
For certain panels, the buckling behavior is similar to flat 
plates, depending on the edge conditions and aspect ratio of 
the panel. The impact of the length of the isotropic plate, the 
size, and the shape of the holes on the value of buckling load 
are investigated by Shimizu [38]. The width of the plate is 
assumed to be fixed. The finite element method is applied. To 
obtain the values of the buckling load, the eigenvalue analysis 
is carried out. Depending on the aspect ratio of the plate the 
symmetric or anti-symmetric buckling mode is obtained. The 
lowest value of buckling load is obtained for the rectangular 
cutouts. The different methods of edge load application are 
also analyzed. However, for the relatively long plates, the 
influence of it is not significant. The nonlinear analysis is also 
performed with the plasticity taken into account. The influence 
of geometrical imperfections is studied. The conclusion is that 
the impact of the imperfections is similar to the case of 
compressed plates. Similar work is presented by Kremer and 
Schürmann [39], but in this case, the plates are made of 
composite materials. The authors use as before the finite 
element method and the eigenvalue problem is solved to find 
the value of buckling load. The nonlinear analysis is also 
carried out. One of the conclusions is that for thin plates, with 
thickness t ≈ 0.01 mm, the value of the buckling load is lower 
in comparison with load, which causes damage of the 
structure. It makes possible the experimental observation of 
the tension buckling phenomenon in the reality. As an 
imperfection, the first buckling mode is superimposed to the 
plate. Finally, the results of analytical and numerical analysis 
of the tension buckling of laminated sheets with circular and 
elliptical holes are discussed by Muc [40]. The performed 
studies reveal the significant impact of stress concentration 
effect on buckling modes and loads, particularly taking into 
consideration variations of the Young's and Kirchoff's modulus 
ratios. The problem of optimal design is also discussed. Both 
continuous and discrete fiber orientations are considered. 

The main motivation of this work is to estimate the 
"optimal" conditions (thickness of the plate, the shape, and 
size of the hole), for which the loss of stability in the case of 
the isotropic plate with cut-out subjected to tension is the most 
probable. In order to perform this study, the finite element 
method is used. This method is very universal and the usage of 
this method makes it possible to perform the analysis also in 
the nonlinear range, mainly due to the exceeding the yield 
stress of the material. Moreover, practically there is no 
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limitation on the shape of the cut-out. Thus, it seems that the 
choice of the FEM method is the most suitable. What more, 
the present study should be treated as a preliminary analysis 
before performing the experimental tests. We look for the 
structure, for which the loss of stability in the neighborhood of 
the cut-out causes such a magnitude of the normal deflection, 
which can be observed with the use of the DIC system. 

II. MATERIALS AND METHODS 

The investigated structure with a hole is shown in Fig. 2. 
The plate is made of aluminum alloy EN AW 1050A H14. The 
mechanical properties of the material are as follows: the 
Young modulus E=69 [GPa], the Kirchhoff module 
G=25.9 [GPa], the Poisson’s ratio υ=0.33 and density 
ρ=2.79 [g/cm³]. For the sheets, where the thickness t is 
between 0.5 [mm] to 1.5 [mm], the yield stress is equal 
Rp02=85 [MPa], the tensile strength Rm=105–145 [MPa], and 
the minimal elongation A=3 [%]. The plate is a square with an 
edge length equal to L=200 mm. The circular or elliptic cutout 
is localized in the geometrical center of the plate. The longer 
semi-axis can be oriented in the horizontal or vertical 
direction. The size of the hole is variable. The analysis is 
carried out for three values of the thickness: t=0.5, 1.0, and 
1.5 mm. Since the performed numerical simulation mimics the 
real experiment with the use of the tension machine, one edge 
of the plate is fixed and the second one can move in the 
direction of the applied load. Taking under consideration the 
orientation of the global coordinate system, the assumed 
boundary conditions are shown in Fig. 2, where UX, UY, UZ, 
ROTZ are the translational and rotational degrees of freedom, 
respectively. 

 
Fig. 2 The isotropic square plate with circular and elliptical cutouts. 

 
All computations are performed with the use of ANSYS 
software. With this system, the whole steps of the full buckling 
analysis can be performed, namely linear buckling (eigenvalue 
analysis), nonlinear buckling analysis (post-buckling analysis) 
with the large deflection and material nonlinearity taken into 
account, and sensitivity analysis on geometrical imperfections. 
Moreover, the ANSYS system is also implemented the arc-
length metod, which enables performing the in the case when 

the post-buckling behavior of the studied structure is unstable. 
Due to the fact that the load is applied only on the one edge 
whereas the second one is clamped, the final shape of the 
structure after the loss of stability may not be symmetric 
concerning the Y-axis. Among the available in the ANSYS 
system FEM models, the shell model seems to be the most 
appropriate. The elements of the shell model possess all 
necessary degrees of freedom in each node, which makes it 
possible to perform the full buckling analysis in the linear and 
non-linear range. Therefore the whole structure is modeled as 
a shell structure. The standard higher-order shell elements 
SHELL281 are applied. Such finite elements have six degrees 
of freedom at each node, namely: three translational UX, UY, 
UZ, and three rotational ROTX, ROTY, ROTZ. These 
elements are formulated according to the first-order shear 
deformation theory. The elements of triangular shape are used. 
Moreover, it is assumed that the approximate element size in 
the vicinity of the hole is smaller in comparison with the size 
of the elements, which are located in the remaining part of the 
structure. For the sake of simplicity, it is also assumed that the 
size of the elements, which are located far from the hole edge, 
have a fixed size l=5.0 mm. On the other hand, the size of the 
elements, which are located in the vicinity of the hole, is 
estimated based on the result of the convergence test of the 
numerical solution. This test is carried out for the structure, 
where the thickness is equal to t=1.0 mm and the cutout has a 
circular shape with a diameter d=100 mm. The eigenvalue 
problem is solved and the value of the external buckling load 
(pressure pcr) is tested. The obtained results are shown in 
Table 1. 
 
Table 1 The results of the convergence test of the finite element 
solution. 

