
 

 

  
Abstract—A multibody dynamic model of the main mechanical 
components of a hermetic reciprocating compressor is presented in 
this work. The dynamics of the mechanical components are described 
with help of Dynamics of Multibody Systems (rigid components) and 
Finite Element Method (flexible components). Some of the 
mechanical elements are supported by fluid film bearings where the 
hydrodynamics interaction forces are described by the modified 
Reynolds equation. The system of nonlinear equations is numerically 
solved, taking into account the lateral and tilting vibration of the 
center of the crank. Particularly, in this study the main focus is on the 
lubrication behavior of the upper and lower bearings of the 
crankshaft, considering hydrodynamic lubrication conditions. The 
behavior of the orbits and the pressure distribution in the journal 
bearings is presented giving some insights into design parameters, 
such as, maximal fluid film pressure, minimum fluid film thickness 
and maximum vibration levels. 
 

Keywords— Multibody dynamics, hydrodynamic lubrication, 
journal bearings, hermetic compressor.  

I. INTRODUCTION 
mall-scale hermetic reciprocating compressors are 

widely used to compress coolant gas in household 
refrigerators and air-conditioners. Almost since the 60's these 
small machines became a necessary appliance in every 
household in the industrialized countries. Since then, a lot of 
research has been done to optimize the design and to improve 
the thermal and mechanical efficiency. Hermetic reciprocating 
compressors use pistons that are driven directly through a 
slider-crank mechanism, converting the rotating movement of 
the rotor to an oscillating motion. In this type of compressors, 
motor and compressor are directly coupled on the same shaft 
and the assembly is installed inside a welded steel shell. A 
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schematic view of a hermetic reciprocating compressor used 
in household refrigerators is shown in Fig. 1. 

 

 
 

Fig. 1. Hermetic reciprocating compressor 
 
The study and optimization of the dynamic behavior of 

reciprocating compressors, taking in account the 
hydrodynamics of bearings is of significant importance for the 
development of new prototypes. The performance of the 
bearings affects key functions such as durability, noise and 
vibration of the compressor. Optimization of the behavior of 
journal bearings by means of numerical simulation may 
reduce development costs for prototype testing work 
significantly. 

Several computational models for the analysis of small 
reciprocating compressors can be found in the literature. They 
range from simple simulations including steady-state energy 
balance until more complex models of unsteady analysis of 
the heat and work transfer and thermal and fluid dynamic 
analysis. A complete literature review of previous studies with 
focus on compressor simulation models is included in [1]. 
Some of these studies require numerical simulations of the 
refrigerant flow through the valves and inside the cylinder 
during the compression cycle [2], whereas other studies focus 
mainly on the dynamics of motion in steady and transient 
conditions [3]. For instance, a study that included the coupling 
of fluid-structure dynamics to analyze the dynamics of piston 
is presented in [4]. Reference [5] shows an analytical model of 
the coupled dynamic behavior of the piston and crankshaft, 
with comparisons between a finite bearing model and a short 
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bearing approach. In the same study, a numerical procedure 
combining Newton-Raphson method and the successive over 
relaxation scheme to solve the equations was presented. In the 
study carried out by Cho and Moon [4], a time-incremental 
numerical algorithm to solve a finite differences model for the 
estimation of the oil film pressure is coupled with a finite 
element model for the computation of the structural 
deformation of the piston. 

Although most of the work done related to modeling of 
compressors is related to the thermal and fluid dynamic 
behavior, in this work the main focus and contribution are on 
the developing of a multibody dynamic model that represents 
the dynamics of the main mechanical components of hermetic 
compressors. This model is coupled with a finite element 
model of the rotor, where the hydrodynamic interaction forces 
are computed using analytical solutions of Reynolds equation. 
The elastohydrodynamic theory, which takes into account the 
bearing and housing flexibility, is not considered in this paper, 
since it is presented only in very special cases. 

  

II. MATHEMATICAL MODELING 
In this section the formulation of representative equations 

describing the mathematical simulation model for a hermetic 
compressor is developed. The motion of the piston has been 
modeled as particle, the motion of the connecting rod and 
crank as rigid bodies and the shaft is modeled as a flexible 
body via finite elements. The motion equations for the piston 
connecting-rod crank system are formulated using the 
Newton-Euler's method. Fig. 2 shows a sketch indicating the 
inertial referential frame system XYZ and the main angles of 
rotation for the moving reference frames. 
 

