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Abstract— The geometry of 
nY  space is generated 

congruently together by the metric tensor and the torsion 

tensor.  In the presented article has been obtained an 

analog of the Dаrbоuх theory in the 
nY  space, also studied 

the deduction of the equation of the geodesic lines on the 

hypersurface that embedded in such spaces, showed that in 

the 
nY space the structure of the curvature tensor has 

special features and for curvature tensor obtained Ricci - 

Jacobi identity. We establish that the equations of the 

geodesics have additional summands, which are caused by 

the presence of torsion in the space. In 
nY  space, the 

variation of the length of the geodesic lines is proportional 

to the product of metric and torsion tensors
j

ij pkg S . We 

have introduced the second fundamental tensor   for 

the hypersurface 
nY 1

and established its structure, which 

is fundamentally different from the case of the Riemannian 

spaces with zero torsion. Furthermore, the results on the 

structure of the curvature tensor have been obtained. 
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I. INTRODUCTION 

HIS work is dedicated to the theory of the 
nY  space, 

analytically, this space is an n-dimensional differentiable 

real manifold, at each point of which are given metric and 

torsion tensors [29-33]. From a geometrical perspective, such 

space can be defined as a real n-dimensional metric space 

equipped with a connection on the tangent bundle (that 

connection can be with torsion); this metric is generated by a 

given symmetrical covariant tensor, and the torsion of the 

connection of the space coincides with given torsion tensor [1-

5, 29-33].  

 
 

We believe that introduction 
nY  - space is the answer 

to the next words that were written in the 1928 year by Albert 

Einstein "Riemannian Geometry has led to a physical 

description of the gravitational field in the theory of general 

relativity, but it did not provide concepts that can be attributed 

to the electromagnetic field [13, 14, 19]. Therefore, 

theoreticians aim to find natural generalizations or extensions 

of Riemannian geometry that are richer in concepts, hoping to 

arrive at a logical construction that unifies all physical field 

concepts under one single leading point."  [6, 7, 21-24] 

The main object of this work is the geometric 

properties of 
nY  space, to construct the geometry by means of 

two tensors - the metric and torsion tensors; obtain the field 

equations from the variation principle in such spaces.  

The rest of the article is organized as follows. In 

section 2, we collect some properties of the curvature tensor in 
nY  space. In section 3, we consider the properties geodesic 

lines in space with torsion and obtain the necessary and 

sufficient conditions of a line to be geodesic. Section 4, we 

study the geometrical structure of hypersurfaces 
nY 1

 in 
nY  

space and develop the Darboux theory for the hypersurfaces 
nY 1

. In section 5, we present an exemplar of geodesics in 

space with the Euclidean metric.  

II. THE GEOMETRIC MEANING OF THE CURVATURE TENSOR IN 

nY  SPACE 

Let us formulate the main theorem of the 
nY  space. 

Theorem 1. Let us assume that the metric ikg  and 

torsion 
i

jkS  are given, the metric tensor ikg  is symmetric, 

and the torsion tensor 
i

jkS  is asymmetric. If we demand 

( )i k

ikd g A B  0  for arbitrary vector 
iA  and vector 

kB , 

then the connection (a geometric object that defines this 

connection) 
i

jk  is uniquely defined by a formula 
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1
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 . (1) 

The proof of this theorem can be found in [29].  

Next, we introduce a notation 

 , , ,

p pi

kl ik l li k kl ig g g g   
1

2
 (2) 

and  

 p p pi m m

kl kl km li lm kiL S g g S g S  
1 1

2 2
 (3) 

constitutes the tensor with the transformation law 

i j k
i i

jk j kjk i

x x x
L L

x xx

  


 
 so  

p p p

kl kl klL    . (4) 

Let us consider in the 
nY  space a two-dimensional 

surface  ,i ix x u v , where the rank of Jacobi  matrix is 

. .

. .

n

n

x x

u u
rank

x x

v v

  
 
 

  
  
   

1

1
2 . 

On this surface, we consider a curve  ,s S 0  as 

   , .u u s v v s   So, applying the surface equation 

 ,i ix x u v , we can rewrite the equation of the curve as 

   , ,i ix x s s S  0  in the parametric form in 
nY  

space, where s  is the arc length of the curve, this curve links 

two points    i i i iP x and Q x S 0 .  

Alternatively, more precisely, in 
nY  space, we start from a 

point 
iP  are moving on a two-dimensional surface along a 

curve    ,u u s v v s   that joins the points 

   ,i i i iP x Q x S 0  on the two-dimensional surface 

 ,i ix x u v .  

