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Abstract: Stability of three-dimensional swept-wing boundary 
layers has been investigated in the framework of the linear theory. 
The most results were obtained for the local self-similar basic flow 
which was performed within Falkner-Scan-Cooke solution 
generalized for compressible flows. It has been established that 
computed subsonic swept-wing boundary-layer stability 
characteristics correlate well with the experiment. For the 
supersonic Mach number M=2 boundary layer computations agree 
with measurements for spanwise scales of the unstable cross-flow 
disturbances. However theoretical growth rates differ considerably 
from measured. This difference is explained by high intensity of 
the initial perturbations excited in the experiment that does not 
allow to apply linear theory. However the evolution of the natural 
disturbances of moderate amplitude is predicted well by the theory. 
It is shown that influence of the compressibility on cross-flow 
instability modes is insignificant. Also in paper the linear 
instability of three-dimensional swept-wing boundary layer was 
studied for a basic flow satisfied to full boundary layer equation. 
The results difference obtained for self-similar flows and flows 
satisfied to full boundary layer equation was not more than 15%. 
Conclusion is made that approximation of local similarity ensures 
sufficient accuracy and can be applied for simulation of stability 
experiments at supersonic speeds. 

Key-Words: compressible boundary layers, laminar-turbulent 
transition, hydrodynamic stability. 

I.   INTRODUCTION 
Transition to turbulence in a three-dimensional boundary 
layer on a swept wing has been under investigation during 
past decades due to its fundamental and practical 
importance. The review of swept wing boundary layer 
stability is presented in [1,2]. The latest results in this field 
are summarized in [3]. Nowadays it is well established, that 
such boundary layer is subjected to several mechanisms of 
hydrodynamic instability, each of which is characterized by 
its own mode and a source of excitation. Cross-flow 
instability is one of the most important types of the 
instability responsible for early transition to turbulence on a 
swept wing. Most results concerning this type of instability 
were obtained for subsonic velocities. Theoretical research 
of stability of a compressible three-dimensional boundary 
layer were started in [4, 5]. Experiments [6] have shown that 
the distribution of the mean and fluctuating characteristics in 
the boundary layer at supersonic velocities is approximately 
the same as that at subsonic speed. 
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A method of passive control of the laminar–turbulent 
transition on supersonic swept wings was found. It was 
demonstrated in experiments [7, 8] that the use of artificial 
microscale roughness periodic in the spanwise direction and 
located near the leading edge of the wing allows the 
transition to be shifted downstream. Linear stability theory 
has been used to predetermine parameters of such passive 
control process (see [7]). 

Experimental investigations of stability of three-
dimensional supersonic boundary layers have been 
performed at Khristianovich Institute of Theoretical and 
Applied Mechanics [6, 8-10]. To analyze and interpret the 
experimental data, they have to be compared with the results 
calculated by the linear theory. Such calculations are also 
necessary to plan experiments on transition control, as it was 
done in [7]. This constitutes motivation to perform 
investigations reported in this paper. 

Linear stage of cross-flow instability to steady and 
traveling low-amplitude perturbations is investigated 
theoretically. Direct quantitative comparison of theoretical 
results with experiments conducted earlier at low subsonic 
speeds [11] and in a supersonic flow [10] is presented. 

II.   LINEAR STABILITY ANALYSIS 
Considering the flow in the boundary layer on an infinite-

span swept wing model and its stability, one can reasonably 
use two commonly accepted coordinate systems (Fig.1). The 
system ( ), *s z  is fitted to the model (the origin is on the 
leading edge of the wing). The s  coordinate is directed 
along the chord over the model contour, and the  
coordinate is directed over the wing span parallel to its 
leading edge. This coordinate system is used to calculate the 
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Fig.1: Geometry of the swept wing and coordinate 

systems used: the dashed curve is the streamline; the 
secondary flow velocity is indicated by W . 
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mean flow characteristics, because its parameters are 
independent of . It is more convenient, however, to 
calculate the stability characteristics in a local coordinate 
system 

*z

( , )x z , where the x  coordinate is directed along the 
local velocity vector of the potential flow on the boundary-
layer edge. In all coordinate systems mentioned, the  axis 
is aligned normal to the model surface. 

y

Within the framework of the linear stability theory, we 
can present the flow field in a compressible boundary layer 
as a sum of the mean flow and a weak perturbation: 

  ,  (1) ( ) ( )( , , ,U x y x y z tε∞= +u U V ),

)