Element size 

[mm] 

Buckling tensile pressure  

pcr [MPa] 

Tensile force  

Fcr [kN] 

5.0 56.895 11.379 
4.0 56.754 11.351 
3.0 56.635 11.327 
2.0 56.581 11.316 
1.0 56.536 11.307 
0.5 56.532 11.306 

As it can be observed in Table 1, the value of the critical 
buckling pressure (tensile force) varies not significantly. 
Therefore for further computations, the element size in the 
vicinity of the cutout edge can be chosen to be equal to 
l=1.0 mm. The use of the second-order shell elements 
SHELL281 guarantees the good accuracy of the solution. As it 
can be observed (Table 1) starting from element size l=1.0 we 
have two digits after the decimal point identical in the case of 
the value of critical pressure. We decided that this result is 
enough for further analysis and ensures the appropriate 
accuracy. Besides, we have to assume that if one parameter 
(value of critical pressure) indicates a good convergence thus 
it means that other parameters, for example, the value of the 
normal deflection, measured at point A, also indicate a similar 
tendency. The part of the finite element model of the studied 
plate is depicted in Fig. 3.  
 

INTERNATIONAL JOURNAL OF MECHANICS 
DOI: 10.46300/9104.2021.15.8 Volume 15, 2021 

E-ISSN: 1998-4448 72



 

 

 
Fig. 3 The part of the finite element model of the investigated plate 

with a circular hole. 
 

III. RESULTS 

I.1 Linear buckling – parametric analysis 

As it is mentioned above, the parametric analysis is carried 
out in order to estimate the size of the hole, for which the 
critical circumferential stress component (in the vicinity of the 
hole) is comparable with the yield stress of the plate material. 
In other words, for relatively small cutouts the critical 
circumferential stresses are very high. In reality, such stresses 
cause the failure of the structure before the buckling 
phenomenon could be observed. Thus the present study is 
performed for the structures which differ from each other by 
the size of holes. In the case of the circular hole the 
calculations are made for the following diameters, namely: 
d=25, 50, 75, 100, and 125 mm. In the case of the vertical 
ellipse, the length of the longer semi-axis is equal to a=4d/3 
and the length of the shorter semi-axis b=3d/4, where d is the 
diameter of the corresponding circular hole. In the case of the 
horizontal ellipse, the lengths of semi-axes are respectively 
a=3d/4 and b=4d/3. It is worth pointing out that the areas of 
the corresponding circular and elliptic cutouts are the same. 
The orientation of the cutouts with respect to the load direction 
is depicted in Fig. 4. 
The calculations are performed for two load cases. In the first 
case, the load is controlled by the pressure p, which is applied 
on the right edge of the plate and the critical multiplier of this 
loading is looked for. In the second case, the load is controlled 
by the magnitude of the uniform horizontal displacement UX. 
The vector of the displacement UX is directed identically as it 
is shown in Fig. 2. 
 
 
 

  

(a) (b) 

 
(c) 

Fig. 4 Studied structures with: (a) circular hole; (b) vertically 
oriented elliptic cutout; (c) horizontally oriented elliptic cutout. 

Location of the measurement points A and B. 
 

I.1.1 Loading controlled by pressure p 

The obtained results for the linear buckling approach with 
loading controlled by pressure are presented in Figure 5. As it 
can be observed in Fig. 5a, for the relatively small cutouts the 
magnitude of the external tension pressure pcr is very high. 
Moreover, the shape of the hole has a significant impact on 
these parameters. The highest value is obtained in the case of 
the horizontally oriented elliptical cutout and the thickness of 
the plate t=1.5 mm. On the other hand, for the plates of 
thickness t=1.0 mm and t =0.5 mm with a circular hole and for 
all plates with vertically oriented elliptical cutouts the critical 
buckling pressures pcr are comparable and relatively small. 
The next plot, Fig. 5b, which shows the relationship between 
critical axial force Fcr and a diameter d of the circular hole is 
very similar. In Fig. 5c and Fig. 5d there are also depicted the 
extreme values of a circumferential component of stresses in 
the membrane state, which are measured in two characteristic 
points located on the cutout edge (compression σθ

A, point A 
and tension σθ

B, point B). The locations of these points are 
depicted in Fig. 4. Such stresses arise when the investigated 
structure is subjected to the external load, which is equal to the 
critical buckling pressure pcr. The magnitude of these stresses 
significantly depends on the cutout size. Generally, for smaller 
cut-outs, they are higher. Moreover, in analyzed cases, the 
minimum is observed for the circular hole with a diameter d 
equal to about d=100 mm. In the case of circular and vertically 
oriented elliptical holes and thickness t=0.5 mm these stresses 
are comparable with the yield stress of the applied material. 
Thus, in these cases, it should be possible to observe the 
buckling phenomenon even in the elastic range. In the other 
cases, the stresses are high and the loss of stability is possible 
only when the plasticity effects are included. The first buckling 
modes of the studied plates are presented in Fig. 6. 
Additionally, the distributions of the circumferential 
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component of the stresses with their extreme values are shown 
in Fig. 7. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig. 5 Relationships between characteristic size of cutout d and: (a) 

critical buckling pressure pcr; (b) critical axial force Fcr; (c) 
circumferential stress component σθA at point A; (d) circumferential 

stress component σθB at point B. 
 

  

(a) (b) 

 
(c) 

Fig. 6 First buckling modes of investigated plates, thickness t=1.0 
mm. Load controlled by pressure pcr: (a) circular hole, pcr=56.536 
[MPa]; (b) vertically oriented elliptic cutout, pcr=24.496 [MPa]; (c) 

horizontally oriented elliptic cutout, pcr=176.231 [MPa]. 
 