Therefore, we can think of the curve 

   , ,u u s v v s   as a set of curves 

   , , ,i ix x s s S  0  on the surface 

   , , , ,u u s v v s    so we denote by D  

displacement s s ds   with fixed   as a parameter and 

we denote by D  displacement d     with fixed s  

as a parameter. By definition, using the curvature tensor, we 

have 
i i i p k l

klpDD DD R dx dx     , here 

( )
i

i dx
P

ds
   and here 

iD  0 , thus we have an 

interesting identity 
i i p k l

klpDD R dx dx  . 

The parallel transport of vector 
i  is given by the 

formula 
i i p l

pld dx   , 

   
s l

i i i i p

pl

dx
s P ds

ds
        

0

 and 

   i i p l

pl P P x      here, we denote  

s l
l dx

x ds
ds

  
0

. 

We write the next equation 

     i i i i m

pl pl pl plm
P Q PQ x

x

 
       

 
. 

A vector of parallel transportation is 

    ( )i i is P P    , where 
i  is a difference of 

vector 
i  during parallel transportation along the curve s . 

Then, we use equations    ,u u s v v s   and obtain 

i i i
i dx x du x dv

ds u ds v ds


 
  

 
. 

Let us use an approximation 

        ,i i i p m

pms P P P x      and 

    .

i

pli i m

pl pl m
P P x

x


    


 

For the difference
i , we have an important 

formula

      

    

,

i

pli p p qs l
pl qi

i m p q

ml pq

P P P x dx
x ds

ds
P P x

 




 
    

    
    
 


0

and deduce  

  

        .

i i p l

pl

i s l
pl i m p q

ml pqq

P x

dx
P P P P x ds

x ds

 



     

 
      


0

 

Let us suppose that the curve s  forms a closed loop 

with some area inside, we can rewrite 
i  in the form    

   
i s l
pli i m p q

ml pqq

dx
P P x ds

x ds
 

 
        


0

 

using the contour integration formula, we have   
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   

.

i

pli i m p

ml pqq

l l
q

P P
x

x x
x du dv

u v

 
 

        

  
   

  


 

Since the curve s  is closed, we obtain the next 

equality  

,

l l
q q

q l l q

x x
x x

u v v u

x x x x

u v u v

      
      

      

   
 
   

 

then we denote by   the area inside the loop of the curve s  

and     

   

,

i

pli i m p

ml pqq

q l l q

P P
x

x x x x
dudv

u v u v

 



 
       

    
 

    


 

or  

   

 

i

pli i m p

ml pqq

q l l q

P P
x

x x x x
P dudv

u v u v

 



 
       

    
 

    


 

we denote the bivector by 

q l l q
ql x x x x

x
u v u v

    
  

    
, 

then we have 

 

   

i

pli i m

ml pqq

p ql

P
x

P x P dudv






 
       



 

since bivector 
qlx  asymmetrical, we obtain 

     
i

pqi i m p lq

mq pll
P P x P dudv

x
 



 
       

  

and we obtain the result  

     

i

pl i m

ml pqq
i p ql

i

pq i m

mq pll

x
P P x P dudv

x

 


 
    
  

 
   
 

  

and finally, we have obtained the formula 
i i p ql

qlpR x dudv 


    . 

As a result, the vector 
i i p ql

qlpR x dudv 


     

is a difference between the vector 
i  before parallel 

transportation along the curve s  and the vector 
i  after 

parallel transportation along the curve s , i.e. 
i  is the 

deviation of vector 
i   during parallel transportation along the 

curve s .  

If we assume that the metric tensor ik ikg   is 

diagonal, the curvature tensor is equal to 

, ,

p p p p q p q

ikl li k lk i qk li qi lkR L L L L L L    , where  

 p p pi m m

kl kl km li lm kiL S S S    
1 1

2 2
 and the difference 

i  can be written as  

, ,

i i

pq l pl qi p ql

i m i m

ml pq mq lp

L L
x dudv

L L L L
 



   
  
   

  

so a deviation 
i  of the vector 

i  is proportional to the 

measure of the surface inside the loop along which the vector 

was parallel transported 

   , ,

i i i i m i m p ql

pl q pq l mq lp ml pqL L L L L L x mes        . 

III. THE EQUATION OF GEODESIC LINES IN SPACE WITH 

TORSION 

Definition 1. The line in space is a geodesic line if a 

tangent vector to this line at any point continues to be 

tangent at the parallel transport along this line. 

Theorem 2. In order not an isotropic line in space, 

which is generated by the ikg  and the 
j

ikS  tensors,  was 

geodetic, it is necessary and sufficient that a variation of the 

arc s  was equaled:  
t i

j p k

ij pk

t

dx
s g S dx x

dt
  

2

1

. 