 
 

Fig. 2. Piston – connecting rod – crank system. Geometry and 
reference frames 

 

A. Reference Frames 
One inertial reference frame (IXYZ) and four moving 

reference frames (B1, B2, B3 and B4) have been defined. The 
reference frames B1, B2 and B3 are attached to the crank to 
describe the tilting and rotational movement of the crank and 
the reference frame B4 is attached to the connecting rod. B1 
(X1Y1Z1) is obtained by rotating I the angle β  around X axis; 

B2 (X2Y2Z2), is obtained by rotating B1 the angle Γ  around Y1 
axis; B3 (X3Y3Z3), is obtained by rotating B2 the angle θ  
around Z2 axis and B4 (X4Y4Z4), is obtained by rotating I the 
angle α  around Z axis. 

 

B. Constraint Equations 
A constraint equation that takes into account lateral 

displacements and tilting oscillations of the center of the crank 
is given in (1). A simplified sketch illustrating how the basic 
elements of the system are connected is shown in Figure 2b. 

 
CRLX IIIpI +=+  (1) 

 
where: RTTTR
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C. Kinematics 
The absolute angular velocity (ω) written with help of B3, is 

given by: 
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The velocities and accelerations of the piston ( Bx , Bx ) and 

the connecting rod (α ,α ), are obtaining when the constraint 
equation (1) is differentiated once and twice respectively, 
obtaining: 
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where, the variables 1v , 2v , 1a , 2a  are giving in appendix (A). 
 

D. Equations of Motion 
The equations of motion are formulated using Newton-

Euler's method [6]. The equations of motion for each body are 
given in Table I. 

 
The equations of motion for the multibody dynamic model 

may be written in a matrix form as in (10), where vector f  
contains the unknown variables such as: reaction forces, 
reaction moments and accelerations of the system. This matrix 
system will be coupled to the equations from the finite 
element formulation of the crankshaft, which is explained later 
in section IV. 

 
cfA =⋅     (10) 
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TABLE I 

EQUATIONS OF MOTION 
Body Force Equation Moment Equation 
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where: 
 

{ }T
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αθ=f  
and 1q , 2q , 3q , 4q , correspond to the angular accelerations of 
the crank center. 

 

A. Modeling of the Rotor 
The main rotor-shaft of the compressor, which drives the 

crank-connecting rod-piston system, is modeled as a flexible 
body via finite elements method [7]. The global equation of 
motion described in the inertial reference frame is given by: 

 

f

qKqDFqM ... −−=  (11) 

where F , is the vector that includes the external forces on the 
rotor such as: preload forces, rotor unbalance forces and the 
fluid film bearing forces. 

 

III. FLUID FILM FORCES 
The main geometrical relations of a journal bearing are 

shown in Fig. 3. The governing equation for the pressure 
distribution of the oil film in dynamically loaded journal 
bearings may be obtained from the general formulation of 
Reynolds’ equation [8]. The modified Reynolds equation for 
dynamically loaded journal bearings is given by (12), where, 

φ  is the rotational speed of the journal center about the 
bearing center and ε  is the relative eccentricity. The fluid film 
thickness may be calculated using: )cos1( ϕε+= bb ch , where 

ϕ  is the angle measured from the location of the maximum 
film thickness. 
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Fig. 3. Journal bearing geometry 

 
With dynamically loaded bearings the eccentricity and 

attitude angle will vary through the loading cycle. The 
pressure generated when a journal bearing is dynamically 
loaded can be determined if the normal squeeze velocity (ε ) 
and the rotational velocities ( Ω ,φ ) are known at any 
eccentricity ratio. Complete solutions of (12) may be obtained 
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numerically, and solutions for limited cases may be also 
obtained analytically. In this work analytical solutions for the 
short-width bearing and infinitely-long-width bearing theories 
have been used. The short-journal-bearing theory assumes that 
the variation of pressure is more significant in the axial 
direction than in the circumferential direction and therefore 
the first term in (12) can be neglected. In contrast, for an 
infinitely long-width-journal-bearing, the pressure in the axial 
direction is assumed to be constant, therefore, in this case, the 
side-leakage term, i.e., the second term in (12), can be 
neglected. For each one of these two particular cases, the fluid 
film pressure distribution can be easily computed, analytically 
integrating the Reynolds equation and similarly, the journal 
bearing forces in ξ ,η  coordinates can be calculated, 
integrating the pressure distribution analytically obtained. If 
the pressure is integrated over all the fluid film around the 
bearing (i.e, πϕ 20 ≤≤ ), this solution is known as a full 
Sommerfeld solution. However, if the analysis is limited to the 
convergent film (i.e., πϕ ≤≤0 ), this is known as a half 
Sommerfeld solution. The analytical expressions used in this 
paper for the computation of the radial and transversal fluid 
film forces (Fξ, Fη), for a long and a short journal bearing, are 
giving in [9].  