  

(a) (b) 

 
(c) 

Fig. 7 The contours of the circumferential stress component, 
thickness t=1.0 mm: (a) circular hole; (b) vertically oriented elliptic 

cutout; (c) horizontally oriented elliptic cutout. 
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I.1.2 Loading controlled by horizontal displacement UX 

The obtained results, when the tension load is controlled by 
the uniform horizontal displacement UX, are presented in 
Figure 8a. Generally, the characters of the shown plots are 
similar to those, which are discussed for the case with loading 
controlled by pressure (Figure 5). As before the highest value 
of the critical horizontal displacement UX is observed for the 
relatively small size of the cutouts. However, in the case of the 
horizontally oriented ellipse, the clear minimum is observed. 
Moreover, for the plates with the largest studied cut-outs, the 
buckling phenomenon is not observed. This fact can be 
explained by the influence of the boundary conditions on the 
stiffness of the plate in the area, where the buckling is 
expected. The relationship between the corresponding to the 
critical displacement UX axial force Fcr and the characteristic 
size of the cutout d is depicted in Fig. 8b. The value of the 
critical axial force Fcr decreases with increasing the parameter 
d. It can be said that in reality, the loss of stability is possible 
only for relatively large cutouts (vertically oriented elliptical 
or circular cutouts) and for the plate thickness t=0.5 mm or 
t=1.0 mm. In the case of horizontally oriented elliptical cut-
outs, the obtained values of axial force Fcr are enormously 
high. It causes that the magnitude of circumferential 
components of stresses σθ

A and σθ
B are also very high, which 

can be observed in Fig. 8c and Fig. 8d. The first buckling 
modes of the studied plates are shown in Fig. 9. On the 
contrary to the modes presented in Fig. 6, now the obtained 
shapes are symmetric with respect to the axis, which goes 
through the geometrical center of the structure. A similar effect 
is observed in the case of the distributions of the 
circumferential component of the stresses (Fig. 10). Moreover, 
now the presented extreme values of the stresses σθ

A and σθ
B 

are generally much higher in comparison with those which are 
shown in Fig.7. 

To sum up, it should be stressed that the way how the 
tension load is realized (pressure or displacement controlled) 
has a significant effect on the final results. Generally, in the 
case of the buckling, where the applied load is controlled by 
the displacement, the values of the critical parameters (axial 
force, stresses at point A and B) are higher in comparison with 
those, which are obtained when the load is controlled by the 
edge pressure. However in reality the load applied directly 
through the pressure or force is very difficult to implement. 
Especially in the case of the tension load applied to the edge of 
the plate. Thus it seems that the model, where the load 
controlled by the displacement, is more corresponding with 
reality. Moreover, for relatively large cutouts the magnitude of 
the circumferential components of stress are comparable with 
the yield stress of the plate material. However, the stresses σθ

B 
are much higher. Therefore it seems that the loss of stability 
can be observed only for the relatively large cutouts when the 
plasticity effect is included. Taking under consideration the 
presented above results, it is assumed that further nonlinear 
analysis will be performed for the plates with a circular hole 
with diameter d=100 mm and for corresponding vertically 

(a=133.33 mm, b=75 mm) and horizontally (a=75 mm, 
b=133.33 mm) oriented elliptic cutouts. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Fig. 8 Relationships between characteristic size of cutout d and: 
(a) critical horizontal displacement UX; (b) critical axial force Fcr; (c) 
circumferential stress component σθA at point A; (d) circumferential 

stress component σθB at point B. 
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(a) (b) 
Fig. 9 First buckling modes of investigated plates, thickness 

t=1.0 mm. Load controlled by the edge displacement: (a) circular 
hole, UX=1.427 mm; (b) vertically oriented elliptic cutout, UX 

=0.445 mm. 
 

  

(a) (b) 
Fig. 10 The contours of the circumferential stress component, 

thickness t=1.0 mm: (a) circular hole; (b) vertically oriented elliptic 
cutout. 

 
Finally, Table 2 and Table 3 collected the obtained critical 

parameters for the linear buckling analysis when the load is 
controlled by the pressure or displacement, respectively. These 
results relate to a plate with a hole with a characteristic 
dimension of d=100 mm and different thickness t. In Table 2 
in the second and third column, the values of critical pressures 
and the corresponding value of critical axial forces are 
presented respectively. Moreover, in the two last columns, 
there are shown the values of the circumferential stress 
components, which are measured in points A and B. The 
location of these points is shown in Fig. 4. 

 It is worth stressing here that in the case of the horizontally 
oriented elliptic cut-out when the load is controlled by 
displacement UX, the loss of stability is not observed for 
plates of the thicknesses t=1.0 mm and t=1.5 mm. However, 
for plates of thickness t=0.5 mm the value of critical 
displacement UX is extremely large. Such a displacement 
value seems to be rather unreachable in reality. As is 
mentioned above, the presented in these tables values of the 
critical axial force as well as the magnitude of the stresses σθ

A 
and σθ

B are significantly higher when the load is controlled by 
the horizontal displacement UX. Especially, it is visible in the 
case of the circumferential component of stress σθ

B. Taking 

under consideration the value of the yield stress (Rp02=85 
MPa), the loss of stability in the elastic range is possible only 
in the case of the plate with thickness t=0.5 mm and with 
circular and vertically oriented elliptic cutout. It should be 
assumed that in any other cases the plasticity effects are active. 

Table 2. Linear buckling analysis. The tension load controlled by 
edge pressure pcr. 

Thickness 

 t[mm] 

pcr  

[MPa] 

Axial force  

F [kN] 

σθ
A  

[MPa] 

σθ
B  

[MPa] 

Circular hole d=100 [mm] 
0.5 14.218 1.422 -34.964 65.909 
1.0 56.536 11.307 -139.026 262.077 
1.5 126.432 37.930 -310.913 586.073 

Vertically oriented elliptical cutout a=133.33 [mm], b=75 [mm] 
0.5 6.149 0.615 -16.453 50.990 
1.0 24.496 4.899 -65.544 203.112 
1.5 54.890 16.467 -146.868 455.097 

Horizontally oriented elliptical cutout a=75 [mm], b=133.33 [mm] 
0.5 44.565 4.456 -101.558 136.515 
1.0 176.231 35.246 -401.606 539.846 
1.5 391.864 117.559 -893.000 1200.00 

 
Table 3. Linear buckling analysis. The tension load controlled by 
horizontal displacement UX. 

Thickness  

t[mm] 

UX  

[mm]* 

Axial force  

F [kN] 

σθ
A  

[MPa] 

σθ
B  

[MPa] 

Circular hole d=100 [mm] 
0.5 0.359 7.396 -45.063 297.944 
1.0 1.427 58.758 -179.003 1183.491 
1.5 3.187 196.839 -399.798 2643.187 

Vertically oriented elliptical cutout a=133.33 [mm], b=75 [mm] 
0.5 0.112 1.686 -14.851 128.952 
1.0 0.445 13.429 -59.163 513.685 
1.5 0.997 45.134 -132.566 1151.000 

Horizontally oriented elliptical cutout a=75 [mm], b=133.33 [mm] 
0.5 15.920 388.932 -671.089 9939.780 
1.0 The loss of stability is not observed 
1.5 

*UX - the critical value of horizontal displacement for which the loss 
of stability occurs. 
 
