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Abstract: - In 2016 Hakeem A. Othman and Md. 

Hanif Page introduced a new notion of set in 

general topology called an infra open   set 

and investigated its fundamental properties and 

studied the relationship between infra open   

set and other topological sets. The objective of 

this paper is to introduce the new concepts called 

infra compact   space, countably 

infra compact   space, infra Lindel f  ö  

space, almost infra compact space, 

mildly infra compact space   and 

infra connected   space in general topology 

and investigate several properties and 

characterizations of these new concepts in 

topological spaces. 
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I. INTRODUCTION 
 
The concept of supra topology was introduced by A. S. 
Mashhour et al [12] in the year 1983. They studied about 
s continuous  functions and s continuous*   functions. 
In 2008, R. Devi et al [5] introduced the concept of 
supra open  sets and supra continuous  maps. 
Jamal. M. Mustafa [14] studied about supra b compact  
and supra b Lindelof  spaces. Vidyarani et al in [26] 
introduced the concept of supra N compact,  countably 
supra N compact,  supra N Lindelof  and supra 
N connectedness  and investigated about their 
relationships using the concept of continuity. In 2013, 
Missier and Rodrigo introduced new class of set in 
general topology called an open   supra open  
set. In 2016, Hakeem A. Othman and Md. Hanif Page 
defined a new class of sets in general topology called an 

 infra open  set and investigated its fundamental 
properties and studied the relation between 

 infra open  set and other topological sets. In this 
paper we introduce the new concepts called 

 infra compact  space, countably 
 infra compact  space,  infra Lindeloff  

space, almost  infra compact  space, mildly  
 infra compact  space and  infra connected  

space in general topology and investigate several 
properties and characterization of these new 
concepts.  
Throughout this paper  X ,  or simply by X  we 
denote topological space on which no separation 
axioms are assumed unless explicitly stated and 
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   f : X , Y ,   means a mapping f  from a 
topological space X  to a topological space Y . If  
U  is a set and x  is a point in X , then  N x ,  

 Int U ,  Cl U  and cU  denote respectively, the 
neighbourhood system of x, the interior of U , the 
closure of  U  and complement of U.  
 

II. PRELIMINARIES 
 

2 1Definition . .  A subset A of topological space 
 X ,  is called a generalized closed set (briefly, 

g closed )  if   Cl A U  whenever A U  and 

U is open in X  and generalized open if cA  is 
g closed  set in X .  

We characterize g closed  sets.  
2 2Theorem . .  A set A  in a topological space  

 X ,  is g closed  if and only if  Cl A A

contains no non empty closed set.  
2 3Definition . .  Let  X ,  be a topological space. 

Let A X . Then we define *closure and *int erior . 

    I*Cl A G : A G&Gis generalized closed set

 is called *closure . 
    U*Int A G :G A & G is generalized openset

is called *interior . 
2 4Lemma . .  Let   X ,  be a topological space 

and suppose A  be any subset of  X . Then 

     1 *.A Cl A Cl A .   

     2 *.Int A Int A A.   
2 5Definition . .  A subset A  of space X  is called

 infra open    infra closed  set if 

     
*A Int Cl Int A        

*Cl Int Cl A A .  

The class of all  infra open  

  infra closed  sets in X  will be denoted as 

 I O X    I C X .  

2 6Definition . .  Let  X ,  be a topological space 
and let A  be a subset of X . Then we have,  

        I*. I Cl A F : A F, F I C X   is 
called an  infra closure.   

        U** . I Int A U :U A,U I O X   
is called an  infra intetrier.  

2 7Theorem . .  Let  X , be a topological space. 

Then a set   A I O X  if and only if there 
exists an open set U  such that 

     
*U A Int Cl U . 

 Proof . Necessity :  Suppose that   A I O X .  

Then      
*A Int Cl Int A .  Put  U Int A , 

then U is an open set and      
*U A Int Cl U . 

Sufficiency : Let U be an open set such that 

     
*U A Int Cl U ,  this implies that 

          
* *Int Cl U Int Cl Int A ,  then 

     
*A Int Cl Int A . 

2 8Theorem . .  A set   A I C X  if and only if 
there exists a closed set F  such that 

     
*Cl Int F A F.  

 Proof . Necessity : If   A I C X ,  then 

     
*Cl Int Cl A A. Put  F Cl A ,  then F is a 

closed set and      
*Cl Int F A F.   

Sufficiency : Let F  be a closed set such that 
     

*Cl Int F A F, this implies that 

          
* *Cl Int Cl A Cl Int F , then 

     
*Cl Int Cl A A. 

2 9Theorem . .  Let A  be a subset of a space X . 
Then the following statements hold. 
 i  If      

*A B Int Cl A  and   A I O X ,  

then   B I O X .  

 ii      
*Cl Int A B A  and   A I C X ,  

then   B I C X ,  

Proof .  i  Let   A I O X ,  then there exists 

U  an open set such that      
*U A Int Cl U ,  
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this implies that U B and     
*A Int Cl U . 

Therefore,          
* *Int Cl A Int Cl U  and 

     
*U B Int Cl U ,  then   B I O X ,  

 ii Easy to prove by using the same technique of 

proof  i .  
2 10Proposition . .  Let A  and B  be the sets in X

and A B.  Then, the following statements hold:  
1.   I Int A is the largest  infra open set 
contained in A.   
2.    I Int A A.  

3.      I Int A I Int B .   

4.        I Int I Int A I Int A .     

5.         A I O X I Int A A.   
2 11Proposition . .  Let A  and B  be the sets in X

and A B.  Then, the following statements hold:  
1.  I Cl A is the smallest  infra closed set 
containing A.   
2.   A I Cl A .   

3.      I Cl A I Cl B .    

4.        I Cl I Cl A I Cl A .     

5.        A I C X I Cl A A.   

2 12Theorem . .  Let A  be a set of X . Then, the 
following properties are true:  
 a        

c

I Int A I Cl A .    

 b        
c

I Cl A I Int A .    

 c         I *I Int A A Int Cl Int A .   

 d         U *I Cl A A Cl Int Cl A .   
2 13Corollary . .  Let A  be a set of X . Then, the 

following properties are true: 
 a  If A  is an open set, then 

        
*I Int A Int Cl Int A .  

 b         
*I Cl A Cl Int Cl A .  