)

Here the mean flow velocity  is 
considered in the approximation of local parallelism, 

 are the components of the velocity 
disturbance, and 

( ) ( )(, , ,0,0x y U x y=U

( , ,u v wε ε=V
1ε <<  is a small parameter characterizing 

the disturbance amplitude. The expressions for the 
temperature T , pressure , and density P ρ  are written in a 
manner similar to (1). The equations for disturbances are 
obtained by substituting (1) into the Navier–Stokes, 
continuity and energy equations. In the present work, we 
consider a three-dimensional problem of stability, where the 
frequency is assumed to be a real quantity, while the 
streamwise wavenumber is assumed to be a complex 
quantity. An analysis of stability of the boundary-layer flow 
on a swept wing in the local parallel approximation usually 
involves the assumption that the amplitude of localized 
disturbances increases in the external flow direction x , and 
disturbances periodic in terms of  increase along the 
chord s [12]. The location of the neutral stability curves is 
independent of the direction of growth of disturbances. 
Following [12], we assume that the direction of growth of 
all disturbances coincides with the direction of the external 
flow streamline. The solution of the problem is presented as 

*z

 ( ) ( )( )
0

q ( ) exp
x

x
A x y i x dx i z i tφ α β′ ′= ∫

rr ω+ −

)

 ,  

where ( ,k α β=
r

 is the wave vector consisting of the 
streamwise α  and spanwise β  wavenumbers; 2 fω π= ; 

f  is the frequency; the sought vector φ
r

 is presented as 

 ( ), , , , Tu v w pφ θ=
r

 ,  (2) 

i.e., it consists of three components of the velocity 
disturbance, pressure disturbance, and temperature 
disturbance, whereas the disturbances of density and mass 
flow A  are expressed via the components of the vector φ

r
. 

In (2), all quantities are normalized to appropriate 
parameters of the mean flow outside the boundary layer. In 
the first approximation in terms of ε , we obtain the linear 
boundary-value problem 

 d H
dy
φ φ=
r

r
 ,  (3) 

 , ( ) ,  ( ), , , 0u v w θ = 0y = φ < ∞
r

), , (4) ( y →∞

where H  is the linear operator generalizing the Lees–Lin 
operator to the case of a three-dimensional boundary layer. 

The nonzero elements of H , taken from [1], are presented 
in the Appendix. These elements depend both on the mean 
flow properties (velocity and temperature profiles, Mach 
number , Reynolds number Re , and Prandtl number ) 
and on the wave parameters (frequency and wavenumbers). 
The homogeneous boundary conditions (4) are satisfied only 
under certain combinations of these parameters, which have 
to be found. Thus, (3-4) form an eigenvalue problem. 

M Pr

Stability of the flows under considerations was analyzed 
in the present work by means of numerical integration of 
system (3-4) by the method of orthonormalizations [13]. 
Streamwise wavenumber r i iα α= + α  was found as the 
eigenvalue of the boundary-value problem, and the 
components of the vector φ

r
 are the corresponding 

eigenfunctions. The conditions i 0α− >  and i 0α− ≤  refer 
to unstable disturbances amplifying in the downstream 
direction and to stable waves decaying with increasing x . 

In the case of weak streamwise mean flow nonparallelism 
(inhomogeneity) the parameters А and φ are also slow 
functions of streamwise coordinate х. In these cases 
parabolized stability equations (PSE) should be applied [14]. 

Mean flow in most simple cases could be obtained 
analytically, as in [15]. In more complicated flows one can 
use direct numerical simulations (DNS) [16]. 

The mean flow in a three-dimensional boundary layer on 
an infinite-span swept wing can be theoretically described in 
the approximation of the so-called local self-similarity [17]. 
Within such a model, the boundary-layer equations are 
reduced to a system of ordinary differential equations by 
introducing the Dorodnitsyn–Lees variables, depending on 
the local Mach number M  and on the streamwise pressure 
gradient of the inviscid external flow outside the boundary 
layer: 

e

e e
e e e ,U ds

e0 02

ys U
dy

ρ ρξ ρ μ
ρξ

= =∫ ∫η  , 

where  is the streamwise (along eU s ) velocity 
component outside the boundary layer and eμ  is the 
viscosity). Assuming that the mean flow parameters are 
independent of , we can present the stream function, the 
streamwise and spanwise components of velocity, and 
enthalpy in the form 