Additionally, it is worth comparing the obtained numerical 
results with the semi-empirical ones, which are available in the 
other papers. The approximate analytical relationship 
describing the value of the critical tension load can be found in 
work by Shimizu [37]. In this paper the application of the 
Euler's beam formula with a correction coefficient k is 
proposed, namely: 
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The correction coefficient k is derived numerically. It is a 
function of the aspect ratio Lx/Ly, where the Lx and Ly are the 
lengths of the plate edges and the type of the cutout (i.e 
circular, square, etc.). In the case of the plate where the aspect 
ratio is equal to Lx/Ly=1 and circular hole, the correction 
coefficient is equal to about k=20.1. However, in this work, it 
is assumed the constant diameter of the circular hole, namely 
d=400 mm, and constant length of the Lx=800 mm for all 
studied structures, which differs from each other only by the 
aspect ratio Lx/Ly. The aspect ratio d/Lx in the present work is 
the same as in the paper by Shimizu [33]. In the mentioned 
work the information about the elliptical cutouts is not 
available. Thus the estimation can be done only for the plates 
with circular holes. Next, Kremer Schürmann [34] propose the 
empirical formula for the buckling stress of isotropic plates: 
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In both cases, t and d mean the thickness of the plate and the 
diameter of the circular hole, respectively.  
In Table 4 there are compared the values of critical buckling 
pressure pcr obtained with the use of the above formulas and 
the results of numerical analysis. As it can be observed, the 
values obtained with the use of formula (1) are significantly 
underestimated in comparison with those which are obtained 
from the numerical analysis. This fact can be caused by the 
effect of boundary conditions. On the other hand, the critical 
buckling pressure pcr computed according to (2) is 
overestimated. In formula (2) the correction coefficient is 
constant (ks=3.55) independently of the shape and size of the 
cutout. 

Table 4. Comparison of the numerical and semi-analytical values of 
buckling pressure pcr. 

Thickness  

t [mm] 

Equation (1)  

pcr [MPa] 

Equation (2) 

 pcr [MPa] 

FEM  

pcr [MPa] 

0.5 7.784 24.495 14.218 

1.0 31.135 97.980 56.536 

1.5 70.055 220.455 126.432 

I.2 Nonlinear elastic analysis of buckling and post-buckling 

behavior 

As it is mentioned above, the presented now numerical 
analysis simulates the real test with the use of a tension 
machine. It is assumed that the plates are subjected to uni-
form, uniaxial tensile load, which is controlled by the imposed 
displacement UX of the right edge (Fig. 2). The final value of 
the displacement UX is constant and equal to UX=7 mm. The 
maximal elongation of the applied material is equal to 
A=3[%]. The length of the plate edge is equal to L=200 mm, 
thus it can be assumed that the plate could be stretched 
maximally of the value ΔU=0.03 × 200=6 mm. It is worth 
noting that for the greater values of ΔU the investigated plate 
certainly will be destroyed. Therefore it seems that a proposed 

final value of displacement UX is reasonable. The applied load 
is divided into 850 constant steps during the nonlinear 
analysis. The Newton – Raphson algorithm is applied. 
Moreover, to trigger the buckling phenomenon, a small 
geometrical imperfection is introduced. The shape of the 
imperfection is identical to the first buckling mode, which is 
presented in Fig. 6 (the load controlled by pressure pcr). The 
maximal magnitude of the imperfection (the points marked as 
MX in Fig. 6) is relatively small and is equal to f=0.005 mm. 
 
3.2.1. Plate with a circular hole 

The four characteristic relationships for the plate with a 
circular hole are presented in Fig. 11. As it can be observed 
(Fig. 11a) the axial tensile force increases linearly with 
increasing the horizontal displacement UX during the 
simulations.  

(a) 

 

(b) 

 
(c) 
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(d) 

 

Fig. 11 Relationships between horizontal displacement (load) UX 
and: (a) axial force F; (b) transverse displacement UZ; (c) 

circumferential stress component σθA at point A; (d) circumferential 
stress component σθB at point B. Results for plates with circular 

holes. 

However, the component of displacement UZ at point A (Fig. 
11b), which is initially almost equal to zero, suddenly 
increases. The value of the UX (load), when this process is 
triggered, depends on the thickness of the plate. For thicker 
plates, the value of UX is greater. A very characteristic effect 
can be observed in Fig. 11c, where the stress components σθ

A 
measured at the bottom, middle, and top surfaces are 
presented. Initially, all of these stresses are almost identical. 
However, when the loss of stability occurs, these quantities 
start to be significantly different. A similar plot is presented by 
Kremer and Schürmann [38] in the case of composite plates 
with cutouts. Generally, the membrane state of stress at point 
A is disturbed and the local bending in the vicinity of point A 
is present now. The moment, when the loss of stability occurs, 
can be estimated by finding the minimal value of the stress σθ

A, 
measured on the top or bottom surface of the plate at point A. 
The choice of the surface (top or bottom) depends on where 
the clear minimum can be found. In other words which surface 
starts to be stretched. The introduction of the described above 
criterion of stability is very simple and it can be applied in the 
case when the plasticity effects are taken into account. Finally, 
the circumferential stress components σθ

B at point B also 
measured on the bottom, middle and top surface as a function 
of the displacement UX are depicted in Fig.11d. It is visible 
that the loss of stability has no impact on these parameters. 
Therefore, taking under consideration the relationships 
depicted in Fig. 11a and 11d, it can be stressed here that the 
loss of stability has strictly local character. The obtained 
critical parameters, namely horizontal displacement UX, axial 
force F, the circumferential stress components σθ

A, σθ
B 

measured at points A and B, respectively, are collected in 
Table 5 for the plate with a circular hole. The obtained results 
are quite similar to those, which are presented in Table 3. As 
before the magnitude of the registered stresses (Table 5) are 
very high in comparison with the yield stress of the applied 
material. Thus, it seems that the effects of plasticity have to be 
taken into account. The final shape of the buckled plates is 
depicted in Fig. 12. The normal deflection is not very large in 
comparison with the final value of the displacement UX=7 mm 
(load). Depending on the thickness of the plate, the 
displacement UZ varies from 4.14 mm to 3.2 mm. Generally, 
the shapes shown in Fig. 12 are very similar to each other. It is 

worth stressing that although the shape of the initial 
geometrical imperfection (Fig. 6) is not symmetric the final 
shape of deflection is symmetric as those which are depicted in 
Fig. 9 (load controlled by displacement). 

