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Abstract—Modern oil refineries typically use a high number of
sensors that generate a massive amount of data about various process
variables in the infrastructure. This data can be used to perform
predictive maintenance, an approach to predict impending equipment
failures and mitigate downtime in refineries. This paper presents the
use of multi-target regression approach for predictive maintenance.
Multi-target regression is a modeling approach that aims to predict
multiple targets simultaneously. The relationships between multiple
process variables are modeled using deep learning methods, while
the model error is evaluated using cumulative sum method to detect
faults that might potentially become failures. Unlike many existing
solutions, our approach does not rely on the availability of data that
captures the presence of faults in the plant. The proposed approach is
demonstrated using real industrial data from a crude distiller in Shell
Pernis. The results show a speed-up in modeling time by 16x and
an improved early fault detection time by 1.2x as compared with the
single-regression approach. Furthermore, the proposed approach is
also able to isolate the faults by producing higher errors in predicting
faulty equipment compared with healthy equipment.

Keywords—cumulative sum, deep learning, machine learning,
multi-target regression, predictive maintenance.

I. INTRODUCTION

AN oil refinery is a group of manufacturing plants that
converts crude oil into more useful products, such as

gasoline, diesel, and kerosene [1]. It is typically large and com-
plex, containing many different plants and types of equipment.
As an example, Shell Pernis, the biggest refinery in Europe,
has 60 different plants and is almost as large as 1,000 football
fields. Safety is an important aspect of refinery operation.
Therefore, a large number of sensors is used for monitoring
a variety of process variables in the refinery, such as pressure
and temperature.

Typically, the equipment in a plant is kept in good condition
by performing regular maintenance activities. However, main-
tenance requires downtime and incurs high costs because it
interrupts on-going operational activities. Traditionally, main-
tenance can be classified as reactive maintenance, where
equipment is replaced after the presence of faults, and preven-
tive maintenance, where equipment is inspected or replaced
prematurely without any fault. Predictive maintenance is a
modern approach that uses information about current equip-
ment conditions in order to make correct maintenance deci-
sions for maximizing plant availability [2]. It aims to minimize
unscheduled downtime due to unforeseen faults and scheduled
downtime as recommended by equipment manufacturers or
domain experts. Despite its benefit, specific knowledge about
the underlying processes in plants is required to perform
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predictive maintenance. Manually analyzing a huge amount
of data from a large number of sensors by domain experts
is challenging, time-consuming, and not scalable. Therefore,
a number of studies have been performed to automate the
process of analyzing sensor data using various methods.

Fault detection and isolation are part of predictive main-
tenance. A fault can be defined as an undesired state of a
system or equipment that deteriorates the performance of the
system or equipment [3]. In extreme cases, a fault can degrade
the state of the equipment to such a degree that it causes an
externally detectable failure. This is usually the result of the
progression of the fault over time [4]. Therefore, it is crucial
that a fault can be detected as soon as possible before it evolves
into a failure. Meanwhile, fault isolation can be described as
a process of finding the location of faults in the plant.

Machine learning enables computers to learn certain tasks
indirectly by extracting patterns from data using specialized
algorithms without having to directly program the exact rules
for the target task [5]. It can be used to model a variety
of processes in a plant by learning patterns in sensor data.
However, most classical machine learning methods still rely
on feature engineering [6], [7], which can be described as
the process of extracting representations or features from raw
data for machine learning algorithms. Deep learning is a
family of methods in machine learning, which has the ability
to learn the required features from data automatically [8].
Compared to other machine learning methods, deep learning
requires less human intervention in feature engineering. Recent
studies show that, by using deep learning, it is possible to
make computers outperform humans in several tasks, such as
recognizing traffic signs [9] or playing the game of Go [10].