2 14Theorem . .  Let  X , be a topological space. 
Then the following assertions are true: 

 a  The arbitrary union of  infra open  sets is 
an  infra open  set.  
 b  The arbitrary intersection of  infra closed  
sets is an  infra closed  set. 
Proof .  Let  iU : i I be a family of 

 infra open  sets. Then, for each i I ,  

     
*

i iU Int Cl Int U   and  

  
  

   
       

   
U U U

* *

i i i

i I i I i I

U Int Cl Int U Int Cl Int U .

 

Hence  U iU : i I  is an  infra open  set. 

 b  Obvious. 
2 15Theorem . .  Let A  be a set of X . Then the 

following statement holds: 
            * *Int A I Int A A I Cl A Cl A . 

 
Proof .  We know that  *Int A A, this implies 

that        
*I Int Int A I Int A .   Then, 

      
* *I Int Int A Int A  and so, 

       *Int A I Int A * .  

Also, we know that   *A Cl A , this implies that 

        
*I Cl A I Cl Cl A .   Then, 

      
* *I Cl Cl A Cl A  and so, 

       *I Cl A Cl A ** .  

From   *  and  ** ,it follows that 

            * *Int A I Int A A I Cl A Cl A . 

 
2 16Definition . .  A set A X  is called an 

open   15  A    10Semiopen  set if 

     A Int Cl Int A       A Cl Int A .  The 

collection of all open  semi open sets of X is 

denoted as  O X    SO X .  
2 17Theorem . .  Let A  be a set of a topological 

space X . Then the following statements hold: 
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  a If A  is an open (closed) set, then A  is an 

 infra open   infra closed set. 

 b If A  is an  infra open    infra closed

set, then A is an open   closed set. 

2 18Remark . .  Let  X ,  be a topological Space. 
Then the following relation holds for subsets of X . 
Open Set Infra Open Open Semi Open         

2 19Definition . . A mapping    f : X , Y ,   

is said to be an  infra continuous  if   1f V  is 

an  infra open    infra closed set in X for 
each open (closed) set V in Y . 

2 20Definition . . A mapping 
   f : X , Y ,   is said to be an 

 infra irresolute  if   1f V  is an 

 infra open    infra closed  set in X for 

X  each  infra open    infra closed  set 
V in Y . 

2 21Definition . . A mapping    f : X , Y ,   
is said to be an  infra open  
  infra closed  if   f U  is an 

 infra open    infra closed  set in Y  for 
each open (closed) set U in X . 

2 22Definition . . A set A X  is said to be 
 infra connected  if A  cannot be written as the 

union of two  infra separated  sets. 
2 23Definition . .  Let X be any nonempty set and 

  P X .  We say that  is a supra topology on X

if , X   and   is closed under arbitrary union. 
The pair  X ,  is called supra topological space. 
The elements of   are called supra open sets in 
 X , and complement of a supra open set is called 
a supra closed set. 

2 24Definition . .  A supra topological space is 
called supra compact (S – compact) if and only if 
every supra open cover of X  has a finite sub cover.  

2 25Definition . .  A function 
   f : X , Y ,   is called perfectly 

 infra continuous  if the inverse image  1f V  

of every  infra open  set V  of Y  is both open 
and closed in X . 

2 26Definition . .  A function 
   f : X , Y ,   is called strongly 

 infra continuous  if the inverse image  1f V  

of every  infra open  V  in Y  is open in X . 
2 27Definition . . Let X  be a non-empty set. The 

subfamily  P X  is said to be a supra topology 

on X  if ,X    and   is closed under arbitrary 
unions. The pair  X ,   is called a supra 
topological space. The elements of   are said to be 
supra open in  X , .  Complement of supra open 
sets are called supra closed sets.  
 

III. INFRA - α -COMPACT SPACES 
 

3 1Definition . .  A collection  iA : i I  of 

 infra open  sets in a topological space  X ,  
is called an  infra open  cover of a subset B  of  
X  if   U iB A : i I  holds.  

3 2Definition . .  A topological space  X ,  is 
called  infra compact  if every  infra open  
cover of X  has a finite sub cover. 

3 3Definition . .  A subset B  of a topological space 
 X ,  is said to be  infra compact  relative to 

 X ,  if, for every collection  iA : i I  of 
 infra open   subsets of X  such that 
  U iB A : i I  there exists a finite subset 0I  of I

such that  0 U iB A : i I .  
3 4Definition . .  A subset B  of a topological space 

 X ,  is said to be  infra compact  if B  is 
 infra compact  as a subspace of X . 

3 5Theorem . .  Every  infra compact  space is 
compact. 
Proof .  Let  iA : i I  be an open cover of  X , .  
Since every open set in X  is  infra open  in 
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X .So  iA : i I is an  infra open  cover of 

 X , .  Since  X ,  is  infra compact,  

 infra open  cover  iA : i I  of  X ,  has a 

finite sub cover say  1 2 3iA : i , , ,...,n  for X . 

Hence  X ,  is a compact space. 
3 6Theorem . .  Every  infra closed  subset of  

an  infra compact  space  X ,  is 
 infra compact  relative to X . 

Proof .   Let A  be an  infra closed closed 
subset of a topological space  X , .  Then cA  is 

 infra open  in  X , .  Let    iA : i I  be 
an  infra open  cover of A  by  infra open

subsets of  X , .  Then    U c* A  is an 

 infra open  cover of  X , .  That is 

 


 UU
c

ii I
X A A .  By hypothesis  X ,  is an 

 infra compact space and hence *  is 
reducible to a finite sub cover of  X ,  say 

 
0

 UU
c

ii I
X A A  for some finite subset 0I  of I .  

But A  and cA  are disjoint. Hence 
 0 U iA A : i I .  Thus  infra open  cover 

   iA : i I  of A  contains a finite sub cover. 

Hence A  is  infra compact  relative to  X , .   
3 7Theorem . .  An  infra continuous  image of 

an  infra compact  space is compact.  
Proof .  Let    f : X , Y ,   be an 

 infra continuous  map from an  
 infra compact   X ,   onto a topological 

space  Y , .  Let    iA : i I  be an open cover 

of Y . Therefore     1 1   if f A : i I  is an 

 infra open  cover of X , as f  is 
 infra continuous.  Since X  is 
 infra compact,  the  infra open  cover 

    1 1   if f A : i I  of X , has a finite sub 

cover  say   1 1 2 3 if A : i , , ,...,n .  Therefore 

 1
1




U

n

ii
X f A , which implies 

  1
 U

n

ii
Y f X A . That is  1 2 3iA : i , , ,...,n  is a 

finite sub cover of     iA : i I . Hence  Y ,   is  
compact. 