*z

( ) ( ) ( )s f,sψ η η= Φ ,  ( ) ( ) ( )e, 'U s fU s η η=  , 

( ) ( ) ( )qe, W sW s η η= ,  ( ) ( ) ( )e,I s I s gη η=  , 

where the prime means the derivative with respect to the 
coordinate η , normal to the model surface. Thus, in the 
approximation of local self-similarity, we obtain a system 
that describes the flow in a three-dimensional boundary 
layer: 

( ) ( )'f 2
Hβ

⎡ ⎤e' '' 0ff
ρ
ρ

''Cf + + − =⎢ ⎥
⎣ ⎦

, ( )' ' 'Cq fq 0+ = , 

 
( )
( )

2

2

1 M1 P
P
− r

r
1+

' ' '
1Pr

M
2

C g fg
γ
γ
−⎛ ⎞ + = ×⎜ ⎟ −⎝ ⎠

 ,  (5) 

( )2 2' ''cos 'sine eC f f qqλ λ⎡ ⎤× +⎣ ⎦  , 
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Here eλ  is the local sweep angle, i.e., the angle between 
the axis s  and the local direction of the external flow 

velocity , pU γ  is the ratio of specific heats, 
e e

C ρμ
ρ μ

= , and 

e
H

2β
e

dU
U d
ξ

ξ
= . System (5) is derived under the assumption 

that the parameters Hβ  and  are independent of the 
streamwise coordinate 

Me

ξ . If these parameters depend only 
weakly on ξ , the system (5) has to be applied locally, and 
its solutions ( , , )f q g  will parametrically depend on the 
streamwise coordinate. 

In the absence of the boundary-layer suction on the 
surface, the boundary conditions for a thermally insulated 
model can be written as 

( ), ', , ' 0f f q g = , ( ) , , ( ) (6) 0η = ( )', , 1f q g → η →∞

System (5) is the generalization of the Falkner–Scan–
Cooke equations to the flow in a compressible 

boundary layer. In the present work, system (5-6) was 
numerically integrated by the fourth-order Runge–Kutta 
method. The shooting method was used to satisfy the 
boundary conditions. 

III. STABILITY OF SELF-SIMILAR BOUNDARY LAYER 
The mean flow and stability were calculated for 

 and Pr 0.72= 1.4γ = . Some results calculated for steady 
 modes of instability of the transverse flow in 

subsonic and supersonic three-dimensional boundary layers 
are presented below.  

( )0f =
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Fig.2: Mean flow parameters for  and fluctuations 

of the longitudinal velocity of the steady  model of 
instability of the transverse flow for 

M 2e =

ω
1.3
( 0= )

β =  and 5000R = . 

 
Fig.2 shows the calculated distributions normal to the 

model surface for the mean strewmwise velocity ( )U U y= , 

velocity of the secondary or cross-flow , and density ( )W y
1 Tρ =  for  (the local values of  and M 2e = ,U W ρ  are 

normalized to the corresponding values outside the 
boundary layer). The normal coordinate is brought to 
dimensionless form  on  the  basis  of the boundary-layer  

thickness 0.95δ : ( )0.95 95% eU y Uδ= =

%

. For chosen parame–
ters, the changes in the mean density inside the boundary 
layer stays within 40 . The favorable pressure gradient 
( )H 0β >  typical for the initial part of the swept wing 
(closer to the leading edge) is responsible for the formation 
of a cross-flow with ( ) 0W y < . The profile ( )W y  acquires 
an inflection (point A in Fig.2), which leads to substantial 
destabilization of the flow. An important parameters 
characterizing instability of the three-dimensional boundary 
layer considered is the amplitude of the secondary flow 

 determined as magnitude of the cross-flow in its 

maximum: 
maxW

( )maxW =

0.

H

0
max

y≤ <∞

W
0.29

W

max ≈

y . In the present case, the 

secondary flow with  was obtained for 
 and 

08 1�

45λ = o β ≈ . 
The dot-dashed curves in Fig.2 show the profiles of 

fluctuations of the streamwise disturbance velocity ( )u y  

(normalized to the maximum values) at  and 0, . 
The difference in these functions for subsonic and 
supersonic flow regimes is insignificant and is manifested 
only in a small shift of the location of the maximum of 
fluctuations, which correlates well with the shift of the 
inflection point on 

Me 2,0= 2

( )W y .We calculated stability diagrams 
for steady and unsteady cross-flow instability modes for 
variety of situations: for different Mach numbers, different 
values of the secondary flow amplitudes. 
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Fig.3: Stability diagram of stationary modes at M 2.0e = , 

max 0.08W = − : growth rate contours 0.95iα δ− . 