A typical plant in a refinery uses hundreds or thousands
of control valves to make sure various processes can be
performed [11], [12]. As a result, control valves represent
one of the most critical equipment in refineries. At the same
time, modeling all these valves individually is an expensive,
labour-intensive process. Therefore, it is desired that a single
model created using machine learning methods can be used to
monitor a large number of control valves. Furthermore, it is
also desired that when a fault is detected, the location of the
fault can also be identified, so-called fault isolation. In this
paper, a multi-target regression approach using deep learning
methods is proposed to predict the conditions of several control
valves in a plant. Multi-target or multi-output regression is an
approach that aims to simultaneously predict a set of multiple
numerical values given a set of inputs [13]. It can be used
to increase the efficiency and scalability of the predictive
maintenance approach in large refineries like Shell Pernis.

Data that represent all possible faulty conditions is difficult
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to obtain, while simulated data may not be realistic. Therefore,
real industrial data is used in this paper, where the models
are trained only with data that represent normal conditions of
the plant. Two variants of deep learning methods, recurrent
neural networks (RNNs) and autoencoders, are proposed in
this paper. The error between model prediction and measured
data from sensors is then evaluated by using cumulative
sum (CUSUM) [14] method to determine the condition of
control valves. It is desired that during normal conditions, the
prediction error is close to zero, while during the presence of
faults, the prediction error would deviate strongly from zero.

The contributions of this paper are as follows.
1) Modeling normal condition of a plant in a refinery

using deep learning methods through the multi-target
regression approach.

2) Identifying the faulty control valve by evaluating the
prediction error using the CUSUM method.

3) Validating the proposed approach with real industrial
data.

The remainder of this paper is organized as follows. Existing
solutions using machine learning methods are discussed in
Section II. In Section III, the details of the proposed deep
learning and CUSUM methods are presented. The case study
and the used dataset are described in Section IV. The experi-
mental results and analysis are presented in Section V. Finally,
the summary and conclusions are stated in Section VI.

II. RELATED WORK

A. Machine Learning Methods

Machine learning methods have been proposed in several
studies for detecting faults in a number of complex sys-
tems [15]–[17]. However, these studies still utilize feature
engineering methods to make machine learning models work
well in detecting faults. Yan [15] used principal component
analysis (PCA) for feature engineering and random forests for
classifying aircraft engines conditions. He et al. [16] also used
PCA for feature engineering, while support vector machines
(SVMs) was used for creating models to detect faults in
semiconductor etching systems. Meanwhile, Li et al. [17] used
wavelet transform methods to process the raw data before
using PCA for generating models to detect faults in building
automation systems. These methods use classical machine
learning algorithms that require manual feature engineering.

Deep learning has gained popularity lately over other ma-
chine learning methods because of its capability to automat-
ically learn useful features from data. Recent studies have
demonstrated the capability of deep learning to detect faults
in a variety of use cases. Tamilselvan et al. [18] used deep
belief networks (DBNs) for classifying aircraft engines and
power transformers conditions. Jia et al. [19] used stacked
autoencoders trained with backpropagation algorithm for clas-
sifying rotating machinery conditions, while Qi et al. [20] used
stacked sparse autoencoders trained with the same algorithm
for a similar task. In addition, Haidong et al. [21] used
deep autoencoders trained with artificial fish swarm algorithm
for classifying rotating machinery conditions. To accelerate
training and improve the precision of DBNs models, Tang et

al. [22] used Nesterov momentum method in model training
for classifying rotating machinery conditions. In contrast, Tran
et al. [23] used Teager-Kaiser energy operator method for
feature engineering and DBNs for creating models to classify
different reciprocating compressors conditions, ignoring the
capability of deep learning to learn required features from
raw data automatically. However, these studies still need
data that represent normal and abnormal conditions to train
machine learning models, which is typically hard to obtain.
Furthermore, these studies have not explored the ability of
machine learning methods for fault isolation, which is more
challenging than fault detection [4].

B. Multi-target Regression Approach

Machine learning methods have also been proposed for de-
tecting faulty control valves in several studies. Yang et al. [24]
used data from normal and abnormal conditions to train SVMs
models for classifying valves conditions. Karpenko et al. [25]
also used data from normal and abnormal conditions, while
using deep neural networks for classifying valves conditions.
Meanwhile, Suursalu [26] only used data from normal con-
ditions and explored several machine learning methods for
detecting faulty valves in a crude distiller. The results show
that RNNs provide better results compared with ridge regres-
sion and deep neural networks (without recurrent connections).
However, this study only used models with a single target to
predict multiple control valves, which have disadvantages over
the multi-target regression approach proposed in this paper.

