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The error of the Galerkin method for a
nonhomogeneous Kirchhoff type wave equation

Jemal Peradze

Abstract—The paper deals with the boundary value problem for
a nonlinear integro-differential equation describing the dynamic state
of a beam. To approximate the solution with respect to a spatial
variable, the Galerkin method is used, the error of which is estimated.
At the end of the paper a difference-iteration technique of solving the
Galerkin system is presented.
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I
Let us consider the nonlinear differential equation

PROBLEM FORMULATION

)+ 22 )

- a+ﬂj( ]dé 7 (1) M
=f(xt), 0<x<L, 0<t<T,

with the initial boundary conditions

w(x,0)=w"(x), ( 0)=w'(x),

0= =0 o
& 2 (0.0)= (L t)=0

0<x<L,

where o, [, L and T are some positive constants, f(X,t),

WO(X), Wl(x) are the given functions and W(X,t) is the
function we want to define.
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Equation (1) describes the oscillation of a beam. The
corresponding homogeneous equation was obtained by
Woinowsky-Krieger [27] in 1950.

The nonlinear term in the brackets is the correction to the
classical Euler-Bernoulli equation

BACKGROUND OF THE PROBLEM

th + Cszxxx = O ’

where the tension changes induced by the vibration of the
beam during deflection are not taken into account. This
nonlinear term was for the first time proposed by Kirchhoff
[13] who generalized d’Alembert’s classical model. Therefore
equation (1) is often called a Kirchhoff type equation for a
dynamic beam. Note that Arosio [1] calls the function of the

L
integral wa dx the Kirchhoff correction (briefly, the K-
0
correction) and makes a reasonable statement that the K-
correction is inherent in a lot of physical phenomena.
The works dealing with the mathematical aspects of

equation (1) when f (X,t) = 0 and its generalization

W, + Wi — UW de

M (4)=> const > 0,

f(xt,w),

as well as some modifications of the above equations belong
to Ball [2, 3], Biler [5], Brito [6], Dickey [10], Guo and Guo
[12], Kouemou-Patcheu [14], Medeiros [17], Menezes et al.
[18], Panizzi [20], Pereira [25] and to others. The subject of
investigation concerned the questions of the existence and
uniqueness of a solution [2, 3, 12, 14, 17, 18, 20, 25], its
asymptotic behaviour [5, 6, 10, 14], stabilization and control
problems [12] and so on.

The topic of an approximate solution of Kirchhoff
equations, which the present paper is concerned with, was
treated by Choo and Chung [7], Choo et al. [8], Clark et al.
[9], Geveci and Christie [11]. Speaking more exactly, the
finite difference and finite element approximate solutions are
investigated and the corresponding error estimates are derived
in [7, 8]. Numerical analysis of solutions for a beam with
moving boundary is carried out in [9]. The question of the
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stability and convergence of a semidiscrete and fully discrete
approximation is dealt with in [11]. The problem of an
approximate solution of a static Kirchhoff equation was
studied by Ma [16] and Tsai [26].

Approximate methods for other equations containing the
K-correction or being reduced to equations with it are
investigated in [22, 23, 24].

Suppose that the initial functions are represented in the
form

ASSUMPTIONS

_ 3 asin 17
=Y asin—=x, 3
iZ:l: . 0 (3)
=01, 0<x<L,
and
o, @ .
af< P @ 1o @

where p, @,, @, are some positive numbers and also p >1.

Assume that
f(x,t)eC(0,T;L,(0,L)). )

Suppose that there exists a solution of problem (1), (2)
which is represented in the form

(6)

where the coefficients W; (t) satisfy the following infinite
system of differential equations

()
2t iz
f(t)= E-([ f(x,t)sin T xdX,

i=12,..., 0<t<T,

with the initial conditions

(®)

106

Assume also that

the series iw{ 2( 9)

t) and 2i4wi2(t)

converge.

IV. THE GALERKIN APPROXIMATION

Let us perform approximation of the solution with respect
to the variable x. For this we use the Galerkin method. A
solution will be sought in the form of a finite series

ZW sm—x (10)

where the coefficients W, (t) are solutions of the system of
differential equations

”.(t)+( Twm(t)

7

L

W

ni

+(7:j (a+ﬂ ijm ] (t) (11)
=f(t), i=12,..., 0<t<T,

with the initial conditions

w,(0)=a, w;(0)=a", 12)
1=12,...,n

Now we are going to estimate the error of the Galerkin
method. To achieve this aim it is necessary to introduce

several notions and to prove some auxiliary statements. Let A
and 4 be n-dimensional vectors, A = (/1i )i":l, U= (,ui )i":l

In the first place, we define respectively the scalar product and
the norm

=S A, = (22) 13
i=1

Next, using the functions W,; (t) fi(t) and the coefficients

a, i=12,...,n, 1=01, from (10), (7) and (3) we form
the vectors

w, ()= (w, (1))
a) = (" ()]

We also define the matrix and the energetic norm

n

L RO)=(f1)

I=01.

