
 

 

  
Abstract— Time-frequency distribution (TFD) of signals gains 

increasing applications in various areas of sciences and engineering 
for processing non-stationary signals and nonlinear signals. This paper 
presents our work of TF analysis of encountered wave signal in ship 
science using the Hilbert-Huang transform (HHT). The results in this 
paper exhibit that the HHT based TFD of encountered wave signal has 
better resolution in comparison with those resulted from the traditional 
methods, such as short-time Fourier transform (STFT), wavelet 
transform (WT) TFD, and Choi-Williams TFD. 
 

Keywords— Time-frequency distribution, encountered waves, 
Hilbert-Huang transform, wavelet transform, short-time Fourier 
transform. 

I. INTRODUCTION 
IME-frequency (TF) description of nonstationary and or 
nonlinear signals is important for structural mechanics, see 

e.g. [1-3]. Spectral structure of encountered waves exerting on a 
ship hull plays a role in the optimal design of ship structures, see 
e.g. Troesch [32,33], Jensen [34], Gu et al. [35]. Hence, TF 
distribution (TFD) of encountered wave signal in good quality 
is greatly desired in ship mechanics (Gu et al. [35], Xu and Gu 
[36]). 

The power spectrum density (PSD) of a non-stationary signal 
is time varying. That is, it is also a function of time in addition to 
frequency. More precisely, the PSD of a non-stationary process 
{x(t)} should be expressed by ( , ),xxS t ω  which is called 
evolutionary spectrum. In the field of signal processing, it is 
usually termed TFD. By analogy with stationary processes, the 
PSD of a non-stationary process is defined as 

[ ]( , ) F ( , ) ( , ) ,j
xx xx xxS t r t r t e dωτω τ τ τ

∞ −

−∞
= = ∫                       (1) 

where ( , )xxr t τ  is the autocorrelation function of x(t) and F the 
operator of the Fourier transform. Eq. (1) implies that the PSD 
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of a non-stationary process should be analyzed in a TF plane. 
Some early work regarding the mathematical properties of 

TFD was reported by Priestley [4], Loynes [5], Mark [6], 
Shinozuka [7]. There are several types of methods that are 
commonly used in engineering to describe Sxx(t, ω), such as 
Priestley’s evolutionary spectrum [4], Mark’s physical 
spectrum [6], short-time Fourier transform (STFT) [8,9], TFDs 
in the Cohen class [10] (e.g., Chio-Williams distribution 
(CWD)), and wavelet-based TFD [11]. Recently, Huang and et 
al. introduced a new type of TFD based on the Hilbert-Huang 
transform (HHT) [12,13]. Its applications in practice are 
noticeable, see e.g. Du and Yang [14], Yang and Gao [15]. This 
paper aims at presenting our TF analysis of encountered wave 
signal using HHT in ship mechanics and demonstrating the 
resolution comparison with the TFDs based on STFT, WT, and 
CWD. The results imply that the HHT based TFD for 
encountered wave signal has higher resolution than other three. 

The rest of paper is organized as follows. In Section 2, the 
environment of signal measurement is briefed. We demonstrate 
the TFD comparisons in Section 3 together with the brief 
description of each computational method. Section 4 concludes 
the paper. 

II. ENVIRONMENT OF SIGNAL MEASUREMENT 
The signal was measured during a model test of a large-scaled 

oil tanker in the seakeeping test basin in the China Ship 
Scientific Research Center. It is in the size of 
69m(length)×46m(width)×4m(depth) (Fig. 1). 

 

 
 

Fig. 1. Profile of the basin for model test. 
 
The wave-height gauge was mounted at the point 2 meters 

away in front of the prow. The recorded data history of the 
encountered waves is indicated in Fig. 2. We shall discuss its 
TFD in the next section. 
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Fig. 2. Encountered waves: signal to be processed. 

 

III. TFDS OF ENCOUNTERED WAVES WITH COMPARISON 
DEMONSTRATIONS  

In this section, the TFDs of the encountered waves in Fig. 2 
are discussed based on STFT, WT, CWD, and HHT in turn. 

A. STFT of Encountered Wave Signal 
Linear transforms were first introduced by Gabor [16]. The 

basic idea behind Gabor regarding TF description of a signal is 
to obtain a TFD of the signal by performing Fourier analysis on 
the signal as it is when observed through a set of identical 
windows that are translated with respect to each other in time. 
The functionality of windows is to localize the signal in TF 
plane. The window function Gabor suggested is Gaussian. 