The multi-target regression approach has been explored in
a few studies to detect faults in complex systems. Timusk et
al. [27] explored various feature extraction methods for feature
engineering and several machine learning methods, including
PCA and autoencoders, for creating models to detect faults in
excavator machinery. Only data from normal conditions was
used in model training, while prediction errors were used to
indicate the presence of faults in the system. However, this
study still utilized feature engineering methods and only used
simulated data in evaluating the models. Talebi et al. [28] also
used the prediction error to indicate the presence of faults
in satellite’s attitude control systems. This study has shown
that multi-target regression approach using RNNs can be used
to detect and isolate faults in complex systems. The results
show that when a fault occurs in one of the equipment in the
system, only the prediction of that specific equipment produces
a high error. However, this study also only used simulated data.
Meanwhile, our approach differs by using noisy realistic data
and using CUSUM method to handle the noise.

C. Evaluation Metrics

Typically, the average prediction error of all outputs is used
to evaluate multi-output models [13]. However, our paper is
focused on detecting and isolating faults in complex systems;
thus evaluating each output individually is preferred. In order
to isolate faults in specific output, mean squared error (MSE)
is the most commonly used error metric in the regression
setting [29]. However, MSE is sensitive to noise, hence it
is not suitable for noisy industrial data that is used in this
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Fig. 1. An example of deep neural networks architecture

paper. CUSUM is an alternative method that can be used
since it calculates the cumulative sum of sequential data,
thus eliminating small noise over time. Goh et al. [30] used
CUSUM to reduce the number of false positives in detecting
anomalies in a water treatment test bed. In addition, Leger
et al. [3] also used CUSUM to detect small deviations in the
process variables of a nuclear reactor test bed.

III. METHODOLOGY

A. Deep Learning

Deep learning can be described as the application of neural
networks, a family of methods in machine learning, with
multiple layers where the outputs of each layer are the inputs
of the next layer. Unlike other machine learning methods, deep
learning methods are not only useful for learning complex
models but also for learning features automatically. Typically,
manually designing features in machine learning is challenging
and time-consuming. The ability of deep learning to learn
features automatically can be obtained by composing multiple
functions, where each function transforms a representation at
one level into another representation at a higher level. For
example, a chain of functions made from three functions can

be formulated as f
(
x
)
= f

(
3
)(
f

(
2
)(
f

(
1
)(
x
)))

[7]. In this
example, x is the original set of input features and f

(
x
)

is the

output of the model. Meanwhile, f
(
1
)

is the first layer, f
(
2
)

is the second layer, and so on. The first and second layer are
called hidden layers, while the last layer is called output layer.
In the case of learning image data, deep neural networks might
learn the presence of edges in the first layer, the presence of
corners in the second layer, and the presence of objects in the
last layer.

Neural networks are a family of machine learning methods
that are inspired by the networks of brains [31]. Like brains,
neural networks are made of multiple computing cells called
neurons. Mathematically, a neuron in neural networks can be
defined as:

y = g

(
b+

m∑
j=1

vjwj

)
(1)

where v1, v2, ..., vm are the inputs, w1, w2, ..., wm are the input
weights, b is the bias, g is the activation function, and y is the
output of the neuron. In the case of neural networks models,
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Fig. 2. An example of recurrent neural networks architecture

the weights and bias of neurons are the model parameters.
Hyperbolic tangent activation function is used in this paper to
compute the output of the neuron, which is defined as:

g(a) =
ea − e−a

ea + e−a
(2)

When deep neural networks receive an input v, the information
flows forward through the networks and produce outputs in
the last layer. This process is called forward propagation.
Furthermore, each layer in deep neural networks can be made
of multiple neurons that act in parallel, as can be seen in
Figure 1.

