
 

 

  
Abstract— The problem of system identification and parameters 

monitoring for a general class of non-linear systems is discussed 
together with the introduction of a new method based on Lie series 
expansion. In order to use this approach, the system features must be 
modeled by analytic or sufficiently smooth functions of the state 
variables, including the time parameter. 

The method uses the Lie differential operator representations. The 
solution obtained are expressed in the form of analytical power series 
including the system parameters. The information carried by these 
solutions is sufficiently complete and provides good estimates of the 
system parameters.  

In this paper, a mechanical system made by a reverse pendulum 
jointed to a sliding mass is studied. The identification of parameters 
of this system is the main aim of this simple application. Since the 
motion equations can be numerically solved, a comparison between 
theoretical and experimental values of parameters is performed. This 
comparison is based on the minimization of the difference between 
numerical and approximated solution, the last obtained by Lie series. 
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I. INTRODUCTION 

 
N general terms, the aim of system identification is to find 
system properties through investigations of experimental 

data records. Therefore, the choice of appropriate methods for 
system identification depends on both types of experimental 
records and the objectives of the identification. There are 
various identification tools well documented in literature, also 
concerning non-linear approaches to the identification 
problems. This is very important because  the presence of 
non-linearities essentially complicates the identification 
problems since the linear superposition principle becomes 

 
Manuscript received June 30, 2007; Revised Version received Dec.31, 2007  
1 Department of Mechanical Engineering and Faculty of Engineering, 

University of Salerno, Via Ponte don Melillo, Fisciano (SA), Italy. 
2 Department of Physics “E. Caianiello” and Faculty of Engineering, 

University of Salerno, Via Ponte don Melillo, Fisciano (SA), Italy.  
(corresponding authors: QUARTIERI J.: 0039 089 969356; e-mail: 
quartieri@unisa.it; GUARNACCIA C.: 0039 089 969356; e-mail: 
guarnaccia@sa.infn.it ).  

 

inapplicable and therefore explicit analytical solutions are 
usually unavailable. However, it should be noted that the level 
of complexity of a non-linear identification problem depends 
on the assumptions regarding the availability of information 
obtained from experimental measurements. For example, if all 
the state variables and external excitations are known, or can 
be determined from experimental measurements, then the 
differential equations of motion, rather than their solutions, 
can be used for parameters identification purposes. However, 
success of non-linear identification formulations depends 
strongly on the availability of direct methods for the solutions 
of the non-linear dynamics. 

 
 

II. LIE SERIES 
 

To illustrate the idea of Lie series, let us consider the 
standard initial value problem for a single non-linear first-
order differential equation described by: 
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where the function ( )axf ,  is assumed to be sufficiently 

smooth such that, in some neighbourhood of the initial point 
x0, and for any admissible value of the parameter(s) a, it 
possesses as many derivatives with respect to x as may be 
needed. The Taylor’s expansion of the function x(t) is 
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In order to obtain the corresponding Lie series, one should 

enforce expression (1) for calculating the coefficients of series 
(2), as follows: 
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Substituting Eq. (3) into Eq. (2), one obtains the Lie series 

solution of the initial value problem (1) in the form of local 
expansion around the initial time t = 0. Following the idea of 
Lie operators, such a solution can be represented in the form: 
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where 
 

( ) ( ) 0
0 ,

x
axfaA

∂
∂

=         (5) 

 
is a linear differential Lie operator, associated with the 

dynamical system (1). As shown by the form of the series (4), 
the initial condition coordinate x0 and the right-hand side of 
Eq. (1) determine all the coefficients of the series. 

One of the advantages of the Lie series solution is that its 
extension to a multi-dimensional (vector) case is quite simple. 
For example, let us consider the initial-value problem 
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where ( ) ( ) ( )( )t,x,txtx n…G
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are respectively the unknown vector function and initial 
vector, ( )n,a,aa …1=  is a vector of the system parameters, 

and ( )n,f,ff …
G

1=  is a vector function of the right-hand side 
whose components depend on the components of vectors xG  
and aG . In this case, the Lie series solution of the initial value 
problem (6) is represented in vector form as 
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where 
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is the Lie operator associated with the dynamical system 

(6). If 00 ≠t ; then series (7) should be modified by shifting 
the time as follows: 
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III. PROBLEM SOLUTION 
 

The motion equation of the system shown in Fig. 1 can be 
obtained  by means of  Lagrange’s equations. 
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 Fig. 1: Mechanical System 

 
 
Equations (10) can be rewritten in the following form: 
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If we put: 
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equations (11) can be written as follow: 
 

2cossin ϕϕϕϕ ����� AAz −=              (13a) 
ϕϕϕ cossin CzB −= ����                                  (13b)                                                                        

 
Substituting in (13b) z�� , the following pair of equation is 

obtained: 
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where (14b) can be re-written in explicit form: 
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Putting 21 z,z == ϕϕ � , equation (15) is transformed in 

the following first order differential system: 
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Here z1 and z2 are respectively  the angular position and the 

angular velocity of  the pendulum. They may be considered 
components of  the vector:  
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In this case the Lie operator assumes the form:  
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and vector zG  is given by: 
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or in component form by: 
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Expanding the exp operator, (20a) can be written as 

follows: 
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where: 
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and so on. 
Truncating the expansion series (21) at fourth order, the 

value of the unknown parameter m2 can be calculated by 
minimizing the error:  
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The value of m2 so obtained, resulted in good agreement 

(20a) 

(20b) 
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with the actual value of this parameter. 

IV. CONCLUSION 
 

In this paper a method by using Lie series development has 
been proposed in order to identify the parameters of a 
mechanical system composed of  a pendulum jointed to a 
sliding mass. To authors’ opinion the proposed procedure is 
very useful in non linear identification problems arising in the 
multibody systems dynamics. 
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