= (13.2)

l!
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h =

Q

12 =@22. 2%, 1=12

Z diag(L,2,...,n),
L (13.3)

Using this notation, (11), (12) can be written in the vector
form

wy (t)+Q w, (t)
L (14)
[as 5 w0 orma 0= 1,0
0<t<T,
w,(0)=a;, w;(0)=a;. (15)

V. THE ERROR OF THE GALERKIN METHOD

By the coefficients of decomposition (6) we form the
vector

pw(t) = (w (1))

By the error of the Galerkin method we understand the
difference between the vectors W, (t) and an(t)

n

- (16)

Aw, (t)=w, (t)— p,w(t). (17)

Let us derive an equation for the error.

Using (16) and (13), the first n equations of system in (7)
and the first n equalities from each of the initial conditions (8)
are written in the form

(p,w(t) +Q¢ p,w(t)
e+ a5l Joipwt)

+2,(t)= 1, (t). (18)
0<t<T,
pw(0)=al, (p,w)(0)=a}. (19)
where Z, (t) is the vector defined by the formula
2 0
2 (0)= ﬁ%[ Zizwf(t)Jan pu(t) @)
i=n+1

Subtracting (18) and (19) from (14) and (15), respectively,
and taking into account (17), we write the equation for the
error

107

(aw, (1) +Qiw, (1

o as a5, Jozam, 0 e
-5 oVl I, O Joz ()= 2, )

with the boundary conditions

Aw,(0)=0, (Aw,)(0)=0. (22)

Equation (21) and conditions (22) are the starting point of
the investigation of the problem of Galerkin method accuracy
estimation.

Lemma 1. The estimate

2 <Gy, 1=12, (23)

[pw(t),

where C, and C; do not depend on n and t, is valid.

Proof. We multiply the equation in (7) by 2Wi’(t) and sum

the obtained expression over 1 =1,2,.... If we use (5) and (9)
and denote

o(t)- gw{z(t)+(%]42i“wi2(t)
{a+ﬂg—igi2wf(t)]2,

(24)
1
+_
AL
then the result is written as @'(t) = Zi f.(t)w/(t), which
i=1

means that for 0 <t <T we have

L/ w 7( w 2
oft) < cp(o)+zj[z ff(r)J (ZW;Z(T)J dr.
o\ i=l i=1
Taking (24) into account we infer that

o(t)<®(0)+25up > ;2 (25)

0<t<T j—1

(O] ' (e

We need to use in (25) the following Bellman and Bihari
generalization of Gronwall’s inequality [4].

Let y:[O,oo)—>[0,oo) be a continuous function and
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2:(0,00) >

Then the inequality y( <C+.[ dT

where ¢ is a positive constant, implies y( )S Z’l(ZO)< 0,

0<t<2Z,, for a positive number Z, smaller than Z (o).

Here

dr

ZT

203

In the case under consideration

yt)=@(t) c=d(0) z(r)=mr’,
m=f a3 0] 2,7
Thus

;om

As a result we obtain

sup i : (26)

0<t<T j1

¢ﬁ)<ﬂb%®+T(

By (26), (24) and the relations

which follow from (16), (13), (7) and (5), we see that
2
(t)| Q&

1 1 2
+ ﬁ[d +Eﬂ|_|| an(

(o, 0| + 1o,

(27)

(O oo) be a nondecreasing continuous function.

0<t< o,
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where

1
2

28
L o«t<t 0 (@8)

t)dx] ]2.

Let us calculate (D(O). Using (24), (8), (3) and (4) we get

C, = [(I)5(0)+T[z supJL‘ f2(x,

(29)

From (27), first taking into account that by virtue of (13)

[paw(®) g = Ipawit)l,

where

, Wwe obtain (23) for | =1,

(30)

and then verify the fulfillment of (23) for | =2, where Cy is
defined by (28). O

Lemma 2. The inequality

o, ()

where the value C, does not depend on t, is valid.

<C,,

@ S (31)

Proof. Multiplying (14) scalarly by ZWG(t), we obtain
@/ (t) = 2( £, (t)w,(t)), , where

n n
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t)=w; 0]

1 2 (32)
ﬂL(m AL, () )

Therefore we get the relation

@ ( +zj||f (o) w2} de . (33)

Let us apply the Bellman-Bihari inequality and definition
(32) to (23). We have

y(t):d)n(O), c= QD(O) Z(r):mr%,
m=2sup|f,t)],, Z, =T

Therefore as above

Hence we conclude that

()< (cpg(o)n sup]| fn(t)||n)é.