Consequence. In the case of spaces with the affine 

connection is known that there is a breach of closure during 

the transition from the original to the image and vice versa, in 

the case of an infinitely small contour that is determined up 2 - 

second-order relative to  . If we specify the torsion tensor 
k

ijS  at the corresponding point, and if this gap is denoted by 

k , then we can assert that such a gap exists, and extrapolate 

the square of the length as 
p i j q k l

pq ij klg S A B S A B  
2 4

 

where the parallelogram 
iA  and 

jB   shrinks to a point at 

  0 .  

Now, we discuss the relationship between a classical 

Riemannian space, geodetics, and geodesics in the 
nY  space. 

Let the vector 
iA  be tangent to any geodesic and 

iA  

is being parallel transported in corresponding with the 
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connection 
p

kl  that is defined by (1) and a vector 
iB  is being 

parallel transported in corresponding with the connection 
p

kl . 

It was found that in the 
nY  space the geodesics 

coincide with geodesics with connection 
p p

kl klM  ; here 

k

ijM  is an arbitrary symmetric tensor. Since both vectors are 

tangential, then 
i iB aA , where the coefficient a  is a 

variable parameter and a  0 . Tensor-vector 
iA  is given by 

the formula  k k k i j

ij ijdA M A dx    , 

k k i j

ijdB B dx  . 

Then, we have  
k k k i j

ijA da adA aA dx   , 

k
k i j

ij

A da
M A dx

a
 . (5) 

The tangent vector 
iA  can be written as 

i
i dx

A
d

 , 

where   is the canonical parameter relative to the connection 
p p

kl klM  .  

Then, after division by d , we obtained 

ln k k i j

ij

d a
A M A A

d
 . Since geodesic lines can be drawn 

through any point and in any direction, then this equality must 

be true at any point and for any vector 
iA , the functional 

dependence of the point and direction, clearly exists. 

The last equality is multiplied by 
lA  and alternate by 

k  and l , we have 
l k i j m k l i j m

m ij m ijM A A A M A A A   0 ,  

where we denoted 
l pl

m mpg g  . This equation must hold 

identically with respect to all vectors ,......, nA A1
, 

consequently, after adding a similar summand all the 

coefficients of the cubic form must vanish. We compute the 

total coefficient 
l k k l l k k l

m ij m ij i jm i jm

l k k l

j mi j mi

M M M M

M M

   

 

   

   0
 

then we contract a tensor with indices l  and j .  Since 

i

i n  we have  k k l k l

ij i jl j ilM M M
n

  


1

1
. 

All calculations presented above do not consider the 

specificity of the tensor 
k

ijM , then let 

 p pi m m

kl km li lm kiM g g S g S 
1

2
, then substitute in the last 

equation 
l l

kl klM S
1

2
, we have obtained 

 k k l k l

ij i jl j ilM S S
n

  


1 1

2 1
. 

Theorem 3. In order to the Riemannian space with 

a torsion-free connection 
p

kl  shares geodesic lines with a 

metric space 
nY  with a connection 

k

ij  with the torsion, 

where the connection 
k

ij   generated congruently by the 

metric tensor and torsion tensor, it is necessary and 

sufficient that the difference 
k k

ij ij   equals to the tensor 

 k l k l

i jl j ilS S
n

 


1 1

2 1
. 

Proof. The necessity was derived above.  

Now, we will prove the sufficiency. Let us assume 

that  k k k l k l

ij ij i jl j ilS S
n

     


1 1

2 1
. Then we again use 

(5) and have 
ln l i

il

d a
S A

d
 , where the constant a  0   is a 

scale parameter from 
i iB aA .  

Since along the curve the tensor 
l i

ilS A  is a definite 

function of the parameter  , we will find ln a  after 

integration with precision to a constant a , but only up to a 

constant factor. Therefore, the vector is found 
i iB aA  and 

all geodesic coincide. The theorem is proved. Therefore, for 

existence the Riemannian space with a connection 
p

kl  that has 

the same geodesic properties that 
nY  space, the identity 

 k k k l k l

ij ij i jl j ilS S
n

    


1 1

2 1
 must be true. 

IV. THE HYPERSURFACES 
nY 1

 IN 
nY  SPACE 

4.1. The geometrical structure of hypersurfaces 
nY 1

 that 

are embedded in  
nY  space 

Due to the presence of torsion, in these cases, there is 

a significant difference from Riemann space. For example, the 

derivation equations (analog Peterson Codazzi equations) take 

a more complicated form, in which there are new summands, 

which are caused by the presence of torsion in the space. 