STFT is a kind of linear transforms. It is an extension of 
Gabor’s transform [17]. Denote ( , )xS t ω  the STFT of x(t). 
Then, 

( , ) ( ) ( ) ,j
xS t x h t e dωτω τ τ τ

∞ −

−∞
= −∫                                 (2) 

where h(t) is a window function. Using the Hamming window of 
the window size 127, we obtain the STFT based TFD of the 
encountered wave signal x(t) in Fig. 2 as that indicated in Fig. 3. 

Note that STFT stands for a set of methods. Different 
methods use different window functions. To select a window 
function so that it is optimally suitable for the signal to be 
processed may be an uneasy task in practice. In addition, the 
bandwidth of the analyzing functions is a constant that is 
independent of center frequency. Similarly, the time duration or 
window size of the analyzing functions is also a constant. To 
choose concrete values of the bandwidth and the time duration 
so that they are optimally suitable for the signal to be processed 
when a window function is given appears a hard problem. 
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Fig. 3. STFT based TFD of the encountered waves. 

 

B. CWD of Encountered Wave Signal 
Different from STFT, a class of TFDs is discussed by Cohen 

[10,18]. TFDs in the Cohen class are generalizations of the 
Wigner-Ville distribution that was first introduced by Wigner 
[19] in 1932 in quantum mechanics and Ville [20] in 1948 for 
TF analysis. 

Denote WD ( , )x t ω  the Wigner distribution (WD) of a 
real-valued signal x(t). Then, 

WD ( , ) .
2 2

j
x t x t x t e dωττ τω τ

∞ −

−∞

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫                        (3) 

The main unsatisfactory point of WD in practice is that it 
produces cross-terms. In fact, using the Fourier series, one has 

1( ) cos( ),n nx t A n tω ϕ= +∑ where An and ϕn are the amplitude 
and the initial phase of the nth harmonic of x(t), respectively. 
Thus, 

1 1

( / 2) ( / 2)
cos[ ( / 2) ] cos[ ( / 2) ].n n n n

x t x t
A n t A n t
τ τ

ω τ ϕ ω τ ϕ
+ −

= + + − +∑ ∑

  

 

(4) 
The above clearly interprets why there exist cross-terms in a 
WD. 

In order to suppress cross-terms and to obtain auto-terms as 
many as possible, a kernel is utilized in the Cohen class. Denote 
Φ(u, τ) a kernel function. In the general sense, we denote a TFD 
in the Cohen class by GTFD(t, ω), which is written by 

( )

1GTFD( , ) ( / 2) ( / 2)
2

                     ( , ) ,j ut ut

t x t x t

u e dtd duτω

ω τ τ
π

τ τ

∞ ∞ ∞

−∞ −∞ −∞

− −

= + −

Φ

∫ ∫ ∫  

(5) 
where Φ(u, τ) satisfies the conditions mentioned in [10]. 

The literature regarding kernel design is rich. Several 
commonly used kernels are Gaussian function discussed by 
Choi and Williams [22], Bessel function studied by Guo and et 
al. [23], corn-shaped kernel explained by Oh and Marks [21], 
and others [10]. The Gaussian function used in CWD is given by 

2 2

CWD ( , ; ) ,
u

u e
τ

στ σ
−

Φ =                                                  (6) 
where σ is a scaling factor to control its attenuation rate. Fig. 4 
shows the CWD of the encountered waves for σ = 1. 
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Fig. 4. CWD of the encountered waves for σ = 1. 
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Note that to select the optimal kernel for a signal being 
processed may be difficult since kernel selection is signal 
dependent (Baraniuk and Jones [24,25]). 

C. WT Based TFD of Encountered Waves 
WT of a signal x(t) is defined by 

*1WT ( ; ) ( ) ,x
tt a x g d

aa
ττ τ

∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫                          (7) 

where g(t) is the basic wavelet or the mother function, ∗ 
represents the complex conjugate, a > 0 is a scalar. The constant 
1/ a  is used for energy normalization. Different values of a 
and t cause the property of multiresolution. 

Note that g(t) in (7) can be taken as an impulse function of a 
linear system. Denote f0 the central frequency of the analysis 
system. Then, the scalar a can be expressed by 

0 .fa
f

=                                                                         (8) 

Hence, WT is a tool for TF analysis of signals with the local 
frequency f = af0, see e.g. Rioul and Vetterli [26], Strang and 
Nguyen [27]. 