 
Fig.3 presents the stability diagram for stationary ( )0ω =  

cross-flow instability modes at M , W2.e = 0 max 0.08= − , i.e. 
contours of spatial growth rates on the plane ( ), rR k , where 

0.95e e eR Uρ δ μ=  is the Reynolds number based on the 

boundary layer thickness 0.95δ  and 2 2
r rk α β= +  is the 

magnitude of the wave vector. The instability region 
( )0iα− >  is shaded. Position of the neutral stability curve 

( )0iα =  is in a good agreement with computations [12], 
shown at Fig.3 by small circles. Critical Reynolds number 
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for this case is . Computations show, that with 
increasing  critical Reynolds number decreases. At 

 the range of unstable wave numbers in the 
adopted normalizations is concentrated in the range 

 and is almost independent of  and . This is 
a typical indication of the inviscid cross-flow instability 
modes developing on the inflectional mean velocity profile. 
In the absence of the cross-flow (in a two-dimensional 
boundary layer) stationary modes cannot amplify.  

680crR ≈

maxW
4

3

max 0.0W ≥

0 rk< < R M
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Fig.4:  Spatial growth rates of stationary modes for 

 and  at  (solid lines) and 
 (dashed lines), R . 
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Calculations of the stability diagram for stationary modes 

at different Mach numbers have shown that the instability 
region and growth rates depend only weakly on Mach 
number . Fig.4 demonstrates comparison of spatial 
growth rates of steady modes at  and 

M
max 0.08W = − 0.05−  

for Mach numbers  (solid lines) and M 2.e = 0 2M 0.e =  
(dashed line), . Computations [12] are shown at 
this diagram by circles and agree well with our data. Growth 
of 

5000R =

maxW  leads to the amplification of instability, while 
compressibility influence is very weak and is visible only in 
a small shift of curves maxima positions while their 
magnitude for  and  differs less than on 10%. 
Wave vector of amplifying disturbances has an orientation 
almost normal to the direction of outer flow. 

Me 2.0= 0.2

IV.   VALIDATION OF THEORY VERUSUS MEASUREMENTS 
PERFORMED IN THE SUBSONIC FLOW 

Gaponenko et al. [11] experimentally studied the linear 
stage of evolution of transverse flow instability at a subsonic 
flow velocity. In the initial cross sections of the swept wing, 
the mean flow was modeled with the use of a flat plate with 
an induced favorable pressure gradient. The flat plate was 
mounted in the wind-tunnel test section at a sweep angle 

. The pressure gradient was generated by a dummy 
wall placed into the test section. The experiments were 
performed in a T-324 low-turbulence wind tunnel based at 
the Khristianovich Institute of Theoretical and Applied 
Mechanics. The flow field in the boundary layer was 
recorded by a hot-wore anemometer. The cross-flow 
instability modes were artificially excited in the boundary 

layer by various generators of disturbances operating at 
frequencies 

25λ = o

8,3; 25,0; 35,0f =  Hz. The characteristics of 
stability of normal modes were obtained by a frequency-
wave spectral analysis. 

The conditions of the present linear stability calculations 
were the same as those used in the experiments [11]. The 
following parameters obtained in the experiments were 
used: velocity at the boundary-layer outer edge 

6,8eU ≈  m/sec, displacement thickness 1 1, 25δ ≈  mm, 

Hartree parameter 0,47Hδ ≈ , and calculated Reynolds 
number 

1
560δRe ≈ . 

Theoretical results for conditions of these experiments are 
presented at Figs.5,6. Fig.5 shows the example of the 
dispersion relation of normal cross-flow instability modes, 
in the form of wave propagation angle ( )arctg rχ β α=  
versus spanwise wave number β  for frequency 35f =  Hz. 
For large values of 1 0.4βδ >  wave angles are close to 

. At smaller 90± o β  there is a range of continuous change 
of χ  between these two limiting values. With reduction of 
f  the range of β  of such passage decreases and at zero 

frequency (stationary disturbances) there is only a jump 
from 93χ ≈ − o  to . These values differ on 180  and 
correspond to the same angle of stationary cross-flow 
vortices for all 

87≈ oχ o

β . It is worth to mention a good quantitative 
agreement of theory and experiment, presented at Fig.5. 
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Fig.5:   Wave vector orientation of cross-flow instability 

modes versus spanwise wave number, 35f = Hz. 
Comparison of the theory (curves) and experiment 
(symbols). 
 