We will study the geometry of hypersurfaces 
nY 1

 in 

a metric space with torsion. We are assuming that the 

hypersurface is defined by a system of equations 

 ,...,i i nx x y y  1 1
, where 

ix  is a coordinate system in 

nY  space, y
  is a coordinate system in 

nY 1
 subspace and 

the rank of the matrix 

ix

y
 
 
 

 equals n1 . The metric 

tensor of a hypersurface 
nY 1

 is given by the formula 
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i j

ij

x x
a g

y y
  

 


 
, (6) 

Let G


  be a geometric object and let it is subjected 

to the law of the transformation from one coordinate system 

y
 to another hachure coordinate system 

'

y
 by the formula  

'' ' 2
'

' ' ' '
= .

y y y y y
G G

y y y yy y

    
 

       

    


    
 

We have obtained the next formula for the torsion 

tensor of hypersurface 
1nY 
 

=
i j q

p

pq ij

x x x
T a g S

y y y

 

   

  

  
 (7) 

using tensors a  and T


 , both metric and torsion, we can 

explore the geometry of the space hypersurface 
1nY 

. 

Let G


  be a connection of 
1nY 
 and we assume that 

G

  is expressed via the metric a  and torsion T 

  

similarly to as the connection 
k

ij  can be expressed by means 

of 
ijg  and 

j

ikS , we have  

, , ,a a a
G a T

a T a T

       

  

   

    
   

     

1

2
. (8) 

Below we use the values of the mixed tensor 

enumerated two types of indices, while Latin indices refer to 

the containing space 
nY  and responsive to the coordinate 

transformation 
ix , and Greek indices belong to the space 

hypersurface 
nY 1

 and responsive to the transformation of 

coordinate y
. The index i  is not responsive to the 

coordinate y
 transformation into 

nY 1
, and the index   

does not respond to the coordinate 
ix  transformation in 

nY .  

A further aim of our study is to obtain some analogs 

of Peterson - Codazzi equations. To do this, consider the 

system of values 

i
i x

y
 






. 

At each point of the hypersurface 
nY 1

, we can build 

a basis consisting of the vectors ,..., , ,i i i

n  1 1  where 

,...,i i

n  1 1  linearly independent tangent vectors and 
i  

normal vector, defined since the metric and connection agreed.     

Next, we act formally, the idea is the same as in the 

classical case, and we will indicate significant new moments. 

We compute the derivative of the mixed tensors 
i

  such that 

; ,

q
i i i p i

pq

x
G

y



      
   


  


. 

In contrast to the case of torsion-free connection, we 

have equality  

; ;

i i i p q i

pqS T

              , 

however, we have 

 ; ;

i i i k i m p q

pq qp kmS S g a

                0 . 

Next, we permute the indices in the equation 

 ; ; ;;

i j i j i j

ij ij ija g g g         
        0 , 

And we obtain ;

i j

ijg      0 . Hence, we can write 

decomposition 

;

i i

     . (9) 

Remark 1. Set    is a tensor, which similar to the 

second fundamental tensor of hypersurfaces 
nY 1

, but its 

structure in this space substantially different from the case of 

Riemannian spaces with zero torsion. We remark that the 

equation ; ;= ( )i p q i i

pqS           is the simple result of 

the definition. Therefore, we have equality 

= .i p q j

ij pqg S         

Then we have obtained by differentiating 
i j

ijg    0  at   

;

i i

ijg       . (10) 

Similarly, by differentiating 
i j

ijg   1  at  , and 

we obtain 

;

i ia      . (11) 

Formula (8) and (11) characterize the change of 

vectors in the small accompanying frame relative to this frame 

itself. 

Remark 2.  If we consider the system (9) and (11) 

from a geometric point of view, then we can formulate the 

problem for differential equations, where the unknowns are 

considered the functions ( ,..., )i ny y
1 1

 ( ,..., )i ny y 1 1
 

and are given (known) ikg , a , 
i

jkS , T 

 ,  , as a 

function of ,..., ny y 1 1
. Then the connection coefficients 

i

jk  as a function of ,..., ny y 1 1
 must be considered as 

known, and it means that we know exactly how the 

hypersurface 
nY 1

 is embedded in the space 
nY , but then 

i

 , 
i   we have to consider as the known functions of 

,..., ny y 1 1
  and so the problem makes no sense. 

Furthermore, we obtain 

; ; ; ; ;

i i i k l p i i

klpR R T 

                          

 

 
; ;

i

ia a

   

 

    

  

    

  

 
.    (12) 

Equation (12) is multiplying by 
j

ijg  , we have 
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 k l p i

iklpR R                  . (13) 

Similarly, we derive a formula  

 
; ; ; ; ;

; ; .

i i i k l p i

klp

i

R T

a a



       

 

    

     

  

    

 
               (14) 

We contract (3.8) with 
j

ijg  , then 

; ;

k l p i

iklpR T

                  . Formula (14) is 

multiplying by 
j

ijg  , we concluded that 

; ;

k l p i

iklpR T

                  . 