There are a number of mother functions in the field, such as 
Daubechies’s 4-coefficient wavelet, Haar wavelet, Morlet 
wavelet, and so on. We use the Morlet wavelet to obtain WT 
based TFD of the encountered wave signal x(t) as indicated in 
Fig. 5. 
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Fig. 5. WT based TFD of the encountered wave signal. 
 

Note that the selection of the optimal mother function for a 
signal being processed may be a hard issue. 

D. HHT Based TFD of Encountered Waves 
By using HHT, a signal being analyzed can be represented in 

TF domain by combining the empirical mode decomposition 
(EMD) with the Hilbert transform (Huang and et al. [12,13]). 
Different from three approaches mentioned previously, EMD is 
adaptively data-driven, see e.g. Flandrin and Gonçalvès [29,30]. 

Denote H the operator of the Hilbert transform (HT). Then, 
H[x(t)] is given by 

1 ( )H[ ( )] ( ) .xx t y t d
t

τ τ
π τ

∞

−∞

=
−∫                                        (9) 

As any analytic signal z(t) can be expressed by the sum of its real 
part x(t) and the imaginary part y(t) that is the Hilbert transform 
of the real part (Papoulis [31, Chap. 7]), one has 

z(t) = x(t) + jy(t).                                                        (10) 
In the polar coordinate system, the above can be written by 

z(t) = a(t)exp[jϑ(t)],                                                  (11) 
where a(t) = [x2(t) + y2(t)]0.5 and ϑ(t) = tan−1[y(t)/x(t)] are the 
instantaneous amplitude and the instantaneous phase of z(t), 
respectively. Thus, x(t) can be recovered from z(t) by 

x(t) = Re[z(t)] = Re{a(t)exp[jϑ (t)]}.                         (12) 
Based on HT, therefore, the instantaneous frequency ω(t) is 
expressed by 

2 2

( ) ( ) ( ) ( ) ( )( ) .
( ) ( )

d t y t x t y t x tt
dt x t y t
ϑω −= =

+
                           (13) 

Note that to assure of the physical meaning of ω(t) requires 
that ϑ(t) must be a single-valued function over time, i.e., a 
mono-component function. A signal being processed in general, 
however, may not be mono-component but multi-component. 
Thus, a method to decompose x(t) into a series of 
mono-functions is desired. In this aspect, Huang and et al. 
developed a method called EMD that decomposes x(t) into a 
series of mono-functions termed intrinsic mode functions 
(IMFs). 

It is noted that, physically speaking, the necessary conditions 
to define a meaningful instantaneous frequency are that the 
signal being processed must be symmetric regarding the local 
zero mean, and have the same numbers of zero crossings and 
extrema. This implies that, in an IMF, the number of extrema 
and the number of zero crossings must be either equal or 
different at most by one in the whole data set, and the mean 
value of the envelope defined by the local maxima and the 
envelope defined by the local minima is zero at every point. 
Those conditions are strict such that the resulting IMF may not 
satisfy them exactly in general. Hence, the result is generally 
nearly a mono-component function instead of a perfect one. 
However, this does not matter in practice when one considers 
that signals to be processed usually include a certain amount of 
noise or measurement errors in addition to computation errors in 
signal processing. 

The procedure to decompose x(t) into a series of IMFs is as 
follows. 

First, identify all local maxima from x(t) and then connect 
them with the cubic spline line to form the upper envelope of 
x(t). Denote the upper envelope of x(t) by xup(t).  

Second, identify all local minima from x(t) and then connect 
them with the cubic spline line to form the lower envelope of 
x(t). Denote the lower envelope of x(t) by xlow(t).  

Third, compute the mean by 
m11(t) = [xup(t) + xlow(t)]/2                                          (14) 

and construct a new signal h11(t) by 
h11(t) = 11( ) ( ).x t m t−                                                  (15) 

In the ideal case, h11(t) is an IMF since it satisfies all the 
conditions of IMF. In practice, however, there may exist 
overshoots and undershoots during processing. This is 
particular true for processing encountered wave signals in ship 
mechanics. Those overshoots or undershoots may distort the 
mean values, accordingly make the envelope mean differ from 
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the true local mean, and, as a result, make h11(t) asymmetric. To 
deal with this practical issue, Huang and et al. suggested the 
fourth step below.  