Fig.6 demonstrates comparison of the computed and 
measured spatial growth rates of normal cross-flow 
instability modes for 35f =  Hz. Positive values of β  
correspond to waves propagating almost against the 
direction of secondary flow (because ( ) 0W y < ), whereas 
disturbances with 0β <  propagate in the direction of the 
secondary flow. Calculations show that for 35f =  Hz the 
BL is stable for all β . Despite the rather wide scattering of 
experimental points at Fig.6 the theoretical curve is in a 
satisfactory agreement with measured values.  
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Fig.6:   Spatial growth rates versus spanwise wave 

number, Hz. Comparison of the theory (curves) and 
experiment (symbols). 

35f =

 
Quasi-2D waves (with β  close to zero) are strongly 

decaying. The most unstable modes are concentrated in 
narrow band of wave angles close to  . The 
characteristic width of these regions decreases with 
frequency reduction. In the region of negative values of a 
spanwise wave number there is a range of 

90± o ( 1 0.4βδ � )

10.6 0.2βδ− < < −  where theoretical determination of 
growth rates gives ambiguous results. Presence of two 
modes of a discrete spectrum was revealed, one of which 
has much higher attenuation rate than the other. One 
possible explanation to this phenomenon is that the mode 
with greater decrements at 0β <  is closer to the Tollmien-
Schlichting instability mode, distorted by the presence of the 
secondary flow. This assumption is confirmed also by the 
calculated value of its phase velocity 0.3rc ω α= ≈  (for 

0β =

( )0Hβ >

) typical for this instability waves. However in the 
flow considered, Tollmien-Schlichting instability is 
suppressed by a strong streamwise pressure gradient 

 and in the result these waves decay fast in the 
downstream development. In this range of β  the 
experimental values are located between two theoretical 
curves. It gives grounds to assume, that disturbance 
generators used in measurements, have excited 
simultaneously disturbances of both kinds, and the hot-wire 
anemometer has registered their mixture.  
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Fig.7: Spatial growth rate contours in the local system on 

the plane ( ),f β . 

Next Fig.7 shows the cumulative theoretical stability 
diagram of the flow under investigation, i.e. spatial 
amplification rates on the plane frequency – spanwise 
wavenumber. The region of instability at 0β >

12
 is 

considerably larger. Disturbances with f ≈  Hz and 

1 0.43βδ ≈  have maximal growth, while waves propagating 
in the direction of the cross-flow  have much 
smaller growth rates.  

(β < )0

V.  COMPARISON OF COMPUTATIONS WITH EXPERIMENTS 
PERFORMED IN THE SUPERSONIC FLOW 

The main goal of the present work was to model the 
experiments which have been performed earlier at ITAM SB 
RAS [9,10]. Measurements have been performed in the low-
noise supersonic wind tunnel Т-325 based at the 
Khristianovich Institute of Theoretical and Applied 
Mechanics of the Siberian Division of the Russian Academy 
of Sciences at a free-stream Mach number M∞ 2=  and 
Reynolds number per meter  m−1. A wing 
model with a symmetric lenticular profile and a sweep angle 

 was used. Controlled disturbances have been 
excited in the boundary layer on the model from a localized 
source on the basis of a glow discharge generator. The 
discharge ignition frequency was 10, 20, and 30 kHz. The 
mass-flow fluctuations were recorded by a constant-
temperature anemometer. Frequency-wave and amplitude-
phase spectra of disturbances in several cross sections along 
the streamwise coordinate 

6
1Re 6,6 10= ⋅

40λ = o

s  were obtained by applying a 
discrete Fourier transform. The evolution of disturbances at 
the excited frequencies was found to be similar to the 
evolution of traveling waves at subsonic flow velocities. The 
results calculated by the linear stability theory are compared 
with experimental data.  
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Fig.8: Contours of cross-flow disturbance spatial growth 

rates 0.95iα δ−  in supersonic swept wing BL for stationary 
disturbances in the plane ( ), rs C k . 
 