Remark 3. If (14) contracts with 
j

ijg  , then we 

obtain identically zero.  

Thus, we have two types of formulas. Formula (13) 

does not contain the torsion tensor explicitly, but it is counted 

in the tensor  .  

In the formula (14), the torsion tensor of the 

hypersurface presented explicitly and in the form of 

coefficients of  , and appears in the calculation of the 

covariant derivative. 

Then we denote     symmetrical tensor ; ;

i j

ijg     

and we have  

; ;

,

i j i j

ij ij

i j

ij

g g a a

g a a

 

      

    

        

      

       

  

  
 

or  

  
; ;

, ,

, , ,

,

i j

ij

i i k l j j q p

ij lk pq

i j j i k l

ij ij lk

i j q p i j k l q p

ij pq ij lk pq

g

g

g g

g g

  

   

   

   

  

     

    

      

 

   

   

    

 

so, we see that the asymmetrical part vanished.  

We denote 
1

2
M a

 , 

a a  

            and Ma a a  

2  

then  a a a
a

 

    


       and 

 a a a
a

 

    


      0 , next, we can 

write M a
a

  


   2 0  and we obtain  

M a
a

  


  2 . 

We calculate  

 

; ; ;

; ; ;

; ; ; ;

a

a a a

a a a



      

  

        

  

          

   

     

      

  

   

   

 

and 

 ; ;

; ;

; ; .

i k l p

iklp

i k l p

iklp

a R T

a a

R a T a

a a

 

         

 

     

  

      

 

     

       

   

      

   

    

  

   

 

 

A tensor   can be associated with the square of 

the angle between normal and adjacent normal 

dy dy d 

  2
. 

 Therefore, let in space 
nY  with coordinates 

1,..., nx x  given the system of nondegenerate equations 

 1 1= ,..., , 1,...,i i nx x y y i n   so are determined the 

hypersurface 
1nY 

 and the metric and torsion of 
1nY 

 and 

since the connection of  
1nY 

. We can consider the 

hypersurface like 
1nY 

 space, and so we obtain all the 

internal (intrinsic) geometry structure of 
1nY 

, but formulas 

 1 1= ,..., , 1,....,i i nx x y y i n   define more than the 

internal (intrinsic) geometry structure of  
1nY 

, they define 

the external geometry of 
1nY 

 (embedding) as well. External 

geometry or “how the hypersurface 
1nY 

 is embedded” 

defined by one of the tensors   or   which determines 

the position of a hypersurface in 
nY  space. As an example, 

internal (intrinsic) geometry in 
1nY 

, we considered 

geodesic on 
1nY 
. 

4.2. Geodesic lines on the hypersurface 
1nY 

 

According to the definition, the geodesic on 
1nY 

 is 

determined by a formula  
2

2
= .

d y dy dy
G

ds ds ds

  


  

Let us define a curve by the formula 

1 2= ( ), [ ; ], 1,..., 1y y n         . 

We calculate the variation of the length of geodesic 

S  of the curve S  

= 2 ,

dy dy dy dy
a a D

d d d d

dy dy dy dy
a D a D

d d d d

   

 

   

 


   

   

 
  

 


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where denotes D  the absolute differential at the parameter 

curves of the family at a constant value  , and D  is an 

absolute differential displacement d  curve at a constant 

parameter of the family, then  

2 2

1 1

=
dy dy

s a D y a T dy y
ds d

 
 

   

  
 

  


    

2 2

1 1

2

1

dy dy
D a y a D y

ds ds

dy
a T dy y

d

 
 

 

 
 




  

 


 




 
   

 



 



 

since the ends of the variable curve are fixed 

2

1

= ,
dy dy

s a T dy y a D y
d ds

 


   

  


  


 
 

 
  

suppose the considered curve has a fixed length (analytically 

= 0s ), then we obtain 

2

1

= = 0.
dy dy

s a T dy y a D y
d ds

 


   

  


  


 
 

 
  

By the fundamental lemma of the calculus of 

variations, it follows  = 0.
dy dy

a T dy a D
d ds

 
 

  


  

The variation of the length of the geodesic is given by the 

formula 
2

1

= .
t

t

dy
s a T dy

d


 

 
  We remark that the 

geodesics on 
1nY 
 which are determined by connection  G

  

do not depend on terms that contain tensor  T 

 . 

Now, we can construct a semi-geodesic coordinate 

system at any point 
1nY 
, but we cannot integrate it.  