  

(a) (b) 

 
(c) 

Fig. 12 Final shape of deflection for plates with circular holes: (a) t = 
0.5 mm; (b) t = 1.0 mm; (c) t = 1.5 mm. 

3.1.2. Plate with vertically oriented elliptical cutout 

Fig. 13 presents the plots similar to those which are shown in 
Fig. 11b and 11c for a plate with a circular hole. The 
relationships between the horizontal displacement UX and 
axial force or circumferential stress component at point B are 
qualitatively identical. Therefore they are not presented here. 
In the case of vertically oriented elliptic cut-out, the critical 
values of displacement UX and corresponding values of axial 
forces are significantly smaller than in the case of a circular 
hole (Table 5). It is connected with the fact that the radius of 
curvature at point A is larger than in the case of a circular hole. 
The stresses at points A and B are also smaller. For the plate 
of thickness t=0.5 mm and t=1.0 mm the loss of stability is 
possible in the elastic range. However, the stresses at point B 
do not significantly exceed the yield stress of the applied 
material. Besides, the obtained results are quite comparable 
with those which are collected in Table 3. It is worth noting 
here that the final shape of the plate of thickness t=0.5 mm is 
quite different in comparison with the rest of the studied cases 
(Fig. 14). The left vicinity of the cutout (edge) deforms in the 
opposite direction than the right edge. It is caused by the fact 
that in this part of the structure there is no assumed 
geometrical imperfection. Thus this part of the structure can 
deform freely. When the loss of stability occurs both directions 
of deformation are equally probable. The magnitude of 
transverse deflection is almost two times larger in comparison 
with the deflection obtained for a circular hole (Fig. 12). 
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(a) (b) 
Fig. 13 Relationships between horizontal displacement UX and: (a) 

transverse displacement UZ; (b) circumferential stress component σθA 
at point A for plates with vertically oriented elliptic cutouts. 

 

  

(a) (b) 

 
(c) 

Fig. 14 Final shape of deflection for the plate with vertically oriented 
elliptical cutout: (a) t = 0.5 mm; (b) t = 1.0 mm; (c) t = 1.5 mm. 

3.1.3. Plate with horizontally oriented elliptical cutout  
 
In the case of the horizontally oriented elliptical cut-out, the 
loss of stability is not observed for all analyzed cases. The 
character of the relationships between the horizontal 
displacement UX and axial force or circumferential stress 
components at point B are qualitatively identical as in the case 
of a circular hole or vertically oriented cutout. The relationship 
between displacement UX and the transverse displacement 
UZ, depicted in Fig. 15a is quite different in comparison with 
the corresponding plots presented above. Although the 
geometrical imperfection is introduced the direction of 
deformation is opposite to the imperfection, which is visible in 
Fig. 15a. In other words, the initial plate becomes more "flat" 
during the simulation. Additionally, the circumferential stress 
components σθ

A, shown in Fig. 15b, do not change their 
character during the simulations. For all studied cases, the 

obtained values of the stresses are almost identical, with no 
respect to where they are measured (bottom, middle, or top 
surface). 

  

(a) (b) 
Fig. 15 Relationships between horizontal displacement (load) UX 

and: (a) transverse displacement UZ; (b) circumferential stress 
component σθA at point A for plates with horizontally oriented 

elliptic cutouts. 
 

  

(a) (b) 

 
(c) 

Fig. 16 Final shape of deflection for the plate with horizontally 
oriented elliptical cutout: (a) t = 0.5 mm; (b) t = 1.0 mm; (c) t = 

1.5 mm. 

Table 5. Results of simulations. The plasticity of the material is not 
taken into account. 

Thickness  

t [mm] 

UX  

[mm]* 

Axial force  

F [kN] 

σθ
A  

[MPa] 

σθ
B  

[MPa] 

Circular hole 
0.5 0.329 6.773 -41.133 272.503 
1.0 1.392 56.996 -172.643 1142.223 
1.5 3.294 200.847 -403.457 2666.644 

Vertically oriented elliptical cutout 
0.5 0.099 1.491 -13.112 113.962 
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1.0 0.420 12.662 -55.655 482.869 
1.5 0.963 43.522 -127.376 1102.199 

Horizontally oriented elliptical cutout 
0.5 The loss of stability is not observed 
1.0 
1.5 

*UX - the critical value of horizontal displacement for which the loss 
of stability occurs. 

The main reason, why in this case the loss of stability is not 
present, is that the tensile stresses σθ

B at point B are 
dramatically larger than the compressive stresses σθ

A at point 
A. The large tension causes that the stiffness of the structure 
increases during the simulation and the loss of stability is not 
possible. It should be stressed here that the magnitude of the 
transverse displacement UZ decreases with increasing the 
thickness of the structure. This effect can be observed in 
Figure 15a and Figure 16. 

3.3. Nonlinear analysis with plasticity taken into account 

As it is shown in the all tables presented in the previous 
subsections, the magnitude of stresses, especially the tensile 
stresses at point B, is much greater in comparison with the 
yield stress of the material of the plate. One can be said, that 
the loss of stability always occurs together with plasticity 
effects. In the case of thin plates (t=0.5 mm) the estimated 
stresses have the magnitude of the yield stress of the material. 
However, for the thicker structures, these stresses are 
significantly higher in comparison with the yield stress. Thus, 
it can be assumed that the plasticity effects significantly affect 
the buckling and post-buckling behavior of the investigated 
structure. In order to verify this influence, the simple model of 
plasticity is introduced, namely bilinear isotropic hardening 
with a relatively small value of tangent modulus 
ET=1390 MPa. This value can be estimated under the 
assumption, that the maximal elongation of the material 
A=3[%] is obtained with the stress of magnitude Rm=125 MPa. 
The last quantity is the average value of the Rm calculated for 
the values mentioned in the section. The shape of the applied 
geometrical imperfection is identical as described in section 
3.2 of this work. 