Recurrent neural networks (RNNs) are a type of neural
networks that use recurrent connections in the networks [32].
It is suitable to process sequential data, such as speech, text,
and time-series data. In sequential data, it is assumed that each
data point is related to the previous data points. Therefore,
when processing a set of inputs at state t, the inputs of the
previous states should be considered. In RNNs, the recurrent
connections are used to include the inputs of the previous
states to produce the outputs of the networks, as depicted in
Figure 2. With a sequence of values x(1), x(2), ..., x(t) as the
inputs, the computation in the hidden layers of RNNs can be
defined as [7]:

s(t) = f
(
s(t−1), x(t); θ

)
(3)

where s(t) is the outputs at state t, s(t−1) is the outputs of the
previous state, and x(t) is the inputs at state t.

Autoencoders are neural networks that are designed to
convert their inputs into a code and then reconstruct the inputs
back from the code [33]. The results from the reconstruction
are the outputs of the networks, thus the number of neurons
in the input layer of autoencoders is always the same as the
output layer, as depicted in Figure 3. Therefore, this type of
neural networks can be seen as consisting of two components:
an encoder, which encodes the inputs to the code, and a
decoder, which reconstructs the inputs from the code. The
prediction error of autoencoders is evaluated by using a cost
function defined as:

J
(
θe, θd

)
=

n∑
k=1

(
xk − d

(
e
(
xk; θe

)
; θd
))

(4)
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Fig. 3. An example of autoencoder architecture

where x1, x2, ..., xn are the model inputs, e is the encoder
function, θe is the encoder parameters, d is the decoder
function, and θd is the decoder parameters.

B. Cumulative Sum

Cumulative sum (CUSUM) is a sequential analysis method
that is suitable to detect changes in sequential data. Unlike
simulated or artificial data, real industrial data often contains
noise. CUSUM calculates the cumulative sum of errors over
time to handle noise. The CUSUM formula that is used in this
paper is defined as:

Ct = max[0, et −K + Ct−1] (5)

where et is the error at state t, K is the slack variable, Ct is
the cumulated error until state t, and Ct−1 is the cumulated
error until previous state. Slack variable can be defined as
the variable that determines the sensitivity of the proposed
approach to measure the error. When the error is greater than
the slack variable, the CUSUM value will start growing until
the error is smaller than the slack variable.

Each output variable of deep learning models has its own
CUSUM value. The idea is when there is a fault in the plant,
the CUSUM values can be used to discover the source of the
fault and isolate it. It is desired that when there is no fault in
the plant, CUSUM values of all outputs remain close to zero.
Meanwhile, when there is a fault, one or some CUSUM values
are deviating from zero. It is crucial that when a CUSUM value
starts growing, the information can be discovered as early as
possible to prevent failures.

C. Predictive Maintenance Pipeline

This paper proposes a multi-target regression approach
for predictive maintenance using deep learning and CUSUM
methods where only data from normal conditions is needed to
train a model for detecting and isolating faults in refineries.
Since only data from normal conditions is used in model
training, the proposed approach provides more advantages
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Fig. 4. An example of multi-target neural networks architecture

because data from abnormal conditions is difficult to obtain.
The reason for using the multi-target regression approach
is the number of control valves in refineries that need to
be monitored, which can be hundreds or thousands. The
multi-target regression approach can be implemented by using
more than one neuron in the output layer of recurrent neural
networks, as can be seen in Figure 4.

The predictive maintenance pipeline used in this paper is
depicted in Figure 5. First, historical data that represents
normal conditions of the plant is used to create a model
using deep learning method. The training process is performed
by adjusting the model parameters such that the prediction
error of all outputs is minimized. Once the model is able
to achieve a certain target performance, it is then used to
analyze new unseen data. The trained model uses new data
to make predictions, which will be evaluated using CUSUM
method. If the cumulated error exceeds a certain threshold,
a notification can be sent to trigger further investigation
or maintenance activities. Unnecessary maintenance activities
can be minimized while still preventing failures to happen.
Therefore, by using predictive maintenance strategy, the plant
availability time can be maximized.

Historical 
data 

Modeling normal
condition

Making prediction

Error exceeds
pre­defined 
threshold?

