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Abstract—This paper contains numerical methods and 

approaches used in the solution of plane beams and frames and 3D 
structures on an elastic foundation. In the first case, the solution uses 
beam element BEAM54 in the program ANSYS and the derivation of 
the stiffness matrix for this element is presented. The second 
approach uses a beam element in a combination with a contact 
element with the description of the derivative of the stiffness matrix 
applied for the frame on elastic foundation. Both solutions are 
compared with theoretical solution. The influence of the number of 
divisions for the beam element on the accuracy of the solution is 
shown. There are also presented some other application of structures 
on elastic foundation (biomechanics & traumatology – external 
fixators for treatment of complicated bone fractures, mining industry 
- pressure distributions in the contact between mining supports and 
foot-wall, rack-railway and drop-in test as a problem of 3D body on 
elastic foundation). 
 

I. INTRODUCTION 
OLUTION of frames and beams on elastic foundation often 
occur in many practical cases for example, solution of 

building frames and constructions, buried gas pipeline systems 
and in design of railway tracks for railway transport, etc., see 
Fig.1. 

 
Fig. 1 Example of a beam resting on an elastic foundation. This beam 

is loaded by force F, couple M and distributed loading q. 
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Solution of beam on elastic foundation is a statically 
indeterminate problem of mechanics. In this case, we have the 
beam with elastic foundation along the whole length and width 
or only over some part of the length or width. Detailed 
explanation of theoretical solution can be found in [2], [3] [4] 
and [10]. Not all problems can be solved by theoretical 
approach (i.e. sometimes, the theoretical solution is very 
complicated). In solution of these complicated problems, the 
Finite Elements Method (FEM) can be applied. In this paper, 
FEM is applied for the solution of 2D and 3D beams, frames 
structures on elastic Winkler's foundation including theory and 
practice. 

II. THEORETICAL BACKGROUND FOR 2D BEAM ON ELASTIC 
FOUNDATION 

The Winkler's foundation model is easy to formulate using 
energy concepts. The analysis of bending of beams on an 
elastic foundation (Winkler's model) is developed on the 
assumption that: 

•  The strains are small. 
•  The resisting pressure 2

Rp / Nm /K v −=  in the foundation 
are proportional at every point to the deflection v = v(x) /m/ 
normal to its surface at that point. Displacement and resting 
pressure etc. can be expressed as functions of variable 

//mx . The parameter ( ) //Nm 3−= xKK  is the modulus of 
the foundation. 

•  The surrounding foundation is utterly unaffected, see 
Fig.2a. 

 
Fig. 2 Deflection of structure on elastic foundation under  

pressure p or distributed loading q,  
(a) Winkler foundation, (b) elastic solid foundation 

•  The general problem of the beam on elastic foundation 
(Winkler's theory) is described by ordinary differential 
equation. In the most situations, the influences of normal 
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force, shear force, distributed moment and temperature can 
be neglected (or the beam is not exposed to them). Hence 

EI
v

EJ
k

dx
vd q
4

4

=+ , (1) 

where ( ) //Nm 2−= xkk  is the foundation stiffness and 
EI  /Nm2/ is the bending stiffness. 

An area dA  /m2/ of the foundation surface acts like a linear 
spring of stiffness k . Hence 

Rp / /k dA v K v dA v K dA= = = . (2) 

According to the theory of elasticity, the strain energy 
RU  /N/ in a linear spring is given by eq. 

