
 

 

  
Abstract—The equation of continuity is simultaneously solved 

with the two equations of motion in a coupled manner by application 
of the pseudo compressibility technique for the steady state 
problems. The set of two dimensional for the incompressible fluid is 
combined with a SGS (Sub-Grid Scale) eddy viscosity turbulence 
model. The discrete form of the two-dimensional flow equations are 
formulated using the Galerkin Finite Volume Method for 
unstructured mesh of triangular cells. Using unstructured meshes 
provides the merit of accurate geometrical modeling of the curved 
boundaries of the tanks. Satisfactory results are obtained by the use 
of proper boundary conditions. The accuracy of the model for the 
solution flow around circular cylinder at supercritical Reynolds 
number is assessed by comparison of computed results with 
experimental coefficient of pressure measurements. Then, the model 
is applied to simulate the changes in the pressure distributions due to 
the wind flow on two storage tanks in tandem arrangement. 
 
 

Keywords—Wind Pressure Load, SGS Turbulent Viscosity 
Model, Storage Tanks Interference, Triangle Unstructured Mesh, 2D 
Galerkin Finite Volume Method 

I. INTRODUCTION 
The availability of high performance digital computers and 

development of efficient numerical models techniques have 
accelerated the use of Computational Fluid Dynamics. The 
control over properties and behavior of fluid flow and relative 
parameters are the advantages offered by CFD which make it 
suitable for the simulation of the applied problems. 
Consequently, the computer simulation of complicated flow 
cases has become one of the challenging areas of the research 
works.  

The interaction of neighboring tanks may considerably 
change the pressure filed on a storage tank. More over, wind 
flow through particular arrangement of storage tanks may 
produce unexpected pressure fields, which may cause 
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disastrous structural loading condition. Therefore, modeling of 
final design is recommended by most of the codes of practice 
to evaluate actual pressure loads on them. 

Several works on numerical simulation of steady and time 
dependent flow around circular cylinder using various 
turbulent models are reported in the literature. Murakami 
reviewed successful researches on numerical modeling of 
flow past 2D cylinders and CFD analysis of wind flow [1]. 
Recently, some research satisfactory numerical simulations of 
the flow around circular cylinders using Sub-Grid Scale 
turbulent model is reported by Salvett [2]. 

In the software developed in this work, the governing 
equations for incompressible wind flow are solved on 
unstructured finite volumes. By application of the pseudo 
compressibility technique, the equation of continuity can be 
simultaneously solved with the equations of motion in a 
coupled manner for the steady state problems. This technique 
helps coupling the pressure and the velocity fields during the 
explicit computation procedure of the incompressible flow 
problems. The Sub-Grid Scale model is used to compute the 
turbulent eddy viscosity coefficient in diffusion terms of the 
momentum equations. The discrete form of the two-
dimensional flow equations are formulated using the Galerkin 
Finite Volume for unstructured mesh of triangles. Using 
unstructured meshes provides great flexibility for modeling 
the flow in geometrically complex domains.  

The ability of the developed Galerkin finite volume solver, 
is applies to simulate wind flow at supercritical Reynolds 
number (Re=4.5×105) on the pressure distribution on circular 
cylinder is presented and discussed. Then, as an application of 
the developed model, computation of pressure distribution of 
two circular tanks with different diameter in tandem 
arrangement at supercritical Reynolds number (1.43×108) is 
performed and the results are discussed. 

II. GOVERNING EQUATION 
In this paper, The Navier-Stokes equations for an 

incompressible fluid combined with a sub grid scale (SGS) 
turbulence viscosity model are used for the flow around 
circular cylinder. The non-dimensional form of the governing 
equations in Cartesian coordinates can be written as: 
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W represents the conserved variables while, cc GF ,  are 

the components of convective flux vector and vv GF ,  are the 
components of viscous flux vector of W in non-dimensional 
coordinates x and y,  respectively. Components of velocity u, 
v and pressure p, are three dependent variables. Tν is the 

summation of kinematic viscosity ν and eddy viscosity tν . 
The variables of above equations are converted to non-

dimensional form by dividing x and y by L, a reference 
length u and v by oU , upstream wind velocity, and p by 

2
0Uρ .  

The parameter β  is introduced using the analogy to the 
speed of sound in equation of state of compressible flow. 
Application of this pseudo compressible transient term 
converts the elliptic system of incompressible flow equations 
into a set of hyperbolic type equations [3]. Ideally, the value 
of the pseudo compressibility is to be chosen so that the speed 
of the introduced waves approaches that of the incompressible 
flow. This, however, introduces a problem of contaminating 
the accuracy of the numerical algorithm, as well as affecting 
the stability property. On the other hand, if the pseudo 
compressibility parameter is chosen such that these waves 
travel too slowly, then the variation of the pressure field 
accompanying these waves is very slow. Therefore, a method 
of controlling the speed of pressure waves is a key to the 

success of this approach. The theory for the method of pseudo 
compressibility technique is presented in the literature [4].  