3 8Theorem . .  Suppose that a function 
   f : X , Y ,    is  infra irresolute  and 

a subset S  of X  is  infra compact  relative to 
 X , ,  then the image  f S  is 

 infra compact  relative to  Y , .  

Proof .  Let    iA : i I  be a collection of 

 infra open  cover of  Y , ,  such that 

   if S A : i I . U  Since f  is 

 infra irresolute.  So   iS f A : i I , 1U  

where      if A : i I I O X , .    1  Since S is 

 infra compact  relative to  X , ,  there exists 
a finite sub collection 

      1 1 1
1 2 nf A , f A , . . ., f A    such that 

         nS f A , f A , . . ., f A .1 1 1

1 2U  That is 

   nf S A ,A ,...,A . 1 2U  Hence  f S  is 

 infra compact  relative to  Y , .  
3 9Theorem . .  Suppose that a map 

   f : X , Y ,   is strongly 
 infra continuous  map from a compact space 

 X ,  onto a topological space  Y , ,   then 

 Y ,   is  infra compact.  

Proof .  Let  iA :i I  be an  infra open  cover 

of  Y , .  Since f  is strongly 

 infra continuous ,   if A : i I 1  is an open 

cover of  X , .  Again, since  X ,  is compact, the 

open cover   if A : i I 1  of  X ,  has a finite 

sub cover say   if A : i , , ,...,n . 1 12 3  Therefore 

   iX f A : i , , ,...,n ,1 12 3U  which implies 

   if X A : i , , ,...,n , 12 3U  so that 
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 iY A : i i , , ,...,n .  12 3U   That is 

 nA ,A ,...,A1 2  is a finite sub cover of  iA : i I  

for  Y , .  Hence  Y ,   is  infra compact.  

3 10Theorem . .  Suppose that a map 
   f : X , Y ,   is perfectly 
 infra continuous  map from a compact space 

 X ,  onto a topological space  Y , .  Then 

 Y ,   is  infra compact.  

Proof .  Let  iA :i I  be an  infra open   

cover of  Y , .  Since f  is perfectly 

 infra continuous,    if A : i I 1  is an open 

cover of  X , .  Again, since  X ,  is compact, 

the open cover   if A : i I 1  of  X ,    has a 

finite sub cover say   if A : i , , ,...,n . 1 1 2 3  

Therefore   iX f A : i , , ,...,n , U 1 1 2 3  which 

implies    if X A : i , , ,...,n , 12 3U  so that 

 iY A : i , , ,...,n . 12 3U  That is  nA , A , . . ., A1 2  

is a finite sub cover of   iA : i I  for   Y , .  

Hence  Y ,   is   infra compact.  

3 11Theorem . .  Suppose that a function  
   f : X , Y ,   is  infra irresolute  

map from an  infra compact  space  X ,  
onto a topological space  Y , .  Then  Y ,   is 

 infra compact.  
Proof .  Let    f : X , Y ,   be an 

 infra irresolute  map from an 
 infra compact  space  X ,  onto a  

topological space  Y , .  Let  iA : i I  be an 

 infra open  cover of  Y , .  Then 

  if A : i I 1  is an  infra open  cover of 

 X , ,  since f  is  infra irresolute.  As 

 X ,  is  infra compact,  the  infra open  

cover   if A : i I 1  of   X ,  has a finite sub 

cover say   if A : i , , ,...,n . 1 12 3  Therefore 

  iX f A : i , , ,...,n , 1 12 3U  which implies 

   if X A : i , , ,...,n , 12 3U  so that 

 iY A : i , , ,...,n . 12 3U  That is   nA , A ,. . ., A1 2  

is a finite sub cover of   iA : i I  for  Y , .  

Hence  Y ,   is  infra compact.  

3 12Theorem . .  If  X ,  is compact and every 
 infra closed set in X  is also closed in X,  

then   X ,  is  infra compact.  
Proof .  Let  iA :i I  be an  infra open  cover 
of  .X  Since every  infra closed set in X  is 
also  closed in .X  Thus  iX A : i I   is a closed 

cover of X  and hence  iA :i I  is an open cover 

of .X  Since  X ,  is compact. So there exists a 
finite sub cover  iA : i , , ,...,n12 3  of  iA :i I  

such that  iX A : i , , ,...,n . 12 3U  Hence  X ,  
is  infra compact.  

3 13Theorem . .  A topological space  X ,  is 
 infra compact  if and only if every family of 
 infra closed  sets of  X ,  having finite 

intersection property has a non empty intersection.  
Proof .  Suppose  X ,  is  infra compact,  

Let  iA : i I  be a family of  infra closed  
sets with finite intersection property. Suppose 

i
i I

A ,


I  then   iX A : i I X .  I  This 

implies   iX A : i I X .  U  Thus the cover 

  iX A : i I   is an  infra open  cover of 

 X , .  Then as  X ,  is  infra compact,  the 

 infra open   cover    iX A : i I   has a 

finite sub cover say   iX A : i , , ,...,n . 12 3  This 

implies that   iX X A : i , , ,...,n  12 3U  which 

implies  iX X A : i , , ,...,n ,  12 3I  which 

implies  iX X X X A : i , , ,...,n ,      12 3I  
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which implies  iA : i , , ,...,n .  12 3I  This 

disproves the assumption. Hence    iA : i I .I  

 Conversely, suppose  X ,   is not 
 infra compact.  Then there exits an 
 infra open  cover of  X ,  say  iG : i I  

having no finite sub cover. This implies for any 
finite sub family  iG : i , , ,...,n12 3  of  

 iG : i I ,  we have  iG : i , , ,...,n X , 12 3U  

which implies   iX G : i , , ,...,n X X ,   12 3U  
therefore 
 iX G : i , , ,...,n .  12 3I  Then the family 

  iX G : i I  of   infra closed  sets has a 
finite intersection property. Also by assumption 
   iX G : i I I  which implies 

    iX G : i I ,U  so that   iG : i I X .U  

This implies  iG : i I  is not a cover of  X , .  