Therefore, similarly to embedding space 
nY , we 

define the geodesic lines in 
1nY 
 space by formula 

d y dy dy
G

ds ds ds

  


 
2

2
0 , and a variation of the length of 

the geodetic s  on 
1nY 
 

t

t

dy
s a T dy y

dt


  

   
2

1

, 

which depends on the torsion of the hypersurface  
1nY 
 and 

can be express in terms of torsion in 
nY . 

We define the geodesic hypersurface as the 

hypersurface 
1nY 
 on which any geodesic line in 

1nY 
 is a 

geodesic line in the embedding space 
nY .   

   

4.3. Properties of the second tensor   of the hypersurface 

1nY 
 

Now we will repeat our reasoning scheme of 

construction of hypersurface and attempt more completely to 

understand the structure of embedding space 
nY . In space 

nY  

with coordinates 
1,..., nx x , we have the system of 

nondegenerate equations   1 1= ,...,i i nx x y y 
 which is 

determined by the hypersurface 
1nY 

, then we calculate the 

metric and torsion of 
1nY 

 by formulas (6) and (7), and 

connection by (8). Then we studied some tensors 

1 1,.., ,i i i

n  
 and obtained the tensor  , which is similar 

to the second tensor of Riemannian hypersurface but not 

symmetrical = .i p q j

ij pqg S         

From the theory of surface in 
3R , we know that the 

covariant derivative of the second tensor of any enough 

smooth surface is an asymmetrical tensor, on another hand, as 

we can see from ; ;

k l p i

iklpR T

                   

the tensor ;   is not symmetrical.  

The formula = i p q j

ij pqg S         shows 

that external properties of geometry (embedding) of 

hypersurface can be associated with tensor   and torsion 

i

pqS  of embedding space 
nY  is influenced not only tensor 

T 

  but also   and  . 

We associate with 
1nY 

 a coordinate system in 
nY , 

which denote by 
1 1,..., ,n nu u u

  the rule  

1 1 1 1= ,..., = , = ,n n nu y u y u z 
 

with a new metric ikg  defined by  

= ,g a   = 0ng  , =1nng , 

where z  is a geodesic line directed along 
i  , where 

i  is 

normal to the hypersurface. 

Since the rank of the matrix 

ix

y
 
 
 

 equal 1n , 

suppose that  

> 0
x

rank
y





 
 
 

 

then exist the solution of a system of equations  

 1 1 1 1= ,..., ,nx x y y 
 

.....,  

 1 1 1 1= ,..., ,n n nx x y y  
 

which we denote by  
1 1 1 1 1= = ( ,..., ),nu y y x x 

 

.....,  

1 1 1 1 1= = ( ,..., ),n n n nu y y x x   
 

and  
1 1= = ( ,..., , )n n nu z z x x x
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herewith cometric tensor 
ikg  equals  

= .ik i k i kg a

      

Remark 4. Whereas all our researches have a local 

character, we will make some remarks about the Taylor series.  

Let us denote by 
i  the infinitesimal vector on the 

hypersurface 
1nY 
, we can represent it as an infinite sum of 

terms is a Taylor series and contract this infinitesimal vector 

with 
j

ijg  , so 

;

; ;

1
=

2

1
....

6

j i j i

ij ij

j i

ij

g g Dy Dy

g Dy Dy Dy

 

 

  

  

   

 

 

 

 

since ;= i j

ijg      and ; ; ;= j i

ijg       , and it can 

be rewritten as 

;

1
=

2

1
....

6

j i

ijg Dy Dy

Dy Dy Dy

 



  

 

  



 

 

 

where =Dy dy G y dy    

 , and G


  defined by (8). 

Definition 2. If  

.... = 0

   

 for all ... , then tensor    is called apolar with (or to) 

tensor 
.... . 

We present the tensor   in the form of a sum of 

two tensors symmetrical ( ) ; ;

1
= ( )

2

j i i

ijg         and 

asymmetrical tensor [ ] ; ;

1
= ( )

2

j i i

ijg         with 

properties [ ]2 = i p q j

ij pqg S        and 

[ ]

1
=

2

i p q j

ij pqg S      . 

The quantity  

; ;
( )

1
( )

2=

j i i

ijg dy dydy dy
K

g dy dy g dy dy

 
 

   


   

 

   

  

is an analog of principal curvature at a given point of a surface 

and the direction which determinates by a vector 

 ( ) 0Kg dy

     is called the principal direction of 

the hypersurface. Using this definition one can classify the 

points on a hypersurface, we will not do that. 

We denote ; = ( 1)a n F

     and 

( )

( ); = H

    , here the tensor 
( )  is constructed from 

minors of the tensor 
( )  multiplied by C . It is easy to see  

 ; ;
= ( 1)a n F a 

    
   , but the connection 

G

  is not symmetrical, so ;    is not symmetrical at  . 

