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Abstract. Longitudinal structures generated by external vortical 

and thermal waves in subsonic and supersonic boundary layers are 
studied in the paper. Particular attention is paid to the boundary 
conditions at the boundary layer outer edge. It was established that 
longitudinal velocity and mass flow disturbances inside the bound-
ary layer can exceed the amplitude of external vortical wave in 
several times. Excitation efficiency decreases with increasing 
Mach number. Influence of thermal external waves on the flow 
structure in the boundary layer is much weaker. 
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1  INTRODUCTION 
At research of a problem of originating of turbulence in a 

boundary layer the special attention give to the excitation 
disturbances in a boundary layer by external waves. Mork-
ovin was the first who discussed this phenomenon, which is 
called now as a problem of a receptivity of a boundary layer 
[1]. There are a lot of experimental and theoretical papers on 
the receptivity of a subsonic boundary layer. One can find 
the detail review of these investigations in [2,3]. Much less 
papers are dedicated to a case of a supersonic boundary 
layer. Mainly, the interaction of external acoustic waves 
with a supersonic boundary layer was studied [4-6]. In [7] 
the interaction of hydrodynamic vortex-free waves with a 
supersonic boundary layer was investigated. At the same 
time, at supersonic flow together with acoustic and vortex-
free hydrodynamics waves there are vortical and thermal 
ones. Unfortunately, even in case of subsonic speeds there 
are few papers, in which the interaction of vortical distur-
bances with a boundary layer was studied numerically. Pa-
pers [8,9] are the most interesting for us. But their results 
differ among themselves. Nobody considered the interaction 
of thermal external waves with the boundary layers. This 
paper is dedicated to research of the disturbances excitation 
in subsonic and supersonic boundary layers by external vor-
tical and thermal waves. 

2  FORMULATION AND BASIC EQUATIONS 
The linear statement is considered. Disturbances in a 

boundary layer we shall consider in orthogonal coordinate 
system ( ), , zξ ψ  [9,10] connected with stream-surfaces of 

basic flow and look like ( ) ( ), expa i i z i tξ ψ αξ β ω+ − .  
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Here ψ  - flow function; for a plate ( )2Rex Oξ −= +  

Re u x ν∞ ∞= ; ,u ν∞ ∞  - speed and kinematical viscosity 
of a ram airflow; , ,x y z  - longitudinal, normal to a wall and 
transversal co-ordinates of the Cartesian system with the 
beginning on an edge of a plate. Gas is perfect with a con-
stant Prandtl number Pr. Using estimates in integer degrees of 
Re, taking into account the properties of the critical layer, and 
omitting the terms of order Re-2 in linearized Navier - Stokes 
equations, one can obtain the set of governing equations [7]:  
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where: 1 ξ∂ = ∂ ∂ ; 2 uρ ψ∂ = ∂ ∂ ; 1t cd u u= + ∂ ; 

cu i u iα ω= − ; ( )1 1 lnh uρ= −∂ ; ( )11 02 3i u eτ μ α= − ; 

( )13 i w i uτ μ α β= + ; ( )33 02 3i w eτ μ β= − ; 

( )0 2 ln ce v uρ ρ ρ= − ∂ − ; u  –velocity; T –temperature; 

ρ  - density; p  – pressure; 2 2H h u= +  - full enthalpy; μ  
- viscosity; u , v , w  - complex amplitudes of stream-wise,  
normal to a surface and transversal components of  velocity 
disturbances; mg p T Tρ ρ = − ; 1mT g h= ; H h uu= + ; 

1/mg p= ; 1 1/ pmg c= ; pc - specific heat of gas at constant 
pressure. The view of equations will not change after nor-
malizing with the help of following scales: uν∞ ∞ - length, 

2uν∞ ∞  - time , μ∞  -  viscosity and flow function, u∞  - ve-
locity and its disturbances, T∞  - temperature, ρ∞  - density , 

2u∞  - enthalpy, 2uρ∞ ∞  - pressure and disturbances of viscous 

stresses, 3uρ∞ ∞  - value  q , 2u T∞ ∞  - specific heat (the index 
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∞  corresponds to values in the ram airflow). In this case: 
2Mmg γ= , ( ) 2

1 1 Mmg γ= − , where p Vc cγ = - relation of 
heat capacities; M  – Mach number. 