2
RU 2k v= . (3) 

III. 2D BEAM ON ELASTIC FOUNDATION (FIRST METHOD) 
Now considering a structural element, perhaps a plate 

bending element or one face of a 3D solid element, which has 
an area A  in a contact with the foundation. Lateral deflection 
of area A  normal to the foundation, is [ ]{ }v = f fN d /m/, 

where { }fd /m/ contains D.O.F. of element nodes in contact 
with foundation. Strain energy U /N/ in foundation over area is 

{ } [ ]{ }21 1
2 2

TU Kv dA= =∫ f f fd k d , (4) 

in which the Winkler's foundation stiffness matrix for the 
element is 

[ ] [ ] [ ]TK dA= ∫f f fK N N . (5) 

For example, if the problem deals with a beam on 
Winkler's foundation, [ ]fN  is identical to the shape function 

matrix [ ]N of the beam, where individual functions iN  are 

2 3

1 2 3

3 21 x xN
L L

= − + , 
2 3

2 2

2x xN x
L L

= − +  (6) 

2 3

3 2 3

3 2x xN
L L

= − , 
2 3

4 2

x xN
L L

= − + , (7) 

where  dA b dx= /m2/ and b  /m/ is the width of the beam face 
in a contact with the foundation and L /m/ is length of the 
beam. We input equations (6) and (7) into (5), and get 
foundation stiffness matrix 

[ ]

2 2

2 3 2 3

2 2

2 3 2 3

13 11 9 13
35 210 70 420

11 13
210 105 420 140

9 13 13 11
70 420 35 210

13 11
420 140 210 105

bLK bL K bLK bL K

bL K bL K bL K bL K

bLK bL K bLK bL K

bL K bL K bL K bL K

 
− 

 
 

− 
 =
 

− 
 
 
− − −  

fK
. (8) 

The stiffness matrix of beam without shear deformation can 
obtain the formal approach using equation 

[ ]   EI dx,= ∫ T
bK B B  (9) 

where B  is the strain-displacement matrix, which is defined 

for beam by 
2

2

d
dx

=
NB . 

After mathematical solution of equation (9) using equations 
(6) and (7), we obtain the stiffness matrix for beam 
considering only bending moment and transversal load at the 
nodes 

[ ]
2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

L L
L L L LEI

L LL
L L L L

− 
 − =
 − − −
 

−  

bK , (10) 

where E /Nm-2/ is modulus of elasticity. 

IV. 2D BEAM ON ELASTIC FOUNDATION (SECOND METHOD) 
The second method of solving beams and frames is by using 

beam and contact element. Mechanical contact will be 
simulated by spring element between rigid ground and beam as 
shown in the Fig. 3. 

 
Fig. 3 Beam and contact element, see [10] 

Stiffness matrix for spring element is as follows 

spring

C C
C C

− 
  =    − 
K , (11) 

where C /Nm-1/is spring stiffness. 
Global stiffness matrix for beam and spring element is 

given by combining eqn. (10) and eqn. (11), which is 
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[ ]

2 2

2 23

12 6 12 6 0
6 4 6 2 0 0
12 6 12 6 0

6 2 6 4 0 0
0 0 0 0

0 0 0 0

M M

M M

M M

M M

C L L C
L L L L

L C L CEI
L L L LL

C C
C C

+ − − 
 − 
 − − + − −

=  
− 

 −
 

−  

bcK , (12) 

where MC  /1/ is the modified stiffness of spring solved by the 
following equation 

3

M
LC C
EI

= . (13) 

V. PROGRAM IMPLEMENTATION (SECOND METHOD) 
For numerical solution we use the program environment 

ANSYS, which includes a special 2D element. This element is 
BEAM54. Properties and the characteristics of a cross-
sectional area are entered in the real constants. In Fig. 4, the 
FEM model shows the numbering of nodes and elements. 