By applying the equality = 1a a n

  , we have two 

equalities ;( ) = 0a a F

     and 

( )

( ); ( )

1
( ) = 0.

( 1)
H

C n



     


 

Therefore, we obtained two tensors 
; a F      

and ( ); ( )

1

( 1)
H

C n
    


, which are apolar with 

tensors a  and 
( )  correspondingly. 

The tensor ( ); ( )

1

( 1)
H

C n
    


, which is 

apolar with tensor 
( ) , can be symmetrized (in case of space 

nR  that tensor called Dаrbоuх's tensor) and written in the 

form  

( ); ( ) ( ) ( )

1
= ( )

( 1)
H H H

C n
              



 

it is a thrice covariant symmetric tensor of the third order, 

defined on the hypersurface. 

From the definition of Dаrbоuх's tensor, we can 

conclude that the vector on hypersurface   equals to zero 

( )

( ); ( )( )

( ) ( )

=

1
(

( 1) 0

)

H
C n

H H



 

   

   

  

 


 



 
    

   

. 

The tensor   is associated with the cubic form  

( );

( ) ( ) ( )

=

( ) 0,
( 1)

dy dy dy dy dy dy

dy dy dy
H H H

C n

     

  

  

     

 

  



   


 

and 

( ); ( ) ( ) ( )

1
( )

( 1)
dy dy dy H H H dy dy dy

C n

     

            


 

it is easy to see that here symmetry is not essential, we can 

rewrite   

;

3

( 1)
dy dy dy dy dy H dy

C n

     

    


, 

and correlate this equation with a curve on the hypersurface, 

we obtain the equation  
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( );

( ) ( )

( )

(

1
) 0

( 1)

dy dy dy

ds ds ds

H H

dy dy dy
H

C n ds ds ds

  

 

   

  

 



 





  

 


 

which determines some directions on the hypersurface.  

In general, this equation is too complicated for 

studying, however, in an important case, when  3n   the 

situation is simplified and we obtained the analog Dаrbоuх's 

theory. Let 3n  , so we have 

, , 1,2

( );

( ) ( ) ( )
, , 1,2

0

( )

4

du du du

du du duH H H

C

  


  

 

  

     
  





  





 

 
 

   
 





 

it is a cubic equation with respect to  

2

1

du

du
 . The fraction 

2

1

du

du
 is called Dаrbоuх's direction. Two-dimensional 

hypersurfaces on which 

, , 1,2

0du du du  


  




 is 

called Dаrbоuх's surface and for , , 1, 2     we have 

;

3

4
du du du du du H du

C

     

     . 

4.4. Two-dimensional Dаrbоuх's theory 

 Definitions. The value   

; ;
( )

1
( )

2=

j i i

ijg du dudu du
K

g du du g du du

 
 

   


   

 

   

  

is called a principal curvature at a given point of a surface, 

and the direction, which is determined by a vector  

 ( ) 0Kg du

     

called the principal direction of the hypersurface.  

From equality = 2a a

 , we are obtaining two 

equations 

;( ) = 0a a F

      

and  

;

1
= 0.

2
H

K



     
 

 
 

 

Therefore, we have two tensors  

; a F       

and 

 
;

1

2
H

K
     , 

which are apolar with tensors a  and   correspondingly. 

Dаrbоuх's tensor is 

;

1
= ( )

4
H H H

K
               , 

it is a thrice covariant symmetric tensor of the third order, 

defined on the surface. 

The tensor    on hypersurface equals to zero 

;

=

1
( ) 0.

4
H H H

K



 



       

  

    



 
     

 

 

Thus, we can construct the cubic form that  associated 

with the tensor  , in the form  

;

=

3
0,

4

du du du

du du du H du du du
K

  



     

   



   
 

and we have 

;

3

4
du du du H du du du

K

     

     . 

Correlating this equation with a curve on the 

hypersurface, we obtain  

;

3
0

4

du du du du du du
H

ds ds ds K ds ds ds

     

       

which determine some directions on the surface.  

Thus, we obtained Dаrbоuх's theory 

, , 1,2

;

, , 1,2

3
0

4

du du du

H du du du
K

  


  

  

   
  



 







 
   

 




 

it is a cubic equation with respect to  

2

1

du

du
 . The fraction 

2

1

du

du
 is called Dаrbоuх's direction. Two-dimensional 

hypersurfaces on which  

, , 1,2

0du du du  


  




  

is called Dаrbоuх's surface, for which we have obtained      

;

3

4
du du du H du du du

K

     

     . 