Entering independent variables Re ξ= , 
/ Red d uη ψ=  and using notations: 

( ) ( )1 11 Rea a f a ′∂ = ∂ + , 2 Rea aρ ′∂ = , where 

0,5 Re∂ = ∂ ∂ ; the prime means a derivative on η , 

( ) / Red d uη ψ= , ( )2
1 2Ref uψ= − ), equations (1) are 

led to a view:  
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w x zu i u i w= + ; t x r w ai i u uμ μ= + ; ( )2 2
a x z ri iμ μ= + ; 

( )02 2 3p i u i w eπ μ α β= − + − ; mr g p Tρ ρ ρ= = − ; 

( )Re Rec ci u i uα ω= = − ; Rexi i Tα= ; Rezi i Tβ= ; 

1 0 1Rehr h f u f Tρ′ ′= = + ; 0 1f f u= − ; 2 1f f u= ; 
Rerμ μρ= ; lnT d dTμ μ= . 

The equations (2) can be written in a view: 
( )A D′ = + ∂Z Z . 

Here 0,5 Re∂ = ∂ ∂ , ( )12 23, , , , , , ,p v u w h qτ τ=Z , 

,A D ⎯quadratic matrixes of given functions of main flow 
parameters. The parabolized set of equations is solved at the 
following boundary conditions. The disturbances of speeds 
and temperature on a surface are equals to zero, 

(0) (0 (0) (0) 0v u w T= = = = . Outside of a boundary layer 
the disturbances are determined by the correspondent values 
in free (in a model absence) flow. 

3 NUMERICAL SCHEME AND BOUNDARY CONDITIONS 

Using approximation ( )0a R a a R∂ ∂ ≈ − Δ  

( 0R R RΔ = − - step of the marching scheme, the index 0 here 
and below correspond to the previous step) we transform a 
parabolized set of equations into a system of the ordinary 
differential equations: ( )0Z AZ B Z Z′ = + − . The common 
solution of a system is constructed as follows. At the bound-
ary layer edge four solutions are selected, which correspond 
to damping disturbances outside of a boundary layer in a 

parallel flow approach. Inside of a boundary layer they are 
satisfied to a system of homogeneous equations. The fifth 
solution is agreed with the external wave, and inside a 
boundary layer it is satisfied to an inhomogeneous set of 
equations. The common solution is constructed as superpo-

sition, 
4

5
1

( )m m
m

Z C x Z Z
=

= +∑ , Cm(x) are determined from 

boundary conditions on the plate. 
Disturbances in the free stream are proportional to 

exp[ ]iky i z i x i tβ α ω+ + − , where , ,k β ω  - real. As it is 
established in [11], for vortical and thermal waves the val-
ues α  is determined from the equation 
( ) 2 2 2i kω α α β− = + +  or ( ) 2 2 2( ) / Pri kω α α β− = + +  

accordingly. Numerous experiments and the analytical in-
vestigations at subsonic speeds demonstrate, that under the 
influence of external turbulence in boundary layer the longi-
tudinal structures develop. It means, that stationary distur-
bances with a longitudinal vorticity ( 0u = ) with 

(2
5 0, ,0, ,0,0,Z i ikβ= −  )2 2 ,0k β− +  are the most important. 

Vector, basically of thermal disturbances 
( )3

5 1 1 10, ,0, ,Pr,0, 2 ,Z ikB i B kB ikβ β= −  [7], where B1 = (γ-

1)M2,  A1 ≈ M2.  
The necessary solutions of a homogeneous set of equa-

tions on the edge of a boundary layer we obtain from ana-
lytic solutions of a locally - parallel approach at 1η . 

In a free stream 0u T′ ′= = , 1u T= = . Therefore there 
are four vectors conforming to decreasing solutions on the 
infinity. 

( 2 2
1 0,0, ,0,0, ,0, )Z ik k k= − − − . 

( 2 2
2 0, ,0, ,0,0, ,0)Z i ik kβ β= − − − +  

( )3 1 1 10, ,0, , Pr,0, 2 ,Z ikB i B kB ikβ β= − − −  

( )4 0,1,0, 1,0, 2 ,0,1Z iβ= −  

4 RESULTS 
The calculations were conducted for a boundary layer on 

a flat plate for Mach numbers М=0 and 2.0 and frequency 
ω= 10-6. The adopted frequency satisfies to steady condi-
tions. Viscosity-temperature relation, adopted in calcula-
tions, was determined by the Sutherland formula, Prandtl 
number Pr=0.72.  