This disproves the fact that  iG : i I  is a cover 

for  X , .  Therefore an  infra open   cover 

 iG : i I  of  X ,   has a finite sub cover 

 iG : i , , ,...,n .12 3  Hence  X ,   is  
 infra compact.  

3 14Theorem . .  Let A  be an  infra compact

set relative to a topological space X  and B   be an 
 infra closed  subset of X . Then A BI  is 
 infra compact  relative to X . 

Proof .  Let A  be  infra compact  relative to 
X . Let  iA : i I  be a cover of A BI  by 

 infra open  sets in X . Then     C

iA : i I BU  
is a cover of A  by  infra open  sets in X , but 
A  is  infra compact  relative to X , so there 
exists a finite subset   nI i , i , i , . . . ,i I0 1 2 3   such 

that    
k

C

iA A : k , , , . . . ,n B .1 2 3U U  Then

   
ki

A B A B : k , , , . . . ,n1 2 3I U I

 
ki

A : k , , ,...,n .12 3U   Hence A BI  is 

 infra compact.  

3 15Theorem . .  Suppose that a function 
   f : X , Y ,   is  infra irresolute  and 

a subset B  of X  is  infra compact  relative to 
X . Then  f B  is  infra compact  relative to 
Y . 
Proof .  Let  iA : i I  be a cover of  f B  by 

 infra open  subsets of Y . Since f  is 
 infra irresolute.  Then   if A : i I 1  is a 

cover of  B  by  infra open  subsets of  X . 
Since B is  infra compact  relative to X , 

  if A : i I 1  has a finite sub cover say 

        

nf A , f A , . .., f A1 1 1

1 2  for B.   Then it 

implies that  iA : i , , ,...,n12 3  is a finite sub cover 

of  iA : i I  for  f B .  So  f B  is 
 infra compact  relative to Y . 

3 16Definition . .  Let  X ,  be a topological space 
and let E  be a subset of X . Let 

  

   

i

E
A E : A I O X , .I  Then  

i

E
E,  is 

a supra topological space. 
3 17Theorem . .  Let  X ,  be a topological space 

and  let E  be a subset of X . Then  
i

E
E,  is supra 

compact if and only if for any  infra open  
cover   of E  has a finite sub cover of E. 
Proof .  Suppose E  is supra compact. Let 

  I O X ,   such that  E .U  Let 

   E A E : A .I  Then  EE U  and 


  
i

E E
. By hypothesis there exists a finite subset 

 
*

i EE
A E : i , , ,...,n    12 3I  such that 

 
*

E
E .U  Then  

*

iA : i , , ,...,n    12 3  and 
 E * .U   

Conversely, let  


    
i

i E
A E : i II  such that 

 E .U  Then    i* A : i A  is an 
 infra open  covering of E. By hypothesis 

there exists  1 2 3i** A : i , , ,...,n    a finite 
subset of *  such that  UE **. Then 
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 1 2 3#

iA E : i , , ,...,n  I  is a finite subset of   

such that  U #E . This proves that  
i

E
E,  is 

supra compact.  
 

IV. COUNTABLY INFRA - α - COMPACT SPACES 
In this section, we present the concept of countably 

 infra compactness  and its properties. 
4 1Definition . .  A topological space   X ,   is said 

to be countably infra compact   if every 
countable  infra open   cover of  X  has a finite 
sub cover. 

4 2Theorem . .  If  X ,   is a countably 

 infra compact  space, then  X ,   is 
countably compact.  
Proof .  Let  X ,   be a countably 

 infra compact  space. Let  iA : i I   be a 

countable open cover of  X , .  Since 

 I O X , .     So  iA : i I  is a countable 

 infra open  cover of   X , .  Since  X ,  is 
countably  infra compact,  therefore countable 

 infra open  cover  iA : i I  of  X ,   has a 

finite sub cover say  iA : i , , , . . . ,n1 2 3  for X . 

Hence  X ,   is a countably compact space. 

4 3Theorem . . If  X ,   is countably compact and 
every  infra closed   subset of  X   is closed in 
X , then  X ,   is countably  infra compact.  
Proof .  Let  X ,   be a countably compact space. 

Let  iA : i I  be a countable  infra open  

cover of  X , .   Since every  infra closed  
subset of X  is closed in X . Thus every 

 infra open   set in X  is open in X . Therefore 
 iA : i I  is a countable open cover of  X , .   

Since  X ,    is countably compact, so countable 

open cover  iA : i I  of   X ,   has a finite sub 

cover say  iA : i , , ,...,n12 3  for X . Hence  X ,   
is a countably  infra compact  space. 

4 4Theorem . .  Every  infra compact  space is 
countably  infra compact.  
Proof .  Let  X ,    be an  infra compact  

space. Let  iA : i I  be a countable 

 infra open  cover of  X , .  Since  X ,    is 
 infra compact,  so  infra open  cover 

 iA : i I  of  X ,   has a finite sub cover say 

 iA : i , , ,...,n12 3  for  X , .  Hence  X ,    is 
countably  infra compact  space. 

4 5Theorem . .  Let    f : X , Y ,   be a
 infra continuous  onjective mapping. If X  is 

countably  infra compact  space, then  Y ,  
is countably compact.  
Proof .  Let    f : X , Y ,   be an 

 infra continuous  map from a countably 
 infra compact  space  X ,  onto a  

topological space  Y , .  Let  iA : i I  be a 

countable open cover of Y . Then    if A : i I1  
is a countable  infra open  cover of X , as f  is 

 infra continuous.  Since X  is countably
 infra compact,  the countable  infra open  

cover    if A : i I1  of  X   has a finite sub cover 

say   if A : i , , ,...,n . 1 1 2 3  Therefore 

  iX f A : i , , ,...,n , 1 12 3U  which implies 

   iY f X A : i , , ,...,n .  12 3U  That is 

 iA : i , , ,...,n12 3  is a finite sub cover of 

 iA : i I  for Y . Hence Y  is countably  compact.  
4 6Theorem . .  Suppose that a map 

   f : X , Y ,   is perfectly 
 infra continuous  map from a countably 

compact space  X ,  onto a topological space 

 Y , .  Then  Y ,  is countably 
 infra compact.  
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Proof .  Let  iA : i I  be a countable 

 infra open  cover of  Y , .  Since f  is 

perfectly  infra continuous,     if A : i I1  is 

a countable open cover of  Y , .  Again, since 

 X ,   is countably  infra compact,  the 

countable open cover    if A : i I1  of   X ,    

has a finite sub cover say   if A : i , , ,...,n . 1 12 3  

Therefore   iX f A : i , , ,...,n , 1 12 3U  which 

implies    if X A : i , , ,...,n , 12 3U  so that 

 iY A : i , , ,...,n . 12 3U That is  nA ,A , . . ., A1 2  is 

a finite sub cover of  iA : i I  for  Y , .  Hence 

 Y ,    is countably  infra compact.   
4 7Theorem . .  Suppose that a map 

   f : X , Y ,   is strongly 
 infra continuous  map from a countably 

compact space  X ,   onto a topological space 

 Y , .  Then  Y ,   is countably  
 infra compact.  

