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Abstract—The paper deals with the boundary value problem for 

a nonlinear integro-differential equation describing the dynamic state 
of a beam. To approximate the solution with respect to a spatial 
variable, the Galerkin method is used, the error of which is estimated. 
At the end of the paper a difference-iteration technique of solving the 
Galerkin system is presented. 
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I. PROBLEM FORMULATION 
Let us consider the nonlinear differential equation 
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where α , β , L and T are some positive constants, ( )txf , , 

,  are the given functions and (xw0 ) (xw1 ) ( )txw ,  is the 
function we want to define. 
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II. BACKGROUND OF THE PROBLEM 
Equation (1) describes the oscillation of a beam. The 

corresponding homogeneous equation was obtained by 
Woinowsky-Krieger [27] in 1950. 

The nonlinear term in the brackets is the correction to the 
classical Euler-Bernoulli equation 
 

02 =+ xxxxtt wcw , 
 
where the tension changes induced by the vibration of the 
beam during deflection are not taken into account.  This 
nonlinear term was for the first time proposed by Kirchhoff 
[13] who generalized d’Alembert’s classical model. Therefore 
equation (1) is often called a Kirchhoff type equation for a 
dynamic beam. Note that Arosio [1] calls the function of the 

integral  the Kirchhoff correction (briefly, the K-

correction) and makes a reasonable statement that the K-
correction is inherent in a lot of physical phenomena. 
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The works dealing with the mathematical aspects of 
equation (1) when ( ) 0, =txf  and its generalization 
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as well as some modifications of the  above equations  belong 
to Ball [2, 3], Biler [5], Brito [6], Dickey [10], Guo and Guo 
[12], Kouemou-Patcheu [14], Medeiros [17], Menezes et al. 
[18], Panizzi [20], Pereira [25] and to others. The subject of 
investigation concerned the questions of the existence and 
uniqueness of a solution [2, 3, 12, 14, 17, 18, 20, 25], its 
asymptotic behaviour [5, 6, 10, 14], stabilization and control 
problems [12] and so on. 

The topic of an approximate solution of Kirchhoff 
equations, which the present paper is concerned with, was 
treated by Choo and Chung [7], Choo et al. [8], Clark et al. 
[9], Geveci and Christie [11]. Speaking more exactly, the 
finite difference and finite element approximate solutions are 
investigated and the corresponding error estimates are derived 
in [7, 8]. Numerical analysis of solutions for a beam with 
moving boundary is carried out in [9]. The question of the 
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stability and convergence of a semidiscrete and fully discrete 
approximation is dealt with in [11]. The problem of an 
approximate solution of a static Kirchhoff equation was 
studied by Ma [16] and Tsai [26]. 

Approximate methods for other equations containing the 
K-correction or being reduced to equations with it are 
investigated in [22, 23, 24]. 

III. ASSUMPTIONS 
Suppose that the initial functions are represented in the 

form 
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where p, 0ω , 1ω  are some positive numbers and also . 1>p

Assume that 
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Suppose that there exists a solution of problem (1), (2) 
which is represented in the form 
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where the coefficients  satisfy the following infinite 
system of differential equations 
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with the initial conditions 
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converge. 

IV. THE GALERKIN APPROXIMATION 
Let us perform approximation of the solution with respect 

to the variable x. For this we use the Galerkin method. A 
solution will be sought in the form of a finite series 
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where the coefficients ( )twni  are solutions of the system of 
differential equations 
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with the initial conditions 
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Now we are going to estimate the error of the Galerkin 
method. To achieve this aim it is necessary to introduce 
several notions and to prove some auxiliary statements. Let λ  

and μ  be n-dimensional vectors, , ( )n
ii 1== λλ ( )i= μμ n

i 1= . 
In the first place, we define respectively the scalar product and 
the norm 
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Next, using the functions ,   and the coefficients ( )twni ( )tfi

( )l
ia , ni ,,2,1 K= , 1,0=l , from (10), (7) and (3) we form 

the vectors 
 

( ) ( )( ) ( ) ( )( )
( )( )( ) .1,0,

,,

1

11

==

==

=

==

lta

tfttwt
n

i
l

i
l
n

n
iin

n
inin

a

fw
       (13.2) 

 
We also define the matrix and the energetic norm 
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Using this notation, (11), (12) can be written in the vector 
form 
 

( ) ( )

( ) ( ) ( ),
2

22

Q

4

2
n

ttQtL
tQt

nnnn

nnn

fww

ww

=⎟
⎠
⎞

⎜
⎝
⎛ ++

+′′

βα
      (14) 

Tt ≤<0 , 
( ) ( ) 10 0,0 nnnn awaw =′= .             (15) 

V. THE ERROR OF THE GALERKIN METHOD 
By the coefficients of decomposition (6) we form the 

vector 
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By the error of the Galerkin method we understand the 

difference between the vectors  and  ( )tnw ( )tpnw
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Let us derive an equation for the error. 