3.3.1. Plate with a circular hole 

The effect of plasticity is visible in Fig. 17a, where the 
relationship between the horizontal displacement UX (load) 
and axial force F is not linear anymore. It should be stressed 
that this effect is not caused by the loss of stability but caused 
by the plasticity of the material. As it is shown in Fig. 17d, the 
circumferential components of stress σθ

B, measured at the 
bottom, middle and top surface are almost identical. Moreover, 
these stresses are also identical for all studied thicknesses of 
the plate. It should be noted the yield stress of the plate 
material is initially exceeded at point B. The local loss of 
stability is observed in the case of plates of thicknesses t=0.5 
mm and t=1.0 mm (Fig. 17b). The value of the critical load 
UX for the plate of thickness t=0.5 mm, Table 6, is slightly 
smaller in comparison with the corresponding value obtained 

for the elastic plate (Table 5). However, in the case of the plate 
of thickness t=1.0 mm the critical value of the load is 
significantly greater. The relationships between the horizontal 
displacement UX and the stress component at point A σθ

A, 
depicted in Fig. 17c are quite different than in the case of 
elastic analysis. The moment, when the plasticity effects start 
to be active is visible in Fig. 17c. Moreover, when the loss of 
stability occurs, the shape of the curves, which describe the 
stresses measured at the bottom, middle, and top surface of the 
plate, are also quite different. Above, the curves, which 
describe the stresses measured at the bottom and top surface of 
the plate, are almost symmetrical with respect to the curve, 
which represents the stresses at the middle surface. Now, when 
the loss of stability occurs, all stresses increase. It is worth 
noting that the plasticity is also active in this case for the plate 
of thickness t=1.0 mm and t=1.5 mm. Additionally, the 
distribution of the plastic strain equivalent at the moment, 
when the loss of stability occurs is shown in Fig. 18. In the 
case of the plate with thickness t=0.5 mm the plastic strains do 
not occur throughout the whole plate. They are localized in the 
vicinity of point B. However, in the case of the plate of 
thickness t=1.0 mm, the plastic strains include the whole width 
of the investigated structure. It should be explained, why for 
the plate of thickness t=1.5 mm the loss of stability does not 
occur. The stress magnitude at point A is reduced by the 
plasticity effects below the level, where the loss of stability is 
possible. The magnitude of stresses, which are presented in 
Table 5 for the plate of thickness t=1.5 mm is very high. It is 
not possible to obtain this level of stress when the plasticity of 
the material is taken into account. The transverse 
displacements UZ obtained for the final value of the load UX 
are presented in Fig. 19. For the plates, where the loss of 
stability occurs, the magnitude of transverse displacement UZ 
is similar as in the case of elastic analysis. 

(a) 

 

(b) 
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(c) 

 

(d) 

 
Fig. 17 Relationships between horizontal displacement (load) UX 

and: (a) axial force F; (b) transverse displacement UZ; (c) 
circumferential stress component σθA at point A; (d) circumferential 

stress component σθB at point B. Results for plates with circular 
holes. 

 

  

(a) (b) 
Fig. 18 The distribution of equivalent of plastic strains for plate with 

circular hole with thickness: (a) t = 0.5 mm; (b) t = 1.0 mm. 

 

  

(a) (b) 

 
(c) 

Fig. 19 The final shape of plate with circular hole with thickness: (a) 
t = 0.5 mm; (b) t = 0.5 mm; (c) t = 1.5 mm 

 

3.3.2. Plate with vertically oriented elliptical cutout 

In the case of the plates with vertically oriented elliptic cut-
outs, the relationships between the horizontal displacement 
UX and axial force F as well as the horizontal dis-placement 
UX and the circumferential stress component σθ

B at point B 
are qualitatively identical as presented above. Thus they are 
not shown and discussed here. As it is depicted in Fig. 20a, for 
all studied structures the loss of stability is present. In the case 
of the plate of thickness t=0.5 mm the obtained critical 
parameters, collected in Table 6 are very similar to those, 
which are in the corresponding Table 5. For this case, when 
the loss of stability occurs, the plastic strains are almost 
absent. The plastic strains are observed in the close vicinity of 
point B as is shown in Fig. 21. However, for the rest of the 
investigated structures, the loss of stability is observed for the 
significantly greater value of the load (horizontal displacement 
UX). Moreover, for the rest structures, when the loss of 
stability occurs, the size of the plastic zones increases and 
includes the whole width of the plate. The plasticity effects 
decrease the absolute value of the critical stresses σθ

A at point 
A. The greatest reduction is observed for the plate of thickness 
t=1.5 mm. The stresses σθ

B at point B are dramatically lower 
because of the plastic hardening. The shape of the curves 
describing the circumferential stress components σθ

A at the 
bottom, middle, and top surfaces, Fig. 20b, have a similar 
character as in the case of the plates with a circular hole. In all 
cases the curves after the loss of stability increase. The 
magnitude of the final transverse displacement UZ, presented 
in Fig. 22, is similar to those, which are presented in Fig. 14 
except the plate of thickness t=1.5 mm. 

(a) 
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(b) 

 
Fig. 20 Relationships between horizontal displacement UX and: (a) 

transverse displacement UZ; (b) circumferential stress component σθA 
at point A for plates with vertically oriented elliptic cutouts. 

 
In this case, the value of the maximal transverse displacement 
UZ is about two times smaller. Additionally, in the case of the 
plate of thickness t=0.5 mm the shape of deflection is 
asymmetric, namely the left edge of the cutout displaces in the 
opposite direction in comparison with the right edge. 

  

(a) (b) 

 
(c) 

Fig. 21 The distribution of equivalent of plastic strains for plate with 
vertically oriented elliptic cutout: (a) t = 0.5[mm]; (b) t = 1.0[mm]; 

(c) t = 1.5[mm]. 
 
 

 

 

(a) (b) 

 
(c) 

Fig. 22 The final shape of plate with vertically oriented elliptic 
cutout: (a) t = 0.5[mm]; (b) t = 1.0[mm]; (c) t = 1.5[mm]. 
 