 

IV. NUMERICAL SOLUTION 
The equation of motions for each connected body of the 

multibody system together with the FEM model of the shaft 
and the analytical expressions for the fluid film forces yield to 
a system of high complexity and non-linearity. The numerical 
algorithm implemented is shown in Fig. 4. Considering that 
the system has a "stiff" behavior because of the combination 
of a rigid body model with a finite element model, a Newmark 
implicit method combined with a predictor-corrector approach 
[10], is used in this work. The simulation procedure is 
summarized in the following main steps: 

 
Input data and starting values. In this part the geometrical 

and physical parameters must be given, such as, physical 
dimensions, rotational speed, masses, inertias, preloads, initial 
displacements and initial velocities. 

 
Pre-processing. This part includes the generation of 

structural matrices for the multibody model (MBD module) 
and the matrices of the flexible rotor (FEM module). Based 
on the initial conditions, initial fluid film forces are computed 
using the FFF module. 

 
Numerical computation. This part includes the coupling of 

matrices, the computation of the journal bearing forces at each 
time step and the numerical solution of the global system. At 
each time step, new fluid film forces are computed and 
included in the global matrix system (13) where the 
equilibrium has to be achieved. In (13), the matrix M̂  is 

formed by the matrix M  of size ndofndof × , coupled to the 
matrix A of size 1616×  in the degrees of freedom related to 
the linear and angular accelerations of the crank center node 
( 1q , 2q , 3q , 4q ). Thus, the final size of the global mass matrix 

( M̂ ) is 12+ndof . Similarly, in (13) the global right hand side 
vector, Q̂ , is formed by coupling the resultant right hand side 
vector, f , in (11), to the vector c , in (10). The iterative 
equations to solve the global system (13), by using the 
Newmark implicit method, are given by (14)-(16). 
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Fig. 4. Flowchart of the numerical computer code 
 
 

To compute
1+it

q , the load vector 
1

ˆ
+it

Q  must be estimated 

previously, which implies to calculate the vector of journal 
bearing forces 

1+itb Q , which depends on the positions and 

velocities at the time 1+it . Therefore, initial values for 0
1+it

q and 
0

1+it
q  are predicted by using the Heun's explicit method. Then, 

1
1+it

q  can be initially estimated by using (14) and then, 1
1+it

q and 
1

1+it
q can be calculated using (15) and (16) respectively. With 

these new estimated values, the journal bearing forces are 
updated and using again (14) a new estimation of 2

1+it
q can be 

obtained, and so on until the difference of two consecutive 
values is smaller than the prescribed tolerance given. 
Additionally, by using the explicit Euler method, the crank 
angle 

it
θ  and the instantaneous angular velocity

it
θ  are 

estimated at each time step. 
 
Post-processing. This part includes the generation of plots 

of journal bearing orbits, journal bearing forces, maximum oil 
film pressure, minimum fluid film thickness and reaction 
forces as a function of the instantaneous crank angle. 

 

V. NUMERICAL RESULTS 
The main geometrical dimensions and physical properties 

of the reciprocating compressor used for the numerical 
simulations are given in Table II. The curve of gas pressure 
(Pg) as function of the crank angle, used for the simulations in 
this work, is giving in [4] and is shown in Fig. 5. An 
experimental curve of motor torque for a typical motor of a 
hermetic compressor is taken from [1] and shown in Fig. 6. 

The following results were obtained, using a computer code 
implemented according to the flow chart of Fig. 4 and using a 
time step of 61 −=Δ et s to warranty the convergence of the 
solution.  

 
TABLE II.  

MAIN GEOMETRICAL AND PHYSICAL PARAMETERS 
Radius crank-pin center rc = 7.5 mm 

Radius of bearings rb = 8 mm 
Width of bearings lb = 6 mm 
Journal clearance cb = 15 μm 

Length of crank pin hp = 10 mm 
Distance between 

bearings 
L = 80 mm 

Moments of inertia of 
motor-rotor 

Ix, Iy = 0.4x10-3 kg.m2,  
Iz = 0.1x10-2 kg.m2 

Diameter of piston Dp = 23 mm (Ap = 415.5 mm2) 
Mass of the piston mp = 0.043 kg 
Lubricant viscosity μ = 0.005 Pa.s 
Angular velocity Ω = 312 rad/s (2980 rpm) 
Crank unbalance mub = 0.05 kg, rub = 5 mm 
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Figure 5. Curve of the gas pressure (Pg) as a function of the 

crankshaft angle 
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Fig. 6. Curve of the motor torque (Tm)  as a function of the angular 

velocity. 
 
Fig. 7 shows the journal bearing forces for the upper and 
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lower bearing. It can be observed from this figure that the 
maximum forces are found when the piston is close to the top 
dead center (i.e., when the pressure inside the cylinder is 
maximal). It can be also noticed a transient oscillation, 
damped a few cycles, and which is more evident for the lower 
bearing due to the lower values of the bearing forces. 