Proof .  Let  iA : i I  be a countable 

 infra open  cover of  Y , .  Since f  is 

strongly  infra continuous,     if A : i I1  is 

a countable open cover  of  X , .  Again, since 

 X ,   is countably compact, the countable supra 

open cover     if A : i I1  of   X ,    has a finite 

sub cover say   if A : i , , ,...,n . 1 12 3  Therefore 

  iX f A : i , , ,...,n , 1 12 3U  which implies 

   if X A : i , , ,...,n , 12 3U  so that 

 iY A : i , , ,...,n . 12 3U  That is  nA ,A ,...,A1 2  is a 

finite sub cover of  iA : i I  for  Y , .  Hence 

 Y ,   is countably  infra compact.

4 8Theorem . .  The image of a countably 
 infra compact  space under an 

 infra irresolute  map is countably  
 infra compact.  

Proof .  Suppose that a map     f : X , Y ,   
is an  infra irresolute  map from a countably 

 infra compact  space  X ,   onto a  

topological space  Y , .  Let  iA : i I  be a 

countable  infra open  cover of   Y , .  Then 

   if A : i I1  is a countable  infra open

cover of  X , ,  since f  is  infra irresolute.  

As  X ,  is countably  infra compact,  the 

countable  infra open  cover    if A : i I1  

of  X ,   has a finite sub cover say 

  if A : i , , ,...,n . 1 1 2 3  Then it follows that

  iX f A : i , , ,...,n , 1 12 3U  which implies 

   if X A : i , , ,...,n , U 1 2 3  so that 

 iY A : i , , ,...,n . 12 3U  That is  nA ,A , . . ., A1 2  is 

a finite sub cover of   iA : i I  for  Y , .  Hence 

 Y ,   is countably  infra compact.  

4 9Definition . .  Let  X ,  be a topological space 
and x X .  A point x  is said to be infra limit   
point of A X  provided that every 
infra neighborhood   of x  contains at least one 
point of A  different from x.  

4 10Theorem . .  Every infinite subset of an 
infra compact   space has an infra limit 

point. 
Proof .  Let A  be an infinite subset of an 
infra compact   space  X , .  Suppose that A  
has not an infra limit   point. Then for each 
x X ,  there exists an infra open   set 

xG

containing at most one point of A.  Now, the 
collection  xG : x X    forms an 
infra open   cover of X . As X  is 
infra compact,   then there exist 1x , 2x , . . . ,

nx

in X such that 
1 i

i n

xi
X G .




U  Therefore X  has at 

most n  points of A.  This implies that A  is finite. 
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But this contradicts that A  is infinite. Thus  A  has 
an infra limit  point. 

V. INFRA - α - LINDELÖF SPACES 
In this section, we concentrate on the concept of 

 infra Lindelöf  space and its properties. 
5 1Definition . .  A topological space  X ,    is said 

to be  infra Lindelöf  space if every 
 infra open  cover of X has a countable sub 

cover. 
5 2Theorem . .  Every  infra Lindelöf  space 

 X ,   is Lindelöf  space.  

Proof .  Let  X ,   be an  infra Lindelöf   

space. Let  iA : i I  be an open cover of  X , .  

Since  I O X , .     Therefore  iA : i I  is 

an  infra open  cover of  X , .  Since  X ,   
is  infra Lindelöf  space. So there exists a 
countable subset I0  of I  such that  iA : i I0  is an

 infra open  sub cover of  X , .  Hence 

 X ,  is a Lindelöf  space. 
5 3Theorem . .  Every  infra compact  space is 

 infra Lindelöf .   
Proof .  Let  X ,  be an  infra compact  

space. Let  iA : i I  be an  infra open  cover 

of  X , .  Since  X ,   is  infra compact  

space. Then  iA : i I  has a finite sub cover say 

 iA : i , , ,...,n .1 2 3  Since every finite sub cover is 
always countable sub cover and therefore 
 iA : i , , ,...,n .1 2 3  is countable sub cover of 

 iA : i I .  Hence  X ,   is  infra Lindelöf

space.  
5 4Theorem . .  Every  infra closed  subset of an 

 infra Lindelöf  space is  infra Lindelöf .  
Proof .  Let F be an  infra closed  subset of X  
and   iG : i I be  infra open  cover of F.  

Then cF  is  infra open  and   U iF G : i I .  

Hence    U U c

iX G : i I F . Since X  is 

 infra Lindelöf ,  then   0 U U c

iX G : i I F  

for some countable subset 0I  of I .  Therefore 

 0 U iF G : i I . Thus F  is  infra Lindelöf .  

5 5Theorem . .  Let A  be an  infra Lindelöf   
subset of X  and B  be an infra closed   subset 
of X .   Then A BI  is  infra Lindelöf .  

Proof .  Let  iG : i I  be an infra open   cover 

of A B.I  Then   c

ii I
A G B .


 UU  Since A  is 

 infra Lindelöf ,  then there exists a countable 

subset 0I  of I  such that  
0

c

ii I
A G B .


 UU

Therefore 
0

ii I
A B G .


I U  Thus A BI  is 

 infra Lindelöf .  

5 6Theorem . .  A topological space  X ,   is  
 infra Lindelöf  if and only if every collection 

of infra closed   subsets of X  satisfying the 
countable intersection property, has, itself, a non-
empty intersection. 
Necessity: Let  iF : i I    be a collection of  
infra closed   subsets of X  which has the 
countable intersection property. Assume that 

ii I
F .


I  Then c

ii I
X F .


U  Since X  is 

 infra Lindelöf ,  then there exists a countable 
subset 0I  of I  such that 

0

c

ii I
X F .