3.3.3. Plate with horizontally oriented elliptical cutout 

Taking under consideration the same reasons as in the case of 
the plates with vertically oriented elliptic cutouts, the plots 
representing the relationships between the horizontal 
displacement UX and the axial force F and the horizontal 
displacement UX and the circumferential stress components 
σθ

B are not presented here. As is presented earlier the loss of 
stability is not observed in any case of the plates with 
horizontally oriented cutouts when the plasticity effects are 
excluded. However, now the loss of stability occurs only for 
the plate of thickness t=0.5 mm, which is depicted in Fig. 23a. 
In this case, the circumferential stress components σθ

A, 
measured at the bottom, middle, and top surface of the plate 
split into three curves, Fig. 23b. The character of these curves 
is similar to those, which are presented in previous 
subsections. However now, the stress component σθ

A at the 
bottom surface is significantly limited by the plasticity effect. 
The plasticity zones, presented in Fig. 24, are very large and 
include the whole width of the plate. The loss of stability 
occurs with a relatively small value of the critical 
circumferential stress components σθ

A,B at points A and B, 
Table 6. It is worth stressing here that the maximal value of the 
transverse displacement UZ, shown in Fig. 25, is relatively 
small in comparison with those, which are presented above. 
This effect can be caused by the fact that the left and the right 
edges are located very close to the grips of the tension 
machine. The stiffness of the plate in these zones is 
significantly higher in comparison with the rest of the plate. It 
hinders the transverse deflection of the edge of the cut-out. 
Thus it can be assumed that if the investigated plate was longer 
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in the horizontal direction, the loss of stability would occur in 
any case of thickness. 

  

(a) (b) 
Fig. 23 Relationships between horizontal displacement UX and: (a) 

transverse displacement UZ; (b) circumferential stress component σθA 
at point A for plates with horizontally oriented elliptic cutouts. 

 

 
Fig. 24 The distribution of equivalent plastic strains for the plate with 

horizontally oriented elliptic cutout with thickness t = 0.5 [mm]. 
 

  

(a) (b) 

 
(c) 

Fig. 25 The final shape of plate with horizontally oriented elliptic 
cutout: (a) t = 0.5 mm; (b) t = 1.0 mm; (c) t = 1.5 mm. 

 
 

 
Table 6. Results of simulations. The plasticity of the material 
is taken into account. 

Thickness  

t [mm] 

UX  

[mm]* 

Axial force  

F [kN] 

σθ
A  

[MPa] 

σθ
B  

[MPa] 

Circular hole 
0.5 0.231 4.132 -28.745 90.347 
1.0 2.726 11.680 -75.976 167.880 
1.5 The loss of stability is not observed  

Vertically oriented elliptical cutout 
0.5 0.099 1.484 -13.077 89.290 
1.0 1.540 7.582 -40.209 172.195 
1.5 5.271 15.709 -81.276 288.961 

Horizontally oriented elliptical cutout 
0.5 1.935 6.503 -48.127 128.555 
1.0 The loss of stability is not observed 
1.5 

*UX - critical value of horizontal displacement for which the loss of 
stability occurs. 
 

3.4. Imperfection 

As it is mentioned above the shape of the geometrical 
imperfection is identical to the shape of the first mode 
obtained from buckling analysis. It is well known that this 
shape of the imperfection the most significantly reduces the 
resistance on the loss of stability of a thin-walled structure. 
Moreover, in the reality, the shape of the geometrical 
imperfections may be unrestricted. Thus, it is assumed now 
that the analysis of the impact of the imperfections on the 
critical parameters is limited only to the mentioned above 
shape. The numerical simulations are performed for the several 
values of maximal magnitude f of geometrical imperfections. 
The maximum of this value is localized at point A, see Figures 
3 and 6. All computations are carried out for the plate with a 
circular hole with diameter d=100 mm and thickness t=1.0 
mm. The plasticity effects are taken into account. The rest of 
the simulation parameters are the same as those used before. 
The obtained results are depicted in Figure 26 and the 
estimated critical parameters are collected presented in Table 
7. As before, the relationship between the horizontal 
displacement UX and the axial force F is shown in Fig. 26a. It 
is worth noting that the applied shape of geometrical 
imperfection has no impact on this dependency. Independently 
on the magnitude of the imperfection amplitude f the all 
obtained curves overlap. 
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Fig. 26 Relationships between horizontal displacement (load) UX 

and: (a) axial force F; (b) transverse displacement UZ; (c) 
circumferential stress component σθA at point A; (d) circumferential 

stress component σθB at point B. Results for plates with circular 
holes. 

The same behavior can be observed in the case of the 
circumferential stress component σθ

B at point B, Figure 26d. 
As before, all curves overlap each other. However, the 
significant influence of the magnitude of geometrical 
imperfection f is observed in the case of the relationship 
between the transverse displacement UZ (controlled at point 
A) and the horizontal displacement UX. As it can be observed 
in Figure 26b, together with increasing the magnitude of 
imperfection f, the obtained curves become more smooth. For 
the magnitude of the imperfection f greater than f > 0.5[mm] 
the classical loss of stability could not be observed. The value 
of critical horizontal displacement UX, as well as, the absolute 
value of circumferential stress components σθ

A and the 
corresponding value of σθ

B also decreases (Table 7). Initially, 
for the relatively small values of the imperfection f, the 
reduction of the values of critical parameters is not very 
significant. However, together with increasing of the 
imperfection f this impact is more severe. This effect is also 
clearly visible in Figure 26c, especially for the stress 
component σθ

A, controlled at the top surface of the 
investigated plate. 
 
Table 7. Critical parameters as a function of magnitude of 
geometrical imperfection. Results for plate with circular hole. 
 

Imperfection  

f [mm] 

UX 

 [mm]* 

Axial force  

F [kN] 

σθ
A  

[MPa] 

σθ
B  

[MPa] 

0.001 3.055 11.982 -80.338 175.027 
0.005 2.726 11.680 -75.976 167.880 
0.010 2.536 11.502 -73.240 163.665 
0.050 1.927 10.907 -62.983 149.421 
0.100 1.507 10.463 -55.000 138.705 
0.500 0.206 7.756 -22.827 88.929 

*UX - critical value of horizontal displacement for which the loss of 
stability occurs. 