Some algorithms have used constant value of pseudo 
compressibility parameter and some workers have developed 
sophisticated algorithms for solving mixed incompressible and 
compressible problems [5]. However, the value of the 
parameter may be considered as a function of local velocity 
using following formula proposed [6]  

|)|( 22
min

2 UCorMaximum ββ =    
 In order to prevent numerical difficulties in the region of 

very small velocities (ie, in the vicinity of stagnation points), 
the parameter 2

minβ is considered in the range of 0.1 to 0.3, 
and optimum C  is suggested between 1 and 5 [7]. 

The method of the pseudo compressibility can also be used 
to solve unsteady problems. For this propose, by considering 
additional transient term. Before advancing in time, the 
pressure must be iterated until a divergence free velocity field 
is obtained within a desired accuracy. The approach in solving 
a time-accurate problem has absorbed considerable attentions 
[8]. In present paper, the primary interest is to develop a 
method of obtaining steady-state solutions 
 

III. FINITE VOLUME FORMULATION 

The governing equations can be changed to discrete form 
for the unstructured meshes by the application of the Galerkin 
Finite Volume Method. This method ends up with the 
following 2D formulation after multi-plying the vector form 
of the governing equations by linear shape function of 
triangular elements and integration by part [9, 10]: 
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Where, iW  represents conserved variables at the center of 

control volume Ωi.  
Here, cc GF , are the mean values of convective fluxes at 

the control volume boundary faces and  vv GF ,  are the mean 
values of viscous fluxes which are computed at each triangle. 
Superscripts n and n+1 show nth and the n+1th computational 
steps. Δt is the computational step (proportional to the 
minimum mesh spacing) applied between time stages n and 
n+1. In present study, a three-stage Runge-Kutta scheme is 
used for stabilizing the computational process by damping 
high frequency errors, which this in turn, relaxes CFL 
condition. 

In this study, the Sub-Grid Scale (SGS) model is used for 
computation of the turbulence viscosity, as follow [11]: 

 
212 ]21[)( ijijsSGS ssC Δ=ν

         2,1, =ji              (3)   
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Where, are for the two-dimensional computation in this 

paper. The Sub-Grid Scale model is used for definition 
of SGSν , where Δ  is the area of a triangular cell and the 
Cs=0.15 are used. In equation 4, vu , are mean values of 
velocity in each edge of the triangular element. xΔ , yΔ for 
edge k of control volume Ω  are computed as follow: 

 

12 nnk yyy −=Δ ,   
12 nnk xxx −=Δ                    (5) 

 
In order to damp unwanted numerical oscillations 

associated with the explicit solution of the above algebraic 
equation a fourth order (Bi-Harmonic) numerical dissipation 
term is added to the convective, )( iWC  and viscous, )( iWD  
terms. Where; 
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The numerical dissipation term, is formed by using the 

Laplacian operator as follow; 
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The Laplacian operator at every node i, is computed using 

the variables W at two end nodes of all edgeN  edges (meeting 

node i)  
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In equation 8,  iλ , the scaling factors of the edges 
associated with the end nodes i of the edge k. This formulation 
is adopted using the local maximum value of the spectral radii 
Jacobian matrix of the governing equations and the size of the 
mesh spacing as [12]: 
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Using the above described (Galerkin Finite Volume) 

formulations, similar to the Cell-Vertex Finite Volume 
Methods, the flow variables are explicitly computed at the 

nodal points. Therefore, there is no need to use the 
reconstruction method, and hence, it is computationally 
superior to the Cell Centre Finite Volume Methods [13]. 
Furthermore, unlike the Galerkin Finite Element Methods, the 
explicit nature of the formulations paves the way for matrix 
free computations procedure [14]. 

 

IV. MODEL VERIFICATION  

In order to assess the changes of pressure distribution on 
the circular cylinder with standard geometrical feature, the 
flow solver is applied to solve the turbulent flow on a mesh of 
unstructured triangles (Fig.1). 
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         Fig. 1, Computational domain of the problem 

   
In this work, No-slipping condition is considered at the 

solid wall nodes by setting zero normal and tangential 
components of computed velocities at wall nodes. At inflow 
boundaries unit free stream velocity and at outflow boundaries 
unit pressure is imposed. The free stream flow parameters 
(outflow pressure and inflow velocity) are set at every 
computational node as initial conditions. 