In the present work, the characteristics of the outer flow 
over the wing have been computed according to Prandtl-
Mayer expansion flow formulas. Calculations show 
continuous isentropic expansion of the flow along the whole 
wing chord, so calculated local Mach number is increasing 
from M 1.6e ≈  at 0s =  up to  on a trailing edge of the 2.36
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wing , where C is the model chord. The local 
sweep angle monotonically decreases from  to 

. Hartree parameter grows from 

( / 1s C =

36o

)
47λ ≈ o

H 0λ ≈ β =  to 

H 0.74β = . The boundary layer on the model surface has 
been computed using distributions ( ) ( ) ( ), , eHs s M sλ β

max

 in 
the approximation of local self-similarity [17,18]. It has 
been found, that the values of W  increase from zero to 

 in the downstream direction.  max

The linear stability of the three-dimensional boundary 
layer on the swept wing model under investigation showed 
that the instability region begins close to the leading edge of 
the model 

0.12≈ −W

( )0,06≈s c . The growth rates of steady modes 
continuously increase in the downstream direction until the 
trailing edge. 

Fig.8 shows contours of disturbance spatial growth rates 
along the wing chord /s C  and  in relation to stationary 
disturbances. The unstable region is shaded, its beginning is 
located close to the model leading edge. Amplification rates 
continuously grow downstream up to the trailing edge. The 
disturbance generator has been located in the beginning of 
unstable region and its location is marked by the vertical 
line. The field of stability measurements is marked at the 
diagram by a rectangle. Conditions of these experiments 
were so, that computed spatial linear amplification rates 
were much higher in comparison with subsonic experiment 
(Fig.7).  
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Fig.9: Contours of cross-flow disturbance spatial growth 

rates 0.95iα δ−

( ),f
 in supersonic swept wing BL in the plane 

β  at 0.15x C ≈ . 
 

Fig.9 shows also theoretical stability diagram – spatial 
growth rate contours on the plane ( , )fβ  at 0.15x C ≈  
(  mm). Negative frequencies at this diagram 
correspond to the waves propagating in the direction of 
secondary flow, i.e. correspond to 

30s =

0β < . It is seen, that the 
maximal growth at this section s  is for traveling waves with 
frequency  kHz and 29f ≈ 0.95 0.8βδ ≈

)0

, and their 
amplification rates are almost double of maximum rates for 
stationary modes ( . The range of unstable 
frequencies propagating in the direction opposite to the 
secondary (cross-) flow  is approximately 

)

β

0f =

( >

0 f 65≤ <  kHz, which is in qualitative agreement with the 
experimental results [10], where amplification of natural 
background disturbances with frequencies 0 65f≤ <  kHz 
was observed. Instability region corresponding to 0β <  is 
noticeably smaller. 
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Fig.10: Spatial growth rates of the spectral components of 

natural disturbances: the curve and the points are the 
calculated results and the experimental data [10]. 
 

The calculated and measured spatial growth rates are 
plotted in Fig.10. The experimental points were obtained by 
means of differentiation of the measured spectra of natural 
disturbances of the boundary layer on the swept wing model 
over the longitudinal coordinate (see Fig.2a in [10]), while 
the theoretical curve was constructed over the maximum 
values ( ),max max ,i i f

β
α α β− = −⎡ ⎤⎣ ⎦

15f

 determined from the 

stability diagram. The theoretical and experimental data are 
seen to agree well at high frequencies 15  kHz. At 
low frequencies (

50f≤ ≤
<  kHz), the measured growth rates 

are substantially smaller. A possible reason is the 
dominating contribution of external acoustic disturbances 
(wind-tunnel noise) into the low-frequency part of the 
spectrum; the intensity of these acoustic disturbances 
depends weakly on the streamwise coordinate, and their 
growth rates are small. 
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Fig.11:  Streamwise wave number of normal instability 
modes as a function of spanwise wave number (dispersion 
relation). Comparison of the theory (curves) with 
measurements (symbols). 
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Comparison of theory with measurements performed with 
artificially excited disturbances is presented at Figs.11,12. 

Fig.11 shows dispersion relation curves ( )* * *α α β=

)
 

computed in the coordinate system ( , *s z for frequencies 
 kHz. In the examined range of parameters, 

theoretical results are in good quantitative agreement with 
experiment in the studied field of parameters.  

0,10, 20,30f =

Fig.12 presents spatial growth rates versus spanwise wave 
number at mm. Experimental data [10] are shown by 
symbols for frequency  kHz at this plot. In contrast 
to dispersion relations (Fig.7) theoretical results deviate 
much from experiment. The range of the most amplifying 
disturbances in experiment is 

30s =
10f =

0.3 * 1.2β< <

2 * 3

 rad/mm, 
whereas according to the linear theory maximum growth 
should be for disturbances with β< <  rad/mm. 