Thus, the lines defined by equation 

0du du du  

   

are called Dаrbоuх's lines. If we divide this equation on 
1du  

this equation can be considered as the third-degree equation 
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relative to 

2

1

du

du
, and as the third-degree equation, in general, 

it has three solutions and at least one of which is real.          

Without proving, let us formulate the next theorem 

concerning Dаrbоuх's lines.  

Theorem (about Dаrbоuх's lines).  

A surface is a ruled surface (scroll) if and only if all 

three Dаrbоuх's directions and so Dаrbоuх's lines coincide 

in one direction, and this Dаrbоuх's direction defines the 

generator line (Dаrbоuх's line coincides with the generator 

line).  

If the surface is not a ruled surface (scroll) with 

negative curvature, then there is only one Dаrbоuх's 

direction and only one Dаrbоuх's line family.  

On any surface with positive curvature, all three 

Dаrbоuх's directions always real.  

On any second-degree surface, Dаrbоuх's tensor 

equals zero.  

The directions on the surface defined by the next 

equation  

; 0du du du  

    

are called Codazzi’s directions and lines defined by these 

directions called Codazzi’s lines.    

From the equation  

;

3

4
du du du H du du du

K

     

     , 

we can deduce that on Dаrbоuх's surfaces Codazzi’s lines 

consist of the lines on which the curvature is a constant  

K const  and the asymptotic lines. 

 

V. AN EXEMPLAR OF GEODESICS ON THE HYPERSURFACE 
1nY 

 

IN THE SPACE WITH A FLAT METRIC.  

We assume that a hypersurface 
3Y  is embedded in 

the four-dimensional space 
4Y  with the Euclidean metric 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ikg

 
 
 
 
 
 

, and let the torsion tensor be given as   

1

0 0 0 0

0 0 0

0 0 0

0 0 0 0

ik

a
S

a

 
 
 
 
 
 

,
2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ikS

 
 
 
 
 
 

, 

3

0 0 0

0 0

0 0 0 0

0 0 0 0

ik

a

a a
S

 
 
 
 
 
 

, 
4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ikS

 
 
 
 
 
 

. (15) 

The connection can be obtained as follows   

1

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

ik

a

 
 
  
 
 
 

,
2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ik

 
 
  
 
 
 

, 

3

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ik

a 
 
  
 
 
 

, 
4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ik

 
 
  
 
 
 

. (16) 

Next, we denote the hypersurface coordinate system 

as 
1 2 3, ,u u u and let the hypersurface be given as  

 

1 1

2 2

3 3

4

,

,

,

0;

x u

x u

x u

x









 

and for hypersurface, we have  

1

0 0 0

0 0

0 0

ikT a

a

 
 

  
  

,
2

0 0 0

0 0 0

0 0 0

ikT

 
 

  
 
 

, 

3

0 0

0 0

0 0 0

ik

a

T a

 
 

  
 
 

. (17) 

The connection of hypersurface can be obtained as 

1

0 0 0

0 0

0 0 0

ikG a

 
 

  
 
 

,
2

0 0 0

0 0 0

0 0 0

ikG

 
 

  
 
 

, 

3

0 0

0 0 0

0 0 0

ik

a

G

 
 

  
 
 

;  (18) 

and we have the following system of differential equations  
2 1 2 3

2

2 2

2

2 3 1 2

2

0

0

0.

d u du du
a

ds ds ds

d u

ds

d u du du
a

ds ds ds


 








 


 (19) 

This system defines geodesics, has two solutions, 

general and particular. Its general solution is  
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   

   

1 31
2 2 4

2 2

2

2 5

3 31
2 2 6

2 2

cos sin

sin cos

kk
u k as k as k

k a k a

u k s k

kk
u k as k as k

k a k a

   

 

  

 (20) 

where  1 2 3 4 5 6, , , , ,k k k k k k  are independent parameters. 

The particular solution is 
1

1 2

2

3

3

4 5

u M s M

u M

u M s M

 



 

 (21) 

here  1 2 3 4 5, , , ,M M M M M  are arbitrary parameters. 

VI. CONCLUSION 

In this paper, we establish an analog Dаrbоuх's theory 

for the hypersurfaces in the spaces with metric and torsion. To 

achieve this goal, we have studied the structural special 

features of the curvature tensor and obtained Ricci - Jacobi 

identity for the curvature tensor in a case when the torsion 

tensor is nonzero.  

If and only if all three Dаrbоuх's directions, which 

define Dаrbоuх's lines, coincide in one direction, a 

hypersurface is a scroll or ruled surface. The Dаrbоuх's line 

coincides with the generator line of the scroll and the 

Dаrbоuх's direction defines the generator line.   
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