New 
data 

Performing further
investigation
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Fig. 5. Predictive maintenance pipeline
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IV. CASE STUDY AT SHELL PERNIS

The proposed multi-target regression approach using deep
learning and CUSUM method is demonstrated with real indus-
trial data from a crude distiller at Shell Pernis. Crude distiller
is a typical plant that is used to distill crude oil into several
fractions which will be processed further in other plants. It is
a complex processing unit that is controlled by a distributed
control system using a variety of sensors and control valves.
Control valves and the dataset used in this paper will be
described in this section.

A. Control Valve

Control valves are a type of valves that are controlled by
signals from a controller to control the passage of liquid or
gas in the plants. This type of equipment is not only used
in crude distillers but also other types of plants. There could
be thousands of control valves used in a refinery. Therefore,
control valves are considered as one type of critical equipment
in refineries. In this case, the controller is a smart and complex
system that controls many control valves based on a variety
of sensors, as illustrated in Figure 6. During model training,
the deep learning models are trying to learn the status of
multiple control valves based on data that represent the normal
conditions of the crude distiller. When new data that represent
the current conditions does not match with the models, a fault
might occur somewhere inside the crude distiller.

Controller  Sensor 

Oil 

Feedback 

Control 
Signal Process Variable

Control 
Valve 

Fig. 6. Smart control system in the plant

The amount of liquid or gas that goes through a valve at a
time, or flow rate, is determined by the opening position of the
valve. In this case, the opening position of control valves is
measured by percentage. A valve is fully close if the opening
position is 0% and fully open if the opening position is 100%.
Therefore, increasing the opening position of the valve will
increase the flow rate as well. However, there are various types
of relationships between the opening position of control valves
and the flow rate, which are known as flow characteristics.
Typically, there are three types of flow characteristics: quick-
opening, linear, and equal-percentage [34], as can be seen
in Figure 7. The linear flow characteristic means that the
increment of flow rate is proportional to the increment of valve
opening. In quick-opening characteristic, a small change of
valve opening from the closed position creates a significant
change of flow rate. The further the opening position from
0%, the smaller the change of flow rate. In equal-percentage
characteristic, each increment of valve opening increases the

flow rate by a certain percentage of the previous flow. The
further the opening position from 0%, the larger the change
of flow rate.

B. Dataset

The dataset used in this paper is collected from a crude dis-
tiller at Shell Pernis. It consists of 6-month data from normal
conditions and 5-month data from abnormal conditions, where
only data from normal conditions is used to train machine
learning models. The abnormal condition in the crude distiller
is caused by a fault in one of the control valves. Based on
the inspection, it is found that the plug of the valve was
slowly detaching from the stem, creating small disturbance
in the crude distiller that is worsening over time. However,
it is difficult to identify the disturbance, because the smart
controller was trying to handle it. Therefore, at the early
stage of the abnormal condition, everything was still working.
However, after several months, the fault evolved into a failure
and caused significant damage in the crude distiller.

In total, there are 175 process variables in the dataset,
including 16 variables that represent the opening position of
16 control valves as the target variables. Due to some issues in
data collection, the data needs to be cleaned. Some features in
a few observations are missing, thus these observations need
to be excluded. Furthermore, some observations that represent
several manual interventions during normal conditions also
need to be excluded, because they create unusual patterns in
the data. No further data cleaning steps are performed, even
though some periods seem suspicious.

V. EXPERIMENT AND ANALYSIS

All experiments are performed on an Amazon r3.4xlarge
instance, a memory-optimized cloud server with Intel Xeon
Ivy Bridge processors and 122 GB of RAM. The hyperpa-
rameter setting for RNNs models in this paper is similar
to RNNs models in Suursalu [26], except the number of
neurons in the output layer. RNNs models consist of 4
layers and 256 neurons in each hidden layer are evaluated
in the experiment. Meanwhile, the suitable hyperparameter
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Fig. 7. Flow characteristics of control valves
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setting for autoencoders is obtained using hyperparameter
optimization. The optimization process is performed until the
accuracy of autoencoders models is similar to RNNs models
in predicting normal control valves. An autoencoders model
consists of 3 hidden layers with 85, 40, and 85 neurons in
the hidden layers is evaluated as the optimal architecture in
this case. Both RNNs and autoencoders models are trained
using minibatch algorithm with a batch size of 256 and
20 epochs. Tensorflow [35], a free open source library for
machine learning, is used to create deep learning models. For
comparison, RNNs and elastic net [36] models with a single
target are also utilized as the baseline. However, the elastic
net models are created using MLlib [37], another open source
library for distributed machine learning that provides more
efficient data processing.