 
Fig. 4 FE model using BEAM54, see [10] 

The theoretical solution of this model using the principle of 
FEM can be entered using the eqn. (8), eqn. (10) and boundary 
conditions. Boundary conditions are as follows: the 
displacement of all nodes in the direction of x is equal to zero. 
At point number two the force F in the y direction is applied. 
Theoretical solution written in matrix form is as follows 

1 1 1 2 1 3 1 4 1

1 2 2 2 1 4 2 4 1

1 3 1 4 1 1 1 3 1 4 2

1 4 2 4 2 2 1 4 2 4 2

1 3 1 4 1 1 1 2 3

1 4 2 4 1 2 2 2 3

K K K K 0 0 0
K K K K 0 0 0
K K 2K 0 K K F
K K 0 2K K K 0

0 0 K K K K 0
0 0 K K K K 0

, , , ,

, , , ,

, , , , ,

, , , , ,

, , , ,

, , , ,

v

v

v

θ

θ

θ

     
     −     
     − −  =     −    
    − −
    

−      








, (14) 

where 

1 1 3

12 13bLK
35L,

EI K
= + ,  

2

1 2 2

6 11bLK
210L,

EI K
= + , 

1 3 3

12 9bLK
70L,

EI K
= − + ,  

2

1 4 2

6 13bLK
420L,

EI K
= − , 

3

2 2
4 bLK
L 105,
EI K

= + ,  
3

2 4
2 bLK
L 140,
EI K

= −  and  
b
kK = . 

VI. VERIFICATION OF NUMERICAL SOLUTION 
According to the foregoing chapters, let us consider the 

beam on elastic foundation shown in Fig. 5, where the length 

of one-half of beam is L =1.8 m. Beam is made of steel, which 
has the Young's modulus 52x10  MPaE =  with rectangular 
cross-section area by parameters 200 mmb =  and 

400 mmh = , see Fig. 4, and foundation modulus 
K = 108 Nm-3. 

 
Fig. 5 Beam on elastic foundation (solved example) 

There are two approaches for the numerical solution of this 
beam. The first approach is using the BEAM54 element in 
ANSYS sw, see reference [5]. This approach can be used 
when the foundation is without compression resistance. 

If we consider compression resistance, we have to apply 
the approach using the contact element, for example 
CONTACT52, where compression resistance is prescribed by 
a gap. In our example, the gap is equal to zero. Because the 
program ANSYS contains beam elements with shear 
deformation, only BEAM54 is without shear deformation. For 
verification of mechanical contact, the element BEAM54 was 
considered and stiffness of elastic foundation is equal to zero. 

Of course the accuracy of the result for FEM is influenced 
by the number of elements over the length of beam. The 
verification examples used only one element over the length of 
beam L. Influences of the number of divisions in both 
approaches are illustrated in the Fig. 6 (deflection) and Fig. 7 
(bending moment). 

 
Fig. 6 The influence of number of element divisions along the length 

L on the minimum and maximum deflection, see [10] 
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Fig. 7 The influence of the number of elements division  

along the length L on the bending moment, see [10] 

The theoretical solution of beam on elastic foundation in 
Fig. 4. is described in details in reference [2, chapter 9] or [8]. 
From the given parameters theoretical solution is following: 
the maximum deflection of beam is 0.00145526 m at the 
distance x = 0 m, minimum deflection is 0.00128961 m at the 
distance x = L, maximum bending moment is 
Mo(x = 0 m) = 44045.7 Nm and minimum bending moment is 
Mo(x = L = 1.8 m) = 0 Nm. Maximum shear (transversal) 
force is T(x = 0 m) = -50000 N. Minimum shear force is 
T(x = L = 1.8 m) = 0 N. 

VII. APPLICATIONS OF 2D STRUCTURES ON ELASTIC 
FOUNDATION – SPECIAL CASES 

In Fig. 8, see [3], [4] and [17], there is solved beam of 
length //mL  with free ends. The beam is exposed to one 
vertical force //NF . Modulus of the foundation is given by 
linear function ( ) xKKxK 10 += . 

 
Fig. 8 Solved beam on elastic variable foundation 

The approximate solution ( )xvv =  can be found in the form 
of polynomial function of 6th order. Hence, the approximate 
results (i.e. functions of displacement v , slope, bending 
moment and shear force of the beam) can be derived. 

