
 

 

  
Abstract—There are presented the analytical solutions of 

differential equations of transfer laws in the body with n binding 
degrees of freedom of thermodynamics describing stationary and 
non-stationary processes in this paper. It is suggested that potential 
fields are one-, two- and three-dimensional. Laplace’s differential 
equations are analysed in Cartesian, cylindrical and spherical 
coordinates taking into account various boundary conditions. The 
solutions considerably facilitate the numerically methods put into 
solving of some Laplace’s differential equations and increase the 
possibility of employing these equations in thermodynamics of 
stationary and non-stationary processes. 
 

Keywords—Thermodynamics, stationary and non-stationary 
processes Laplace’s equations, degree of freedom. 

I. INTRODUCTION 
T is known that the potential u = u(x,y,z) satisfies Laplace’s 
equation 
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if u is a temperature potential, the potential of the stationary 
electromagnetic field, a material filtration potential, the 
potential of the speed of non-vortex non-compressible liquid 
flow, the potential of the gravitational force in all space points 
not being in the masses created space, the potential of the 
electrical charges interaction in all points of charge-free 
region of space, the potential of the definition of castings 
quality, and so on. 

Therefore the solutions of Laplace’s equations with the 
corresponding boundary conditions attract attention of many 
researchers [1]-[8]. In this paper, it is presented a method of 
the solution of Laplace’s differential equations system 
expressed in the form: 
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or corresponding form in cylindrical and spherical 
coordinates under different boundary conditions. 

The system of equations (1) describes the law of transfer for 
a nonequilibrium system (or body) with n by connected 
degrees of inner freedom and three-dimensional fields of 

potentials Pj = Pj(x,y,z), where 
j

j E
UP

∂
∂

=  is a generalized 

potential; ( )nEEEfU ,...,, 21=  is an internal energy of a 
system, J; Lij − a coefficient of transfer and Lij = Lji. The 
coefficient Lii is called a principal coefficient of transfer. It 
characterises conductivity of a thermodynamic system in 
relation to a charge integrated with potential Pi. Coefficient Lij 
when i ≠ j is called a cross-coefficient. It characterises 
influence of j-th charge on potential Pi integrated with it [9]. 

II. METHOD OF THE SOLUTION 
A system of equations (1) after some transformations: 
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is expressed as 
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So equation (1) in Cartesian coordinates can be written in 

the form: 

Solution of some differential equations of 
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in cylindrical coordinates - in the form: 
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or in spherical coordinates - in the form: 
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Thus, the procedure of theoretical solutions of transfer 

differential equations of a thermodynamic system with n 
binding degrees of freedom is the following: 

1. Find the solution ui of Laplace’s equations of a kind (2), 
(3) or (4) under appropriate boundary conditions. The well-
known formulas indicated in works on equations of 
mathematical physics can be used as the basis for this purpose. 

2. After determination of the free members (functions ui) 
find generalized potentials Pj of a thermodynamic system. The 
system of linear (concerning potentials Pj) equations can be 
solved by various ways, for example, Cramer’s rule can be 
applied [10]: 
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III. SOLVING PROCEDURES 
In one dimension, the equations (2), (3) and (4) have the 

forms: 
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In two dimensions, the thermodynamic potentials are 
defined by the following systems of differential equations: 

in Cartesian coordinates: 
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in cylindrical coordinates: 
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and in spherical coordinates: 
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The equation (7), noting (5), can be expressed as 
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The equations (8) and (9), noting (5), can be expressed 

analogously. Consequently, the calculation of two-
dimensional thermodynamic potentials Pj = Pj(x,y) consists of 
two steps. In the first step, Laplace’s equation (10) is solved 
using respective boundary conditions. In the second step, the 
system of equations (5) is solved.  

One problem solved using the recommendations of the 
work [11] are presented below. 

The three-dimensional system is given as 0 ≤ x ≤ a, -b ≤ y ≤ 
b, -c ≤ z ≤ c. The potentials Pj = Pj(x,y,z) satisfy the following 
boundary conditions: 
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In this case the functions ui are calculated from the 

equations (2) under following conditions: 
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The solution is expressed as follows: 
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αir and βis are positive roots of equations: 
( ) iii hbtg =αα , 

( ) iii hctg =ββ , 
ni ,...,2,1= . 

IV. SOLUTION OF DIFFERENTIAL EQUATIONS OF 
THERMODYNAMICS DESCRIBING NON-STATIONARY 

PROCESSES 
In non-stationary thermodynamically system (or body) 

having n degrees of inner freedom potentials P = P(x,y,z,t) 

satisfy the following equations: 
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where i = 1, 2, ..., n; Lij − constant numbers; t − time; x, y, z 

− coordinates. 
Having marked 
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the equation (1) we write as follows: 
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where ui = ui(x,y,z,t); i =1, 2, ..., n. 
Potential Pj we express trough the function ui. For this 

purpose we use the function (12). We have: 
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determinant; Mij - minors of the determinant. 

Having put (14) into (13) we get a new system of equations: 
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System of equations (15) can be put as follows: 
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If the potentials P = P(r,ϕ,z,t) are presented by functions in 
cylindrical coordinates, then the equations (11) of a non-
stationary thermodynamic system after replacement (12) can 
be written as  
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In spherical coordinate [P = P(r,Θ,ϕ,t)] system of equations 

(11) can be expressed as follows: 
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So the given system (11) was changed to the equivalent 

system (16). This system is solved numerically. Having solved 
the latter system of equations under corresponding conditions, 
we get functions ui. Using the equation (4) we find the 
solutions Pj = Pj(x,y,z,t) which satisfy the system of equations 
(11). 

When the field of potentials P = P(x,t) the equation (16) 
looks as follows: 
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If thermodynamically system having the field of potentials 

P = P(x,t) and two degrees of freedom (n = 2), then k = 1, 2. 
In this case the system of equations (16) will be as follows: 
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Potentials P = P(x,y,t) in the thermodynamically system 

having two degrees of freedom satisfy the following 
equations: 
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If potentials P = P(x,y.t) in the thermodynamically system 

have three degrees of freedom then the system of equations 
(16) will be as follows: 
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The course of solution of differential equations of a 

thermodynamically system is as follows: 
1. The determinant IAI of the equations system (12) and 

adjuncts Aij (there are n2) are found. 
2.  The system of equations (16) is solved, i.e. auxiliary 

functions ui are found 
3. The potentials Pj are found from the equation (14). 
The solutions of differential equations of stationary and 

non-stationary processes considerably facilitate the numerical 
methods [12-16] put into solutions of the thermodynamics 
systems with n binding degrees of freedom and increase the 
possibility of employing these systems in practice. 

V. CONCLUSION 
The solution of the systems differential equations of 

transfer laws in the body with n binding degrees of freedom of 
thermodynamics describing stationary and non-stationary 
processes has been presented. The one-, two- and three-
dimensional potential fields have been analyzed. Laplace’s 
differential equations have been analysed in Cartesian, 
cylindrical and spherical coordinates accounting various 
boundary conditions. The solutions considerably increase the 
possibility of employing Laplace’s equations in 
thermodynamics. The proposed methods have been 
demonstrated for the three-dimensional system. 
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