The obtained results were set norms on an amplitude of a 
velocity disturbance in a free stream u= ( 2v  + w̃2) 1/2 nearly 
by to choosing position x0. Parameters of the problem were 
αi, Re, x0 ,  where αi –damping intensity of external distur-
bances along longitudinal coordinate, x0 - dimensionless 
spacing interval from a choosing position up to a leading 
edge of a plate, Re = (x)1/2 , and x- dimensionless spacing 
interval from a leading edge of a plate. The value of x0 is 
oriented on papers [12.13], in which the grid was located 
1.6 m and 1 m from the plate leading edge. The maximum 
stream velocity was equal to 12 ms-1 and minimum – 2 ms-1, 
thus 0.80·105 ≤ x0 ≤ 1.28·106. For a given value αi wave 
numbers β and k in z и y-directions were taken real, satisfied 
to the ratio αi = β2 + k2 for vortical disturbances and αi = (β2 
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+ k2)/Pr for thermal waves. All calculations are conducted 
for a boundary layer thickness δ= η1=6.  

Let's discuss, first of all, results obtained for a Mach 
number М=0. 
In a Fig.1 the distributions of disturbances amplitudes of 
pressure (Ap), velocities (Av, Au, Aw) and enthalpy (Ah) 
are shown at Re = 760, αi =10 -8, β= 3·10 -4. It is necessary to 
note, that the view of distribution of the longitudinal veloc-
ity disturbance is conservative to change of the problem 
parameters. After normalization on a dependence maximum 
it is resulted practically to the view, which is coincided with 
dependences of other papers including [8]. 

 
Fig.1 

 
In a Fig. 2 the ratio of the calculation results to analytical 
values βRe2

 of the paper [14, 16] is shown. It is necessary to 
note, that data [14, 16] were obtained in the supposition that 
βRе<<1<<βRе2. Analytical value - (1), results of present 
calculations (2, 3, 4) at β = (1; 5; 10)·10-5 respectively.  
 

 
Fig.2 

 
It is visible, that present data agree very well with analytical 
results at β = 10-5. There is a transient region Rе < 300, 
where the divergence of data is watched. It is explained by a 
violation of an inequality βRе2>>1. Even at Rе=300 the 
value βRe2= 0.9. At the same value Rе=300 for β = 5·10-5 
and 10-4 differences of predicted data from analytical value 
are 5% and 10% respectively though βRe2 is great enough. 
Apparently it is connected with a violation the second ine-

quality, βRе<<1. At Rе=300 and β = 10-4 value βRе = 0.03. 
At the same β = 10-4 and Re=103, βRе=0.1, and the devia-
tion of calculations from analytical values exceeds     30 %. 
This analysis demonstrates that the calculation results 
agreed with analytical values at fulfillment of the corre-
sponding inequalities. Moreover a strong inequality 
βRе2>>1 can be changed on the simple inequality βRе2>1. 

In Fig. 3 the comparison our results with data of [8, 16] is 
shown. ( Umax= |ữ|max). The main results were obtained for 
k=β/3: The line 1 - data [8], lines 2,3 - our results (obtained 
in a locally-parallel approaching and on the basis of parabo-
lized equations 5 respectively ), the line 4 is obtained on the 
basis of analytical expression of the paper[16]. The line 5 – 
our data at k=β, conforming to maximum values 

 
 

 
Fig.3 

 
Umax at change of β. The checkmark ♥ corresponds to ex-
perimental value of the paper [15], the checkmark  to 
[13]. Normalization in [8] differs from ours on value √2Av, 
where Av corresponds (on an order of values) to amplitude 
of disturbances of an external flow. So, in order to result in 
conformity data of [8] to ours they were divided by √2Av. 

 
Fig.4 

 
The comparison of our data with theoretical results [8] 
(k=β/3) for two values of a Reynold's number Re=500 (1, 
2); Re=1000 (3, 4) is given in Fig.4, where data [8] (1, 3) 
and present results (2, 4). There are present data (5) and re-
sults [9] (6) for Re=500: k=β. The experiments result   [13, 
15] is marked by the checkmark ♥. It is possible to see that 
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our results are agreed with theoretical [9] and experimental 
[13, 15] data. 