Accuracy of the developed turbulent flow solver is 
examined by solving case with experimental solutions which 
is done in Peking University. The tunnel has an open circular 
test section of 2.25 m in diameter and 3.65 m long. Maximum 
speed was 50 m/s [15].  

The results on the cylinder wall at supercritical Reynolds 
number (Re=4.5×105) are plotted in terms of velocity vectors 
in (Fig.2). Distribution of the coefficient of pressure on 
cylinder wall are compared with the experimental 
measurements] in (Fig. 3) and (Fig. 4), for the computations 
without and with SGS turbulent eddy viscosity model, 
respectively. Table 1 shows the percentage of changes in 
pressure coefficient due to application of SGS turbulent eddy 
viscosity model. 
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Fig.2, Computed velocity vectors at Re=4.5×105 
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Fig.3, Coefficient of pressure on cylinder walls, 
(Numerical results without turbulent viscosity) 
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Fig. 4, Coefficient of pressure on cylinder walls, 
(Numerical results with SGS turbulent viscosity) 
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V. APPLICATION OF THE MODEL 
According to API 650 storage tanks should remain stable 
during hurricanes with the speed of 100m/h (44m/s) [16]. For 
air we have 3/23.1 mkg=ρ , 510795.1 −×=μ ,So 
Reynolds number for tank A is computed as; 

μ
ρvD

=Re =
510795.1

5.474423.1
−×

××
1.43 × 810  

The performance of the this flow-solver is examined by 
solving turbulence flow around two storage tanks in the 
KAZERUN power station located in south part of IRAN. In 
figure 5, schematic diagram shows the arrangement of two 
tanks in KAZERUN site. 

 
Fig. 5. Schematic diagram of the arrangement of two tanks 

in KAZERUN power plant 
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Fig. 6. Mesh for two tanks in tandem arrangement 
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7% 12% 
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In order to assess the changes of pressure distribution when 

two tanks are in tandem arrangement the flow solver is 
applied to solve the turbulence flow on three different meshes; 
first tank A, second tank B and finally two tanks with each 
other (Fig.6).  

In this work, No-slipping condition is considered at the 
solid wall nodes by setting zero normal and tangential 
components of computed velocities at wall nodes. At inflow 
boundaries unit free stream velocity and at outflow boundaries 
unit pressure is imposed. The free stream flow parameters 
(outflow pressure and inflow velocity) are set at every 
computational node as initial conditions.  

The results on the tank A at supercritical Reynolds number 
(1.43 × 810 ) is plotted in terms of velocity vectors 
respectively (Fig.7). 

 
Fig. 7. Velocity vectors around a single tank (A) at 

supercritical  Reynolds number (4.52×105) 
 

 
Fig. 8. Velocity vectors around two tandem tanks (A and B) at 

supercritical  Reynolds number (4.52×105) 
 

For the case of two storage tanks with tandem arrangement 
velocity vectors are presented in figure 8. In this case, two 
tanks behave as a single body because the spacing ratio 
between two tanks is small. As can be seen, there is almost no 
fluid flow in the gap of between two tanks.  

Pressure distributions around tank A for the conditions of 
with and without neighboring tank is plotted in figure 9. 
Minimum pressure reaches the value of (-2.5) and then raises 

to (+1). Pressure distribution changes around tank A, where 
two tanks are in tandem. It can be clearly seen that the 
pressure distribution on tank A is reduced by considering the 
neighborhood of the downstream thank. 
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Fig. 9. Pressure distribution around tank A 
 (located up-stream of tank B) 
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Fig. 10. Pressure distribution around tank B  
(down-stream of tank A) 

 
Changes in tank B pressure distribution, where two tanks 

are in tandem, are illustrated in figure 10. It is obvious that the 
pressure distribution on tank B is highly reduced due to 
existence of upstream tank.  

Percentage of decrease in pressure coefficient on tanks A 
and B after addition of their neighboring tank are tabulated in 
table 2. The pressure coefficient decreases up to 90% 
in 0=θ . 
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Table 2. Changes on pressure coefficient on tank A and B due 
to existence of neighboring tank 

 

VI. CONCLUSION 
A Galerkin finite volume flow-solver, in which there is no 

need to apply any reconstruction method and cumbersome 
matrix computations is introduced for explicitly computation 
of the turbulent air flow variables at the nodal points of 
unstructured triangular meshes. In the utilized algorithm, there 
is no need to use the reconstruction method, and hence, it is 
computationally superior to the Cell Centre Finite Volume 
Methods and it is more accurate than the Vertex Centre Finite 
Volume methods particularly at the control volumes located at 
boundaries. Furthermore, unlike the Galerkin Finite Element 
Methods, the explicit nature of the formulations makes it free 
from matrix computations. 