 

 
(a) Upper bearing 

 

 
(b) Lower bearing  

 
Fig. 7. Journal bearing forces 

 
The minimum fluid film thickness is plotted in Fig. 8, 

which shows that the lowest values of oil film thickness are 
found during the compression cycle, approximately 65º before 
the piston reaches the top dead center (i.e., when 

o115≈θ , o475≈θ , o835≈θ ,…).  
The maximum pressure is shown in Fig. 9, where it can be 

seen that the highest pressure values are found in the intervals 
between the times when the minimum fluid film thickness is 
reached at each cycle and the top dead centre position 
( o180≈θ , o540≈θ , o900≈θ ,…). This plot, shows the 
maximum pressure computed for two different lengths (hp = 0 
and hp = 10mm) and it is observed a transient oscillation when 
the length of the crank pin is used, which comes from higher 
vibration modes of the flexible rotor influenced by the tilting 
oscillations of the crank. 

Fig. 10 compares the minimum film thickness using a 
length of the crank pin of hp = 10mm and hp = 0. It can be 
observed in this figure that the difference between the lowest 
values of minimum film thickness could be as high as 18% 
(e.g., at o1180≈θ ). Therefore, the length of the crank pin is a 
parameter that should be included in the calculations, 
particularly when the tilting oscillations are considered in the 
model. 

 
 

 
Fig. 8. Minimum fluid film thickness for the upper and lower bearing 

 
 
 

 
Fig. 9. Maximum fluid film pressure in upper journal bearing 

 
 
 

 
Fig. 10. Influence of the crank pin length (hp) in the computation of 

the minimum fluid film thickness 
 

Fig. 11 shows orbits of the upper bearing obtained for cases 
with different amount of unbalance of the crank. It can be seen 
in this figure that the orbit of the journal tends to be bigger 
when the amount of unbalance increases, but the stationary 
position around which the orbit is generated does not change, 
which is expected because no additional static forces have 
been added. The orbits obtained has a similar shape compared 
to orbits predicted theoretically in several studies related to the 
analysis of main journal bearings of internal combustion 
engines [11], [12]. 
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Fig. 11. Orbits of upper journal bearing, varying the amount of crank 
unbalance (mub). (a) mub= 0.05kg, (b) mub= 0.05kg, (c) mub= 0kg. 
 

VI. CONCLUSION 
In the model of the compressor developed, the lateral and 

tilting vibration of the crank have been included. Therefore 
and considering that the oil film thickness is only a few 
micrometers thick, more precise estimations of the journal 
bearing forces and minimum film thickness are obtained. The 
simulations were carried out for a short bearing, with a width 
to radius ratio equal to 0.75, therefore the use of the short 
bearing approach was preferred for this study. The maximum 
forces and the minimum fluid film thickness are obtained 
when the piston is close to the top dead centre. 

The influence of the amount of unbalance was studied and 
it was found that, although it influences the orbit of motion of 
the journal, the journal forces and the minimum film thickness 
do not change significantly. The consideration that the 
reaction forces coming from the crank pin are out of the plane 
of the centre of mass of the crank, was taking into account 
including in the equations the crank pin length. The results 
showed differences up to 20% for the minimum film thickness 
and 5% for the maximum pressure when the length of the 
crank was included in the equations, due mainly to the 
increase in the tilting oscillations of the crank. 

 

APPENDIX 
 

(A). KINEMATIC VARIABLES 
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where: θθ sin=s ;  θθ cos=c ;  αα sin=s ;  αα cos=c ;  
ββ sin=s ;  ββ cos=c ;  Γ=Γ sins ;  Γ=Γ cosc . 

 
 

(B). NOMENCLATURE 
 

Symbol Quantity Units
Ap transversal area of the piston m2 
cb radial clearance of bearing m 

Fξ,, Fη radial and transversal fluid film forces  
hb oil film thickness m 
hp length of crank pin m 
l length of the connecting rod m 
lb width of bearing m 
m mass kg 

ndof number of degrees of freedom  
Pg pressure of gas inside the cylinder Pa 

rpm revolutions per minute  
rb radio of bearing m 
rc radius crank-pin center m 
Ti transformation matrix in the i-th coordinate   
Tz motor shaft torque N.m 

Greek symbols 

Ω rotational speed of the rotor and Rpm

θ  rotational speed of the rotor rad/s

θ rotation angle of the crank rad 

α rotation angle of the connecting rod rad 

β rotation angle around X-X axis rad 

Γ rotation angle around Y-Y axis rad 

μ viscosity oil film Pa.s 

ε eccentricity ratio  

φ attitude angle rad 

ξ, η radial and transversal directions  
Subscripts 

b bearing  
Bi i-th mobile reference frame  
c crank  
cr connecting rod  
p Piston  

ub Unbalance  
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