The prediction results for the faulty control valve during the
abnormal condition from all models are shown in Figure 8. In
general, all models are able to show higher error in predicting
the faulty valve compared with healthy valves. However, more
than one single-target model are needed to monitor more than
one control valve. Meanwhile, only one multi-target model is
required to monitor a large number of control valves. It is
found from the experiment that the training time for single-
target and multi-target RNNs models are similar, which is
around 13 minutes. The additional computation from adding
more neurons in the output layer of the multi-target RNNs
model is very small or negligible. Thus, the required time to
model 16 control valves using multi-target RNNs is 16 times
faster compared with single-target RNNs. Furthermore, it only
needs less than 2 minutes to train autoencoders models, which
is 104 times faster compared with single-target RNNs or 6.5
times faster compared with multi-target RNNs. The speed-
up can be obtained because no recurrent connection is used
in autoencoders, which reduce the number of parameters that
need to be calculated during model training. Moreover, since
autoencoders try to copy its inputs to its outputs, the prediction
error of other process variables apart from the opening position
of control valves can also be analyzed for diagnosing faults.
However, analyzing other process variables and diagnosing
faults are beyond the scope of this paper.

Furthermore, it is important that faults can be detected
as early as possible to prevent failures. When the CUSUM
errors exceed a certain threshold, a notification can be sent
to maintenance engineers to warn them. Therefore, it is
interesting to investigate whether the multi-target regression
approach is able to improve fault detection time. The CUSUM
errors of the faulty valve from all models measured in the
last three months before the failure happened are depicted
in Figure 9. It can be seen from the figure that the multi-
target RNNs model produces higher CUSUM errors over time
compared with other models. By comparing the multi-target
and single-target RNNs models, the multi-target regression
approach improves fault detection time by 1.2x compared with
the single-target regression approach. Meanwhile, the CUSUM
errors of the autoencoders model are lower than the elastic net
model but still better than the single-target RNNs model. The
autoencoders model only improves fault detection time by 1.1x
compared with the single-target RNNs model.

2015-06-03

2015-06-17

2015-07-01

2015-07-15

2015-07-29

2015-08-12

2015-08-26

Date

20

0

20

40

60

OP

Actual
Prediction
Error

(a) Single-target elastic net

2015-06-03

2015-06-17

2015-07-01

2015-07-15

2015-07-29

2015-08-12

2015-08-26

Date

20

0

20

40

60

OP

Actual
Prediction
Error

(b) Single-target RNNs
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(c) Multi-target RNNs
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(d) Multi-target Autoencoders

Fig. 8. Prediction results for the faulty control valve from different models.
The plots display opening position in percentage.

VI. CONCLUSION

This paper presents a multi-target regression approach using
deep learning and CUSUM method for predictive maintenance
in oil refineries. The effectiveness of the proposed approach is
verified using a real industrial dataset from a crude distiller at
Shell Pernis. Such real datasets are usually noisy, incomplete,
and sometimes incorrectly labeled, which makes them much
harder to use to train effective machine learning models. This
dataset contains a massive amount of data involving many
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Fig. 9. Cumulative sum of error before the failure.

process variables that represent different conditions of the
crude distiller. However, in this paper, only data from normal
conditions is used for modeling the target processes. The
experimental results show that the proposed approach is able
to detect and isolate actual faults in the crude distiller. We
used three modeling approaches: elastic net, (single and multi-
target) RNNs, and autoencoders. Comparison of the models
indicates that multi-target RNNs can improve fault detection
time by a factor of 1.2x compared to single-target RNNs, while
reducing the modeling time by 16x. Furthermore, autoencoders
are able to reduce training time by 115x, while improving the
detection time by 1.1x.
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