This example is solved via probabilistic approach by 
Simulation-Based Reliability Assessment (SBRA) Method 
(stochastic mechanics, direct Monte Carlo approach, i.e. all 
inputs are given by bounded histograms, AntHill software, for 
example see Fig. 9) which is the modern and new trend of the 
solution in mechanics, see [3], [4], [9], [11], [12], [16] and 
[17]. 

 
Fig. 9 Histogram of input parameter N2.157324F

1.168773

2.75524

+

−
=  

Results parameters (i.e. stiffness of the foundation ( )xk , 
see Fig. 10, displacement ( )xv , maximal bending stress 

MAXσ , see Fig. 11, factor of safety MAXe σ−= RFS  etc.) were 

calculated for 6105 ×  Monte Carlo simulations. 

 
Fig. 10 2D histogram and its sections for output parameter k(x) /Pa/ 
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Fig. 11 2D histogram and its section for output parameter σ(x) /MPa/ 

Some main results of stochastic quantity are plotted by 
histogram in Fig. 12 (distribution of yield stress Re versus 
maximum stress MAXσ ). Hence, the probability that the plastic 
deformations occurs in the beam is 0.094%. For more 
information see [3] and [17]. 

 
Fig. 12 2D histogram of output parameters (calculation of SF  - 

probabilistic reliability assessment) 

For more applications, examples and information, see [2], 
[3], [4], [10], [12], [16] and [17]. 

VIII. APPLICATION OF 3D STRUCTURES ON ELASTIC 
FOUNDATION – SPECIAL CASES 

There are a lot of applications of 3D structures rested on 
elastic foundation, for example see references [2], [3], [4], [8] 
and [10]: 

•  Applications in biomechanics & traumatology (i.e. FE 
solutions and design of new external fixators for treatment 
of complicated fractures of pelvis and its acetabulum), see 
Fig. 13, 14, 15 and references [6], [7], [14] and [15]. 

 

 
Fig. 13 Fracture of pelvis (a) anteroposterior radiograph - transverse 

with posterior wall acetabular fracture, (b) application of external 
fixator for treatment - two designs “Option 1” and “Option 2” 

 
Fig. 14 External fixator for treatment of pelvis and its acetabulum - 
FE model, boundary conditions (A, B is applied elastic foundation, 

Ansys sw) 
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Fig. 15 “Option 2” – Finite Element  modelling of the external fixator 

for treatment of pelvis and its acetabulum (equivalent von Mises 
stresses /MPa/ for tensile loading 100 N) 

•  Applications in mining (i.e. FE solutions for pressure 
distributions in the mechanical contact between mining 
supports and foot-wall as a problem of 3D body on elastic 
foundation), see Fig. 16 to 20 and references [4], [10] and 
[16]. 

 
Fig. 16 Mechanical contact between mining supports and foot-wall 

approximated via elastic foundation 

 
Fig. 17 Mechanical contact between mining supports and foot-wall 

approximated via elastic foundation (total displacement, 
MSC.MARC/MENTAT sw) 

 
Fig. 18 Rack-railway track in mines 

 
Fig. 19 Problem - Rack-railway track in mines 

 
Fig. 20 Stresses in the rails and anchor pins of rack-railway track in 

mines (ANSYS sw) 

• Other applications, see references [2], [3], [4], [8] to [11] 
and for example Fig. 21. 
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Fig. 21 Calculations of dynamic forces in the foundations of a 

massive drop-tester during impact tests (3D body on elastic 
foundation, MSC.MARC/MENTAT sw) 

IX. CONCLUSION 
General solutions of FEM applications (theory and practice) 

for the plane beam structures on elastic (Winkler's) 
foundations were derived, tested and discussed (two ways). 
The authors put emphasis on derivation of matrices used in 
FEM. 

Other own examples (reports), such as applications in 
mining and biomechanics, dynamics, drop-in tester etc. and 
references are mentioned. 
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