Fourth, repeat the shifting process (15) by taking h11(t) as a 
new signal. After the kth iteration, we have 

h1k(t) = 1( 1) 1( ) ( ),k kh t m t− −                                          (16) 

where m1k(t) is the mean envelope after the kth iteration, and 
1( 1) ( )kh t−  is the difference between the signal and the mean 

envelope at the ( 1)thk −  iteration. Define h1k(t) as the first IMF 
component. Express it by 

c1(t) = h1k(t).                                                              (17) 
Fifth, having separated c1(t) from x(t), one has the residue 

given by 
r1(t) = 1( ) ( ).x t c t−                                                       (18) 

The criterion for stopping the iteration suggested by Huang and 
et al. is like this. Given the standard deviation expressed by 

1( 1)

2

1( 1) 1
2

0

( ) ( )
SD .

( )
k

N
k k

t

h t h t
h t

−

−

=

−
=∑                                        (19) 

Then, the iteration stops when SD is equal to or less than a 
predetermined value. Huang and et al. suggested that, typically, 
SD ≈ 0.2 ~ 0.3, which is very rigorous limit for the difference 
between two consecutive iteration. 

Sixth, treating r1(t) as a new signal and the above iteration 
procedure is repeated to extract the rest of IMFs to the signal 
x(t) as 

1 2 2

1

( ) ( ) ( )
.

( ) ( ) ( )n n n

r t c t r t

r t c t r t−

− =⎧
⎪
⎨
⎪ − =⎩

                                                (20) 

Seventh, the signal decomposition procedure ends when rn(t) 
becomes a monotonic function or a constant, which implies that 
no further IMFs can be extracted from x(t). 

Replacing (20) into (18), a series of IMFs of x(t) are obtained. 
Therefore, x(t) can be expressed as the combination of ci(t) plus 
the residue rn(t). That is, 

1
( ) ( ) ( ).

n

i n
i

x t c t r t
=

= +∑                                                  (21) 

Now, performing HT on ci(t) yields 

2 2( ) [ ( )] H[ ( )] ,i i ia t c t c t= + 1 H[ ( )]( ) tan .
( )
i

i
i

c tt
c t

ϑ − ⎧ ⎫
= ⎨ ⎬

⎩ ⎭
(22) 

The instantaneous frequency is given by 
( )( ) .i

i
d tt

dt
ϑω =                                                            (23) 

In the polar coordinate system, x(t) is expressed by 

1
( ) Re ( )exp ( ) ( ).

n

i i n
i

x t a t j t dt r tω
=

⎛ ⎞⎡ ⎤= +⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∫                     (24) 

Ignoring the residue is practically allowed since it is either a 
monotonic function or a constant. Doing so yields 

1
( ) Re ( ) exp ( ) .

n

i i
i

x t a t j t dtω
=

⎛ ⎞⎡ ⎤≈ ⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∫                         (25) 
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Fig. 6. IMFs of the encountered wave signal. 
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Fig. 7. HHT based TFD of the encountered wave signal. 
 

Let ( , )ia t ω  be the combination of the amplitude ( )ia t  and 
the instantaneous frequency ( )i tω  of the ith IMF. Denote the 
HHT of x(t) by HHT( , ).t ω  Then, 

1
HHT( , ) ( , ).

n

i
i

t a tω ω
=

=∑                                              (26) 

Fig. 6 indicates the IMFs and the residue of the encountered 
wave signal x(t). Fig. 7 is its HHT( , ).t ω  

E. Discussions 
Judging from Figs. 3, 4, 5, and 7, one sees that HHT( , )t ω  

clearly has higher resolution than those with STFT, CWD and 
WT. As a matter of fact, the basis of HHT is adaptively 
constructed according to the signal being analyzed while others 
are not. This advantage makes HHT superior to other three 
without the limitations caused by those like various window 
functions in STFT or different mother function in WT or 
different transform kernels in GTFD. In addition, HHT has no 
requirement in record length of signal being analyzed since its 
decomposition accuracy is adaptively satisfied with a given SD 
expressed in (19). For the Fourier type PSD, however, in order 
to obtain the desired resolution of PSD of ocean waves, the 
record length of wave signal is strictly required (Li [37]). 

IV. CONCLUSION 
We have discussed our TF analysis of the encountered wave 

signal. The results indicate that the HHT based TFD has high 
resolution. 
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