This wall function free software is successfully used for 
investigation of SGS turbulent eddy viscosity model on 
computation of wind pressure at supercritical Reynolds 
number (Re=4.5×105). From the computed results, it can be 
stated that complicated physical conditions around a 
geometrically complex object can accurately modeled without 
application of any wall function. However, application of 
coarse mesh near the no slip wall may associate with some 
errors in computed turbulent pressure on the solid wall of the 
cylinder. 

For the application case of two tanks in tandem 
arrangement, the downstream tank is submerged in the wake 
of the up stream one. When the spacing ratio is small, two 
tanks behave as a single body. The computed results show that 
the interference will greatly affect the downstream tank if it 
locates in the wake region of the up stream tank, and, the 
downstream tank is wrapped in the shear layers separated 
from the upstream tank. In the present case study of tandem 
arrangement, zero computed pressure is detected on a wide 
area in the front part of the down stream tank.  

REFERENCES   
[1] Murakami S. and Mochida A. On turbulent vortex shedding flow past 

2D square cylinder predicted by CFD, Journal of Wind Engineering 
Industrial Aerodynamics.  54/55, 1995, pp 191-211. 

[2]  Salvatici E. and Salvetti M.V. large eddy simulations of the flow around 
a circular cylinder: effects of grid resolution and sub-grid scale 
modeling, Journal of Wind and Structures, Vol. 6, No. 6, 2003, pp 419-
436. 

[3] Chorin A. A Numerical Method for Solving Incompressible Viscous 
Flow Problems”, Journal of Computational Physics, Vol. 2, 1967, pp 
12-26. 

[4] Chang J.L and Kwak D. On the Method of Pseudo Compressibility for 
Numerically Solving Incompressible Flow, AIAA 84-0252, 22nd 
Aerospace Science Meeting and Exhibition, Reno, 1984.  

[5] Turkel E., Preconditioning Methods for Solving the Incompressible and 
Low Speed Compressible Equations, ICASE Report 86-14, 1986. 

[6] Dreyer. J., Finite Volume Solution to the Steady Incompressible Euler 
Equation on Unstructured Triangular Meshes, M.Sc. Thesis, MAE 
Dept., Princeton University,  1990. 

[7] Rizzi A. and Eriksson L., Computation of Inviscid Incompressible Flow 
with Rotation, Journal of Fluid mechanic, Vol. 153, 1985, pp 275-312. 

[8] Belov A., Martinelli L. and Jameson A., A New Implicit Algorithm with 
Multi-grid for Unsteady Incompressible Flow Calculations, AIAA 95-
0049, 33rd Aerospace Science Meeting and Exhibition, Reno, 1995. 

[9] Sykes L. A. Development of a Two-Dimensional Navier-stokes 
Algorithm for Unstructured Triangular Grids, ARA Report 80, April 
1990. 

[10] Sabbagh-Yazdi R. S., Simulation of the Incompressible Flow Using the 
Artificicial  Compressibility Method, Ph.D Thesis , University of  Wales, 
Swansea , 1997 

[11] Yu D., Kareem A. Two-Dimensional Simulation of Flow around 
Rectangular Prisms, Journal of Wind Engineering and Industrial 
Aerodynamics 62, 1996, pp 131-161. 

[12] Sabbagh-Yazdi S.R. and Hadian A. Accuracy Assessment of Solving 
Pseudo Compressible Euler Equations on Unstructured Finite Volumes 
ANZIAMJ Vol. 46, No. C, 2004,  Available at: http:// 
anziamj.austms.org.au/V46/CTAC2004/yazd 

[13]  Aftosmis M. Gaitonde D., Sean Tavares T. On the Accuracy, Stability, 
and Monotonicity of Various Reconstruction Algorithms for 
Unstructured Meshes, AIAA 32nd Aerospa.ce Sciences Meeting and 
Exhibit, Reno, NV, US, AIAA-94-0415, 1994.  

[14] Iskandarani M., Levin JC, Choi B.J., Haidvogel D.B., Comparison of 
Advection Schemes for High-Order h-p Finite Element and Finite 
Volume Methods, Journal of  Ocean Modeling 10, 2005, pp 233-252. 

[15] Gu Zh., On interference between two circular cylinders at supercritical 
Reynolds number, Journal of Wind Engineering and Industrial 
Aerodynamics 62, 1996, pp. 175-190. 

[16] Lieb J.M.  API 650 External pressure design appendix. Tank Industry 
Consultants, 2003. 

 
 
 
 
 
 
 
First Author's biography may be found in following site: 
http://sahand.kntu.ac.ir/~syazdi/ 
 
 
 
 
 

180θ =90θ =  0θ =  θ  

0% 17% 2% Decrease in pressure 
coefficient on tank A 

50% 53% 90% Decrease in pressure 
coefficient on tank B 
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