U  Therefore,  

0
ii I

F 


I  contradicts that   has the countable 

intersection property. Thus   has, itself, a non-
empty intersection. 
Sufficiency:  Let  iG : i I  be an infra open    

cover of X . Suppose  iG : i I  has no countable 

sub cover. Then ii J
X G ,


 U  for any countable 

subset J  of I .  Now, c

ii J
G 


I  implies that 

 c

iG : i I  is a collection of infra closed   
closed subsets of X  which has the countable 
intersection property.  Therefore c

ii I
G .


I  Thus 

ii I
X G


U  contradicts that  iG : i I  is an 

infra open   cover of X . Hence X  is 
 infra Lindelöf .  
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5 7Theorem . .  An  infra continuous  image of 
an  infra Lindelöf  space is a Lindelöf  space.  
Proof .  Let    f : X , Y ,   be an  

 infra continuous  map from an 
 infra Lindelöf  space X  onto a topological 

space Y . Let  iA : i I  be an open cover of Y .  

Then    if A : i I1   is an  infra open  cover 
of X , as f  is  infra continuous.  Since X  is  

 infra Lindelöf  space, the  infra open

cover    if A : i I1  of X  has a countable sub 

cover say    if A : i I1

0  for some countable set 

I I .0  Therefore    iX f A : i I ,1

0U  which 

implies     if X A : i I ,0U  then 

  iY A : i I .0U   That is  iA : i I0  is a 

countable sub cover of  iA : i I  for Y . Hence 

 Y ,   is a Lindelöf  space.  
5 8Theorem . .  The image of an 

 infra Lindelöf  space under an 
 infra irresolue  map is  infra Lindelöf

space. 
Proof .   Suppose that a map 

   f : X , Y ,   is an  infra irresolue  

map from an  infra Lindelöf  space  X ,  

onto a topological space  Y , .  Let  iB : i I  be 

an  infra open  cover of  Y , .   Since f  is 

 infra irresolue.  Therefore    if B : i I1  is 

an  infra open  cover of  X , .  As   X ,  is 
 infra Lindelöf  space. the  infra open

cover     if B : i I1  of  X ,   has a countable 

sub cover say   if B : i I 1

0  for some countable 

set I I .0  Therefore    iX f B : i I ,1

0U  

which implies     if X B : i I ,0U  so that 

  iY B : i I .0U  That is  : iB i I0  a countable 

sub cover of  iB : i I  for Y . Hence  Y ,  is an
 infra Lindelöf  space. 

5 9Theorem . .  If  X ,   is  infra Lindelöf

space and countably  infra compact  space, 
then  X ,  is  infra compact  space. 
Proof .  Suppose  X ,   is  infra Lindelöf

space and countably  infra compact  space. Let 
 iA : i I  be an  infra open  cover of  X , .  

Since  X ,   is  infra Lindelöf  space, 

 iA : i I  has a countable sub cover say 

 iA : i I0  for some countable set I I .0  

Therefore  iA : i I0  is a countable 

 infra open  cover of  X , .  Again, since 

 X ,  is countably  infra compact  space, 

 iA : i I0  has a finite sub cover and say 

 iA : i , , ,...,n .12 3  Therefore  iA : i , , ,...,n12 3  

is a finite sub cover of  iA : i I  for  X , .  

Hence  X ,  is an  infra compact space. 
5 10Theorem . .  If a function 

   f : X , Y ,   is  infra irresolue  and 
a subset A  of X  is  infra Lindelöf  relative to 
X , then  f A  is  infra Lindelöf  relative to 
Y .  
Proof .  Let  iB : i I  be a cover of  f A  by 

 infra open  subsets of Y . By hypothesis f  is 
 infra irresolue  and so    if B : i I1  is a 

cover of A  by  infra open  subsets of X . Since 
A  is  infra Lindelöf  relative to X ,

   if B : i I1  has a countable sub cover say 

   if B : i I1

0  for A, where I0  is a countable 

subset of I .  Now  iB : i I0  is a countable sub 

cover of  iB : i I  for  f A .  So  f A  is 
 infra Lindelöf  relative to Y . 
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VI. ALMOST INFRA -α -COMPACT SPACES 
 

6 1Definition . .  A topological space  X ,   is 
called almost infra compact 

  infra Lindelöf  provided that every 
 infra open  cover of X has a finite (countable) 

sub collection, the infra closure   of whose 
members cover X .  
The proofs of the following four propositions are 
straightforward and therefore will be omitted. 

6 2Proposition . .  Every almost infra    
compact  space is almost  infra Lindelöf  
space. 

6 3Proposition . .  Every infra compact   space 
  infra Lindelöf space  is almost 

infra compact    almost infra Lindelöf .  

6 4Proposition . .  Any finite (countable) topological 
space  X ,    is almost infra compact 

  almost infra Lindelöf .  
6 5Proposition . .  A finite (countable) union of 

almost infra compact   ( almost infra  

Lindelöf ) subsets of  X ,   is almost 

infra compact     almost infra Lindelöf .  

6 6Definition . .  A subset E  of  X ,   is called 
infra clopen   provided that it is  
infra open    and  infra closed.   

6 7Theorem . .   Let F  be an infra clopen   
subset of an almost  infra compact   
  almost infra Lindelöf  space  X , .   Then  
F  is almost  infra compact   
  almost infra Lindelöf .  
Proof .  Let F  be an infra clopen   subset of  
an almost  infra compact   space X  and 
 iG : i I  be  an  infra open    cover of F.  

Then cF  is infra open   and 
   c

iX G : i I F . U U  Since X  is almost
infra compact,   then there exists a finite subset 

0I  of I such that

   0
c

iX I Cl G : i I F .  U U  Thus it follows 

that    0iF I Cl G : i I .  U  Hence F  is 
almost infra compact.   
The proof is similar in case of almost 

 infra Lindelöf .  
6 8Theorem . .  If A  is an almost 

infra compact     almost infra Lindelöf

subset of  X ,   and B  is an infra clopen   
subset of  X , then A BI  is almost 
infra compact     almost infra Lindelöf .  