Reasons of such discrepancy can be explained by the 
initial conditions realized in experiment. The amplitude of 
mass flux perturbation excited in the experiment, reached 

 of the mean value. Also strong distortion of the mean 
flow was detected [3], that is an indication of strong 
nonlinearity of a disturbance field. Therefore the use of the 
linear theory is limited. In addition, the range of the initial 
(in terms of the coordinate ) disturbance was rather large 
in the experiments, i.e., waves with low values of

30%

*z
*β  

dominated in the wave spectrum of the initial disturbances at 
the generation frequency. It was the growth of these 
disturbances that was registered in the downstream 
direction. 
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Fig.12: Spatial growth rates versus *β  [rad/mm], 
(  mm). Symbols – experimental data [10] at 

 kHz. 
30s =
10f =

 
There seem to be some other reasons for the dominating 

growth of modes with * 0β ≈ . The experiments [20] 
performed in a two-dimensional boundary layer on a flat 
plate at  and larger intensities of initial disturbances 
also revealed the predominant growth of two-dimensional 
fluctuations, whereas it is three-dimensional linear 
disturbances that increase most rapidly in a supersonic 
boundary layer. This fact was explained in [21], where the 
evolution of disturbances of higher intensities in a 
supersonic boundary layer is demonstrated to be determined 
by the presence of steady disturbances responsible for 
distortions of the mean fields. As a result, two-dimensional 
components of the disturbance spectrum are mainly 

amplified. Apparently, the higher initial amplitude of 
transverse flow instability modes excited in a three-
dimensional boundary layer on a swept wing in the 
experiments [10] also excites deformations of the mean 
flow, and the measured characteristics of stability of such a 
flow differ from those calculated by the linear theory. 

M 2=

Thus, the calculated transverse scales of disturbances of 
the secondary flow are demonstrated to agree well with 
experimental data on stability of a three-dimensional 
supersonic boundary layer with artificial disturbances at M 
= 2. The calculated growth rates of disturbances, however, 
differ from the measured values. At the same time, the linear 
stability theory offers an adequate description of the 
development of natural disturbances whose amplitudes are 
much lower than the amplitudes of artificial disturbances. 

 
To verify the applicability of the local-similarity 

approximation for mean flow computations in three-
dimensional infinite swept wing boundary layer we have 
performed also a numerical simulation of the boundary layer 
flow on the basis of non-similar boundary-layer equations. 
Full partial-derivative compressible laminar boundary layer 
equations for infinite swept-wing have been integrated 
numerically by means of finite-difference Keller box 
scheme [22]. Comparison of boundary-layer mean velocity 
and temperature profiles computed for conditions of swept-
wing experiments [10] in the framework of local similarity 
approximation as well as in non-similar boundary layer 
solution have shown that boundary layer thickness 

( )xδ δ=  for nonsimilar equations is slightly thicker in 
comparison to the local similarity solution, while the 
amplitude of the cross-flow ( )max maxW W x=  becomes 
slightly smaller. These two factors affect stability 
characteristics of the boundary layer flow. Indeed, a 
thickening of the boundary layer means growth of the 
Reynolds number, that leads to destabilization, while 
reduction of maxW  leads to a certain flow stabilization. As a 
result, stability characteristics of the flow, computed by 
these two approximations, are close to each other.  
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Fig.13:  Growth curves (N-factors) of stationary ( )0ω =  

cross-flow instability modes, computed for conditions of 
measurements [10]: local self-similar solution (solid line) 
and full boundary layer solution (dashed line); spanwise 
wave length 2 7λ π β= =  mm. 
 

This fact is demonstrated at Fig.13, where amplification 
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curve (N-factor) ( )( )
0

s

is
N sα ds′ ′= −∫  is plotted versus 

streamwise coordinate for stationary cross-flow instability 
mode computed in the approximation of the local similarity 
(solid line). The growth curve obtained from nonsimilar 
boundary-layer equations (dashed line) shows slightly 
smaller growth in comparison to the mean flow computed in 
the local similarity approximation. However this difference 
is not large and close to the trailing edge of the model 
( 1x C ≈ )  it is less than 15%.  