Using (16) and (13), the first n equations of system in (7) 
and the first n equalities from each of  the initial conditions (8) 
are written in the form 
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where  is the vector defined by the formula ( )tnz
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Subtracting (18) and (19) from (14) and (15), respectively, 
and taking into account (17), we write the equation for the 
error 
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with the boundary conditions 
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Equation (21) and conditions (22) are the starting point of 
the investigation of the problem of Galerkin method accuracy 
estimation. 

Lemma 1. The estimate 
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where  and  do not depend on n and t, is valid. 0c 1c

Proof. We multiply the equation in (7) by ( )twi′2  and sum 

the obtained expression over i . If we use (5) and (9) 
and denote 
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then the result is written as , which 

means that for 
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Taking (24) into account we infer that 
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We need to use in (25) the following Bellman and Bihari 
generalization of Gronwall’s inequality [4]. 

Let [ ) [ )∞→∞ ,0,0:y  be a continuous function and 
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( ) ( ∞→∞ ,0,0:z )  be a nondecreasing continuous function. 
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As a result we obtain 
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By (26), (24) and the relations 
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which follow from (16), (13), (7) and (5), we see that 
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Let us calculate ( )0Φ . Using (24), (8), (3) and (4) we get 
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From (27), first taking into account that by virtue of (13) 
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and then verify the fulfillment of (23) for 2=l , where  is 
defined by (28).  
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Lemma 2. The inequality  
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This relation which together with (32), (13) and (7) imply 
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Applying (30), (34)-(36), (28) and (7), we observe that 
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Using (9), let us introduce into consideration the function 
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obtain 
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By (24), (26), (28) and (7) we have 
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Further, comparing the sum  from (40) with 

the function  from (41), we infer 
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By virtue of (42)-(44) and the Gronwall inequality 
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We need to estimate . This estimate is obtained by 

using (41), (8), (4), (3) and the formula 
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which follows from the integral test for the convergence of 
series. As a result we have 
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Applying to (40) inequalities (44)-(46) and (23) 

successively, we come to the conclusion that (39) is fulfilled 
and also that 
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Let us formulate the main result. 

Theorem. The inequality 
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where ( )tc  is defined below, is fulfilled for the error of the 
Galerkin method. 

Proof. After the scalar multiplication of (21) by ( )( )′Δ tnw2  
we obtain 
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Let us estimate some terms from the right-hand part of relation 
(48). For this we will have to make repeated use of (13). 
 
By (32), (33) and (36) we get 
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From (16), (17), (23) and (31) follows 
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Finally, again using (23) we find 
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Relations (48)-(52) together with (13), (22) and (39) allow us 
to conclude that 
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Applying the Gronwall inequality and definition (49), we 

obtain the proven inequality (47) together with the formula for 
the coefficient ( )tc  
 

( ) ( )tccTectc 65 ,max
4= .  

      Note that if we weaken the accuracy requirement, relations 
(53) can be simplified.  By virtue of (38) we can take c  

instead of  and replace the value  contained in  
by one of its upper bounds from (37). 
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VI. SOLUTION OF THE GALERKIN SYSTEM 
Here we consider a method of solving the system (11), 

(12). Let us introduce, on the time segment [ , a grid with 

step 

T,0
MT=τ  and nodes τmtm = , . An 

approximate value of 
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by a difference scheme of the form 
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with the conditions 
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where ( )lmi

lm
i tff −

− = , 2,0=l . 
From (54) and (55) it follows that if the counting is 

performed from level to level, then, knowing the results for 
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the preceding levels, at the mth time level, , 

i.e. for , we have to solve a system of nonlinear 

equations with respect to , , which has the 
form 

Mm ,,3,2 K=
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niw i ,2,1 K=
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System (56) is solved by the iteration method consisting in 

calculating successive approximations by Jacobi’s rule [19] 
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where  and  are the kth and the final iteration 

approximation of  and , . 
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For fixed i, (57) is a cubic equation with respect to 

. The Cardano formula [15] allows us to determine 

 in an explicit form. We get 
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where 
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Thus the proposed algorithm is reduced to the calculation by 
formula (58). Having , we can construct the series m

kniw ,

∑
=

n

i

m
kni x

L
iw

1
, sin π

, which gives an approximate value of the 

exact solution ( )txw ,  of problem (1), (2) for mtt = . 

The case where ( ) 0, =txf  in (1) was considered in the 
author’s paper [21]. 
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