 
Fig.5 

In Fig.5 the dependences Umax on the wave vector β are 
shown for Re=600, -αi=10-6 and x0 = 80·103 (1); 320·103 (2); 
640·103 (3). It is visible that Umax increases with reduction 
x0. It is apparent because of low damping of external distur-
bances on more short spacing intervals x0. At the same time 
it is watched some displacement of a maximum of the de-
pendence in the region of larger values of β. However this 
displacement is not strong and the wave number conforming 
to a maximum of a curve is approximately equal to 0.7•10-3 
and it is agreed with data obtained in [13]. 
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Fig.6 
 
In Fig.6 the values Umax= |ữ|max in depending on Reynolds 

number at αi=10-6, b=β·104 =2.0; 4.0; 6.0; 8.0; 10 for x0= 
6.4·105 are shown.  

The dependence of a phase velocity Cr on Reynolds num-
ber is adduced in Fig. 7. The data are obtained at M=0.0, -
αi=10-6, ω=10-5, x0=.64·106 and three values β. The small 
change of Cr from a wave number β is visible. On the other 
hand, Cr essentially depends on a Reynolds number and 
varies within the limits 0.5<Cr < 1.0 at change Re from 250 
up to 700. It is interesting to address to experiments (see [3]) 
on the turbulent spots originating. It was established there, 
that the leading front of a spot, located in the field of large 
numbers Re, is propagated with speed 0.9 while back one ⎯  
with the speed equal 0.5. These results are in good, at least, 
qualitative conformity with our data. 
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Fig.7 
 

Let's proceed to the data for a case of supersonic 
speeds. Our results demonstrate that the distributions of 
disturbances amplitudes of pressure, velocities and enthalpy 
on a boundary layer at M = 2.0 are similar to the case of 
Mach number М=0 (Fig, 1).  
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Fig.8 
In Fig.8 the dependence Umax on Reynolds number are 

shown for M=2.0 (αi=10-6; x0= 6.4·105; b=β·104 =2.0, 4.0, 
6.0, 8.0, 10). This dependence is similar qualitatively to the 
case of Mach number М=0 (Fig.6). But the value Umax for M 
= 2 is less than at M = 0. 

 
 

Fig.9 
 

By calculations it is established that the value Umax is de-
creasing monotonically with Mach number increasing. This 
concluding is demonstrated in Fig.9 (Re=600, αi=10-6, x0= 
6.4·105). 

At last, we shall consider excitation of disturbances in-
side a boundary layer by external thermal disturbances. 
In a Fig. 10 the distributions of amplitudes of the distur-
bances of pressure, velocity and enthalpy (Ap, Av, Au, Aw, 
Ah), normalized on amplitude of a disturbance of an en-
thalpy in a free flow are shown (M=2, Re = 600, -αi =10 –

6/Pr, β= 10 –4, x0 = 6.4·105). The comparison of these results 
with   data in a Fig. 1 indicates that the shape of a depend-
ence Au on the normal coordinate is similar to a case of ex-
ternal vortical disturbances. However maximum of Au is 
much lower than in a Fig. 1. Nevertheless the velocity shape 
deformation is watched in this case too. 

 
Fig. 10 

 
In Fig.11 the dependence Umax on Reynold's number is 

shown at -αi=10-6 and different values of a wave number β 
for x0= 6.4·105.  The main feature of this dependence is the 
fast decreasing the disturbances amplitude of the longitudi-
nal velocity, at least, in area Re < 800.  However at large 
values of a Reynolds number the increase of disturbances 
inside a boundary layer can be seen.  

 
Fig.11 

CONCLUSIONS 
Thus the conducted researches demonstrate that the exter-

nal vortical wave can excite disturbances of the longitudinal 
velocity inside a boundary layer. Their intensity depends on 
the wave spectrum of disturbances and Mach number. At the 
given Reynold's number there are a reference value β= β* at 
which the amplitude of a longitudinal velocity disturbance 
inside a boundary layer is maximum. It explains the appear-
ance of longitudinal structures with the conforming perio-
dicity in a lateral direction, observed in experiments [13, 
15]. The phase velocity of the maximum disturbances inside 
a boundary layer varies from 0.5 u∞  (at Re=250) up to 
0.95 u∞  (at Re=700). With increase of a Mach number the 
intensity of the longitudinal velocity disturbances inside a 
boundary layer excited by the external vortical waves de-
creases. The efficiency of the flow deformation inside a 
boundary layer by external thermal waves is lower in com-
parison with a case of vortical ones. The results of the pre-
sent paper are agreed satisfactorily with the experiments [13, 
15] and theoretical papers [9,14, 16] but they differ quantita-
tively from data of Bertolotti [8]. Reasons of this difference 
remain are unknown.  
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