Proof .  Let  iG : i I    be an infra open   

cover of A B.I  Then    c

iA G : i I B . U U  

Since A  is almost  infra compact,   then there 
exists a finite subset 0I  of I  such that 

   0
c

iA I Cl G : i I B .  U U  Therefore

  0iA B I Cl G : i I .  I U  Thus A BI  is 
almost infra compact.   
The proof is similar in case of almost 

 infra Lindelöf .  
6 9Theorem . .   Let a map    f : X , Y ,   

be  infra irresolute.   Suppose that A  is almost 
infra compact    almost infra Lindelöf  

subset of X . Then  f A  is almost 

infra compact    almost infra Lindelöf .   

Proof .  Suppose that  iG : i I  is infra open   

cover of  f A .  Then    if A G : i I . U  Now, 

  iA f G : i I . 1U  Since   f  is 

infra irresolute,    then    if G : i I 1  is an 
infra open   cover of A.  By hypothesis, A  is 
almost infra compact,   then there exists a 
finite subset 0I  of I  such that 

  iA I Cl f G : i I .    
1

0U  Since f  is 

infra irresolute,   then   iI Cl f G 1  

 if I Cl G ,   
1  for all i I . 0  Hence it follows 
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that      ii I
f A f f I Cl G


    0

1

U
 ii I

I Cl G ,



0

U  which implies that 

   ii I
f A I Cl G .


 

0
U  Thus  f A  is almost 

infra compact.  
The proof is similar in case of almost 

 infra Lindelöf .  
6 10Theorem . .  Let    f : X , Y ,   be an 

infra open   bijective map and  Y ,  is almost 
infra compact.   Then  X ,   is almost 
compact. 
Proof .  Let  iG : i I  be an open cover of X .  Then 

   ii I
f X f G .


 U  Therefore  ii I

Y f G .


U  
Now, Y  is almost infra compact,   then there 
exists a finite subset 0I  of I  such that 

 ii I
Y I Cl f G .


    0
U  Since f  is 

infra open   bijective map, then f  is 
infra closed   map. Therefore, we have

   i iI Cl f G f Cl G ,         for all i I . 0  Thus 

   i ii I i I
Y f Cl G f Cl G ,

 
      0 0

U U  which 

implies that    ii I
X f Y Cl G .


 

0

1

U  Thus

 ii I
X Cl G .




0
U  Hence X  is almost compact. 

6 11Theorem . .  If every collection of 
infra closed   subsets of  X , ,  satisfying the 
finite (countable) intersection property, has, itself, a 
non-empty intersection, then X  is almost 
infra compact     almost infra Lindelöf .  

Proof .  Let   iG : i I  be an infra open   

cover of X . Suppose  iG : i I  has no finite sub-
collection such that the infra closure   of 
whose members cover X . Then 

 1

i n

ii
X I Cl G , 




  U for any n N.  Therefore 

1

i n

ii
X G .




 U  Now, 

1

n c

ii
G 


I  implies 

 c

iG : i I  is a collection of infra closed   
subsets of X  which has the finite intersection 
property. Thus c

ii I
G 


I  implies ii I

X G .


U  

But this is a contradiction. Hence X  is almost 
infra compact.   
A similar proof is given in a case of 

 almost infra Lindelöf .  
 

VII. MILDLY INFRA - α -COMPACT SPACES 
 

7 1Definition . .   A topological space  X ,   is 
called mildly infra compact   
  mildly infra Lindelöf  provided that every 
infra clopen   cover of X  has a finite 
(countable) sub cover. 

7 2Theorem . .  Every mildly infra compact 

space is mildly  infra Lindelöf .  
Proof .  It is straight forward. 

7 3Theorem . .   Every almost infra compact 

  almost infra Lindelöf  space  X ,   is 
mildly infra compact   ( mildly infra    
Lindelöf ).   
Proof .   Let   iH : i I    be an 

infra clopen    cover of   X , .   Since   X ,   
is almost infra compact,   then there exists a 
finite subset I0  of I  such that 

 ii I
X I Cl H .


 

0
U  Now,  i iI Cl H H .   

Thus  X ,   is mildly infra compact.   

A similar proof is given when  X ,   is 
 almost infra Lindelöf .  

 7 4Corollary . .  Every infra compact   
  infra Lindelöf  space is mildly 

infra compact     mildly infra Lindelöf .  

7 5Theorem . .   If F  is an infra clopen   subset 
of a mildly infra compact   
  mildly infra Lindelöf   space X , then F  is 
mildly infra compact    ( m i l d l y i n f r a   
Lindelöf ).   
Proof .  Let F  be an infra clopen   subset of 
X  and  iG : i I  be an infra clopen   cover 

of F.   Then cF  is an infra clopen   and 
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ii I
F G .


U  Therefore   c

ii I
X G F .


 UU  Since 

X  is mildly infra compact,   then there exists 
a finite subset 0I  of I  such that  

  c

ii I
X G F .




0
UU So  ii I

F G .



0

U   Hence F  is 

mildly infra compact.    
The proof is similar in a case of mildly 

 infra Lindelöf .  
7 6Theorem . .  If A  is a mildly infra compact 

  mildly infra Lindelöf  subset of X  and B  
is an infra clopen   subset of X , then A BI  is 
mildly infra compact   ( mildly infra    
Lindelöf ).   
Proof .  Let  iG : i I    be an infra clopen   

cover of  A B.I  Then   c

ii I
A G B .


 UU  Since 

A  is mildly infra compact,   then there exists a 

finite subset 0I  of I  such that   c

ii I
A G B .




0
UU  

Therefore ii I
A B G .




0
I U  Thus A BI  is mildly 

infra compact.   
The proof is similar in case of mildly 

 infra Lindelöf .  
7 7Theorem . .  If    f : X , Y ,   is an 

infra open    bijective map and   Y ,  is 
mildly infra compact,   then  X ,   is mildly 
compact.  
Proof .  Let  iG : i I  be a clopen cover for X . 

Then    ii I
f X f G .


 U  Hence  ii I

Y f G .


U  

Since f  is  infra open   bijective map, then f  
is infra closed.   Therefore   if G : i I  is 
an infra clopen   cover of X . Since Y  is 
mildly infra compact,   then there exists a 
finite subset 0I  of I  such that   ii I

Y f G .



0

U  

Therefore ii I
X G .




0
U  Thus X  is mildly 

compact.  
7 8Proposition . .  A subset A  of  X ,   is mildly 

compact  mildly Lindelöf   if and only if   AX ,   

is mildly compact  mildly Lindelöf . 