Distribution of the N-factors versus spanwise 
wavenumber is shown at Fig.14 for the middle section of the 
wing chord ( 0.5s C = ) . One can see that the N-factors 
computed by the two approximations at this streamwise 
section have maxima located around 2β ≈

N
 rad/mm, but 

they do not coincide. However maximal max 4.3≈  are 
about the same for both approximations. Therefore one can 
make a conclusion that the approximation of local self-
similarity accepted in the most part of the present paper is 
accurate enough and can be used to simulate theoretically 
stability experiments performed on a swept wing in a 
supersonic flow.  
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Fig.14:  N-factors of stationary ( )0ω =  cross-flow 

instability modes versus spanwise wavenumber, 
( 0.5s C = ) : local self-similar solution (solid line) and full 
boundary layer solution (dashed line).  
 

VI.   CONCLUSION 
Stability of compressible three-dimensional swept-wing 

boundary-layer was studied in the framework of the linear 
stability theory. The analysis was based on the 
approximation of local self-similarity of the mean flow and 
was conducted with Falkner-Scan-Cook solution extended to 
compressible flows. It was shown that compressibility 
influence on the cross-flow instability modes is 
insignificant. Good quantitative agreement of all computed 
stability characteristics with experimental data obtained in 
Т-324 for the subsonic BL is received. For supersonic-swept 
wing BL at Mach number M  a good agreement of the 
theory with measurements performed in Т-325 has been 
obtained only for spanwise scales of cross-flow vortices. 
However computed growth rates differ significantly from 
measurements. This discrepancy is explained by too high 
initial amplitude of disturbances excited in experiment, that 
is outside of a linear stability theory applicability range. 

Conclusion is made that approximation of local similarity 
ensures sufficient accuracy and can be applied for 
simulation of stability experiments at supersonic speeds. 

2=

 
APPENDIX 

 
Nonzero elements of the matrix H  in (3) are :  

12 56 78 1H H H= = =  ,  

2 2
21

RH i
T

ξα β
μ

= + +  ,  22
DH μ
μ

= −  ,   

23 1
R DU DT DH i l

T T
μα

μ μ
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

 , 

2
24 1

RH i l Mα α γ
μ

= − ξ  ,   

( )
25

D DU
H l

T
μαξ
μ
′

= −  ,   

26H DU μ
μ
′

= −  ,  31H iα= −  ,  33
DTH
T

=  ,   

2
34H i Mγ ξ= −  ,  35H i

T
ξ

=  ,  37H iβ= −  , 

41 2 2DT DH i l
T

μαχ
μ

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 ,  42H iαχ= −  , 

2
2 2

43 2
D DT D T RH l i

T T T
μ ξχ α
μ μ

β
⎡ ⎤⎛ ⎞ ⎛ ⎞

= + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

 , 

2
44 2

D DTH i M l DU DW
T

μχγ ξ α β
μ

⎡ ⎤⎛ ⎞
= + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 , 

( ) 2
45 2

l DH i DU DW l
T T

μ μχ α β ξ
μ μ

⎡ ⎤′⎛ ⎞
= + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 , 

46 2H i l
T
ξχ=  ,  47 2 2DT DH i l

T
μβχ
μ

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 ,   

48H iβχ= −  ,  ( ) 2
62 2Pr 1H M DUγ= − −  , 

( ) (2
63 Pr 2 1 PrDT )H R i M DU D

T
γ α β

μ
= − − + W  , 

( ) 2
64 Pr 1H iR M ξγ

μ
= − −  ,  ( ) 2

64 Pr 1H iR M ξγ
μ

= − −  , 

( )2 2 2
65 Pr 1 PrH iR M

T
ξ μα β γ
μ μ

′
= + + − −  

( )
2

2 2 DDU DW μ
μ

+ −  ,  66 2 DH μ
μ

= −  ,    

( ) 2
68 2 Pr 1H M DWγ= − −  ,   

83 1
R DW DT DH i l

T T
μβ

μ μ
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

 , 

2
84 1

RH i l Mβ β γ
μ

= − ξ  ,  
( )

85 1

D DW
H l

T
μξβ
μ
′

= − , 

86H DW μ
μ
′

= −  ,  2 2
87

RH i
T

ξα β
μ

= + +  ,   

88
DH μ
μ

= −  . 
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Here U Wξ α β= + −ω  ,  
1

2
2

R il Mχ γ ξ
μ

−
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

 ,  

D d dy=  ,  d dTμ μ′ =  , jl j λ μ= + , , 1, 2j = μ  и λ  
– first and second viscosities respectively. 
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