IV. CONCLUSIONS 

At the very beginning of the work, the linear buckling analysis 
is performed in order to estimate the appropriate size of the 
cutouts for further nonlinear analysis. It is assumed that for this 
size of the hole the circumferential stress components σθ

A,B are 
comparable with the magnitude of the yield stress of the 
material of the plate. It occurs that this assumption satisfies the 
circular hole of diameter d=100 mm and corresponding 
vertically and horizontally oriented ellipses of the semi-axis 
length a=75 mm and b=133.333 mm. If the load is applied by 
the uniform axial displacement applied on every point, which 
is located on the vertical edge of the plate (Fig. 4) thus the 
deformation pattern is quite different in comparison with the 
situation when the load is controlled by the axial pressure on 
the same edge. In the first case, the global stiffness of the 
structure is greater in comparison with the second case. 
Therefore the significant increase in the value of the axial 
reaction in the case of load controlled by displacement (Table 
2, 3 and 5,6) is observed. The lowest critical value of the load 
is obtained in the case of the vertically oriented elliptic 
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cutouts. In the case of the geometrically nonlinear analysis, the 
loss of stability is observed for all plates with circular and 
vertically oriented elliptic cutouts. Moreover, the new criterion 
of the loss of stability is introduced. This criterion is based on 
the minimum of the circumferential stress component, which is 
measured on the bottom or the top of the plate surface.  
The critical parameters, which are identified with the use of 
the mentioned criterion, Table 5, are comparable with those, 
which are obtained from linear buckling analysis, Table 3. The 
observed discrepancies may be caused by the fact, that in the 
case of linear analysis the geometrical nonlinearities are not 
included.  
The local character of the observed loss of stability is 
confirmed by relationships between the horizontal 
displacement UX and the axial force F or the horizontal dis-
placement UX and the circumferential component of stress 
σθ

B, measured at point B, regardless of whether the plasticity 
effects are taken into account or not. Generally, the registered 
stress values significantly exceed the yield stress of the 
material of the plates. Thus the plasticity effects have to be 
taken into account. If the plasticity effects are not significant, 
the obtained values are comparable with those which are 
provided by an analysis conducted in the elastic range only. It 
is observed for plates of thickness t=0.5 mm with circular and 
vertically oriented cutouts. However, for the other studied 
structures, the plasticity effects dominate. It causes that the 
critical value of the horizontal displacement UX is greater in 
comparison with the values obtained from the nonlinear elastic 
analysis. Because of that, the loss of stability is not observed 
for the thickest plate with the circular hole. However, the 
introduction of the plasticity effects may also cause an 
opposite result. As an example, here can be quoted the case of 
the thinnest plate with horizontally oriented elliptic cutout, 
where the loss of stability occurs when the plasticity is taken 
into account. Besides, the presence of the plasticity effects 
radically decreases the critical axial force. However, this effect 
is not directly connected with the loss of stability.  
It is worth noting that the character of the curves, which 
represent the relationships between the horizontal 
displacement UX and the circumferential stress components 
σθ

A are quite different in comparison with those which are 
obtained when the plasticity effects are not taken into account.  
Finally, the geometrical imperfections have no impact on the 
global stability of the investigated structure. They significantly 
affect the value of the critical horizontal dis-placement UX. If 
the magnitude of imperfection increases, the critical value of 
the dis-placement UX will decrease. 
It is worth stressing here that the local loss of stability is the 
most probable in reality (where the plasticity effects are 
naturally present) for the thinnest plate with the vertically 
oriented elliptical hole. On the contrary to this case, the most 
persistent against local buckling is the thicker plate with the 
horizontally oriented elliptical cut-out. The decisive impact on 
the appearing local loss of stability possesses the radius of the 
curvature of the hole. For the increasing radius of curvature, 
the probability of the loss of stability also increases. Finally, 
the recommendation for experimental studies is as follows: the 
ratio between the longer axis length of the ellipse to the edge 

length of the plate about 0.67, the ratio of the axes of the 
ellipse about 0.56, and the ratio of the plate thickness to its 
length 0.0025.    
The local loss of stability of the uniformly stretched plates 
with cutouts is investigated in the paper. The numerical 
analyses were performed for several cases such as: 
1. linear buckling with loading controlled by tension stresses,  
2. Linear buckling with loading controlled by displacements, 
3. Non-linear buckling and post-buckling analysis,  
4. Non-linear analysis with plasticity,  
5. Non-linear analysis with plasticity and imperfection.  
Summarizing, the obtained results of the above-mentioned 
studies justify the following conclusions: 
1. The tension buckling may occur in metallic thin plates with 
cut-outs subjected only to tensile loads. 
2. The method how the tension load is applied to the plate 
(controlled by pressure or displacement) has a significant 
influence on tension buckling behavior. 
3. In the case of the linear buckling, the higher critical axial 
forces were achieved for displacement controlled load. 
4. The loss of stability is more probable for plates with a 
higher ratio of hole diameter to the width of the plate. 
5. The applied two different theoretical solutions significantly 
differ from each other and FEM results. 
6. The numerical analyses of tension buckling require the 
application of the elastic-plastic material behavior. 
7. The new criterion of the loss of stability is introduced for 
the plate with cut-outs. This criterion is based on the minimum 
of the circumferential stress component, which is measured on 
the bottom or the top of the plate surface. 
8. The largest risk of tension buckling was observed for 
vertically oriented elliptic cut-out, which agrees with 
experimental observations for tensile tests of steel plates (such 
effect was more visible in the plate with a rectangular hole 
than circular one),  
9. The dimensions of the cut-outs for the further experimental 
study were determined. 
Finally, it should be stressed here that our study is limited to 
the isotropic materials, for which the available different 
models of the material behavior after exceeding the yield 
point. This is rather very difficult in the case of composite 
materials, where the progressive failure needs to be modeled. 
Moreover, this kind of analysis can be also performed for the 
other shapes of the cut-outs. As is mentioned in the 
introduction, in the next future we are going to perform 
experimental tests with the use of the DIC in order to confirm 
the obtained numerical results. 
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