 

VIII. INFRA - α - CONNECTED SPACES 
 

8 1Definition . .  A topological space  X ,   is said 
to be connected if X  cannot be written as a disjoint 
union of two non empty open sets. A subset of 
 X ,   is connected if it is connected as a subspace. 

8 2Definition . .  A topological space  X ,   is said 
to be  infra connected  if X  cannot be written 
as a disjoint union of two non empty 

 infra open  sets. A subset of  X ,    is 
 infra connected  if it is  infra connected

as a subspace. 
8 3Theorem . .  Every  infra connected  space 

 X ,   is connected. 
Proof .  Let A  and B  be two non empty disjoint 
proper open sets in X .  Since every open set is 

 infra open  set. Therefore A  and B  are non 
empty disjoint proper  infra open  sets in X  
and X  is  infra connected  space. Hence  
X A B. U  Therefore X  is  infra connected.  

8 4Theorem . .  Let  X ,   be a topological space. 
Then the following statements are equivalent  
 i  X ,   is  infra connected.  

 ii The only subsets of  X ,   which are both 
 infra open  and  infra closed  are the 

empty set   and X .  
 iii  Each  infra continuous  map of   X ,   

into a discrete space   Y ,   with at least two 
points is a constant map.  
Proof .     i ii :  Let G be a non empty proper 

 infra open  and  infra closed  subset of 
 X , .  Then X G  is also both  infra open  

and  infra closed.  Then   X G X GU  is a 
disjoint union of two non empty  infra open  
sets, which contradicts the fact that  X ,   is 

 infra connected.   Hence  G  or G X .   
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   ii i :  Suppose that X A BU  where A  and 
B  are disjoint non empty  infra open  subsets 
of   X , .  Since  A X B, then A  is both  

 infra open  and  infra closed.  By 
assumption  A  or A X ,which is a 
contradiction. Hence  X ,   is 

 infra connected.  
   ii iii :  Let    f : X , Y ,   be an 

 infra continuous  map, where  Y ,  is 
discrete space with at least two points. Then 

 f y1  is  infra closed  and  infra open  
for each y Y.  Thus  X ,   is covered by 

 infra closed and  infra open  covering 
  1 f y : y Y .  By assumption,  f y 1   or 

 f y X 1  for each y Y.  If  f y 1  for each 
y Y ,  then f  fails to be a map. Therefore their 
exists at least one point say *y Y such that 

  *f y . 1  Since   *f y1  is also both 

 infra open  and  infra closed  set.  

Therefore by hypothesis   *f y X . 1  This   

shows that f  is a constant map.  
   iii ii :  Let G  be both  infra open  and 

 infra closed  set in  X , .  Suppose G .  

Let    f : X , Y ,   be an 

 infra continuous  map defined by    f G a  
and    f X G b    where a b  and a, b Y.  
By assumption, f  is constant so G X .   

8 5Theorem . .  If    f : X , Y ,   is an 

 infra continuous  surjection and  X ,   is 

 infra connected ,  then  Y ,   is connected.  

Proof .  Suppose  Y ,   is not connected. Let 
Y A B,U  where A  and B   are disjoint non empty 

open subsets of  Y , .  Since f  is 

 infra continuous,      X f A f B ,1 1U  

where  f A1  and  f B1  are disjoint non empty 

 infra open  subsets of X . This disproves the 
fact that  X ,   is  infra connected.  Hence 

 Y ,   is  connected. 

8 6Theorem . .  If    f : X , Y ,   is an 
 infra irresolute  surjection and X  is 
 infra connected ,  then Y  is 
 infra connected.  

Proof .  Suppose that Y  is not 
 infra connected.  Let Y A B,U  where A  

and B  are disjoint non empty  infra open  sets 
in Y .  Since f  is  infra irresolute  map and 
onto,     X f A f B ,1 1U  where  f A1  and 

 f B1 are disjoint non empty  infra open  sets 

in  X , .  This contradicts the fact that  X ,   is 

 infra connected.  Hence  Y ,  is 
 infra connected.  

8 7Theorem . .  If every  infra closed  set in X  
is closed in X  and X  is connected, then X  is 

 infra connected.  
Proof .  Suppose that X  is connected. Then X  
cannot be expressed as disjoint union of two 
nonempty proper open subset of X . Let X  be not 

 infra connected  space. Let A  and B  be any 
two non empty  infra open  subsets of X  such 
that X A B,U  where  A B .I   Since every 

 infra closed  set in X  is closed in X . 
Therefore every  infra open  set in X  is  open 
in X . Hence A  and B  are open subsets of X , 
which contradicts that X  is connected. Therefore 
X  is  infra connected.   

8 8Theorem . .  Every infra connected   space 
 X ,  is mildly infra compact.   

Proof .  Since  X ,  is infra connected ,   then 

the only infra clopen   subsets of   X ,  are 

X  and .  Therefore  X ,  is mildly 
infra compact.   

8 9Theorem . .   If two  infra open  sets C  and 
D  form a separation of X  and if Y  is 
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 infra connected  subspace of X , then Y  lies 
entirely within C  or D.  
Proof .  By hypothesis C  and D  are both 

 infra open  sets in X .The sets C YI and 
D YI  are  infra open  in Y ,  these two sets are 
disjoint and their union is Y . If they were both non 
empty, they would constitute a separation of Y .
Therefore, one of them is empty. Hence Y  must lie 
entirely in C  or D. 

8 10Theorem . .  Let A  be an  infra connected

subspace of X . If    A B I Cl A , then B  is 
also  infra connected.  
Proof .  Let A  be  infra connected.  Let 

   A B I Cl A . Suppose that B C DU  is a 
separation of B  by  infra open  sets. Thus by 
previous theorem A  must lie entirely in C  or D. 
Suppose that A C,  then it implies that 

     I Cl A I Cl C . Since  I Cl C  and 
D  are disjoint, B  cannot intersect D. This 
disproves the fact that D  is non empty subset of B

So  D  which implies B is  infra connected.  
 

IX. CONCLUSIONS 
We have used infra open   sets to introduce the 
new concepts of notions in topological spaces namely 

 infra compact  space, countably 
 infra compact  space,  infra Lindelöf  

space, almost  infra compact  space, mildly  
 infra compact  space and  infra connected  

space and have investigated several properties and 
characterization of these new concepts.  
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