0<t<T

This relation which together with (32), (13) and (7) imply
the fulfillment of (31) with

¢, =2~ ((ET + 2a(£j + cS,BLT
AL L

(34)
2
T

= +all

()]
where

1 2
C, = [@%(O)+T[£ sup . fiz(t)} J , (35)
0<t<T 'j=1

and give the inequality
o (t)<c, (36)
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to be used below. O

If it is required to calculate or estimate C,, we may use the
following formulas for GDn(O)

_ Zn:a_(l)Z +(£j4zn:i4a'(o)z
i=1 I L i=1 l
1 7?3 i
+ﬁ(a +ﬂIZi2ai(°)2j <®(0),
i=1

0[] Jorgtiomsi)

+i[a+woﬁ J (Hi(l_ L jj,
AL 2L p+1" nP?

which are the result of the application of (32), (15), (13)
together with (4), (3), (29). Besides the integral test for the
convergence of series is used, by which

v 1oL 1-02.
Ip+| Xp+|
1

i=1

@37)

Applying (30), (34)-(36), (28) and (7), we observe that

C,<(C (38)
Lemma 3. The inequality
C4
J2.(t)], <55 (39)
where the value C, does not depend on t, is valid.
Proof. From (20) and (13) it follows that
|2, ()], = 5 (40)
| n+l
Using (9), let us introduce into consideration the function
= > wA(t)+ ( j ZI w?(
i=n+1 i=n+1
(41)

{QZ[M 5, i )jii2wf<t>

i=n+1
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After multiplying the equation in (7) by 2w!(t) and
summing the resulting equality over i=n+1,n+2,..., we
obtain

3 o0 o0
W ()= ﬁﬂ@ S i (Ow )W), @)
j=1 i=n+1
By (24), (26), (28) and (7) we have
zrw,-a)w;(tﬁ
j=1
1LY e
<= 2(t)+] = jw(t
2(%) gyw()+(L);;JWK)J (43)
1LY 1 (LY

Further, comparing the sum Zizwf (t) from (40) with

i=n+l

the function ¥, (t) from (41), we infer

" 2 2\t
zizws(t)s(kj (m[ﬁn v (1), (@)
i=n+1 T L
By virtue of (42)-(44) and the Gronwall inequality
2\-1
1 Vs
¥ (1)< (0)exp ECO,BL(OH(IJJ .

We need to estimate ‘¥, (0) This estimate is obtained by
using (41), (8), (4), (3) and the formula

1=0,2,

Xp+|’

which follows from the integral test for the convergence of
series. As a result we have

¥, (0)= 3 a {9

i=n+1
+(

2 2 w
T % Z-z (0)2
— a+ hH— a:
LN ﬂZLHJ : ]

4 [ee)
i4a_(o)2
iizai(o)z

i=n+1
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<

el

o

S; w, +a)(zj4
(p-yn”* | AL

=1
Z s p+2
i=n+l

(46)

1(zY § .
o {2 -k ] x|
0
Applying to (40) inequalities (44)-(46) and (23)

successively, we come to the conclusion that (39) is fulfilled
and also that
pLc 7Y h 7\
=2 a+(—j a)l+a)0(—)
2(p-1) L L
1 (7Y
+ao,—| = | (p-1)p+1)"
v (L) (P-2)p+1)
TR
X (a + ﬂJ- (W (x)) dxﬂ
0

-1
1 7Y
XeXp ECOﬂL(CI‘F(IJ J T1].O

Let us formulate the main result.

C,

Theorem. The inequality

;‘ + 0(||AWn (t)|

[H(Awn(t))'Hi aw, (1) l
_ct)

2 2
Q?
<

where C(t) is defined below, is fulfilled for the error of the
Galerkin method.

(47)

!

Proof. After the scalar multiplication of (21) by Z(Awn(t))
we obtain
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!
2
Q?

FilD)-1 ﬁL{HAwn(t)”; (w, )

2o, o, 0 )
(azntptam, ) | -
#2(2,(0) (aw, 1) )
Fy 0=, 0+, €0,

(49)

2
Q'

Aw, (t)

2
Q7

Let us estimate some terms from the right-hand part of relation
(48). For this we will have to make repeated use of (13).

+ (a + %,6’L||Wn (t)

By (32), (33) and (36) we get

. O ) <[ ) -+, )

From (16), (17), (23) and (31) follows

llpw(e): —w, (),
AL

< (Ej > |2‘wi2(t)— W (t)‘

i1 (51)

< V2| p,wit), + wlt)], Jaw, ¢)
(

o <O, ()<c,. 6o

Qf

Finally, again using (23) we find

(i powlth(aw, )] )
(s, (0]

, (52

(Aaw, (t))

<c,

<[p.wlt)l,

n

Relations (48)-(52) together with (13), (22) and (39) allow us
to conclude that
t C2-I- t
F.(t)= J' F/(z)dr < W +max(c;, ¢, )J' F.(c)dr,
0

0

where

2 -1
C; =1+v, 06:[a+(£j] (v+£csﬂL),
L 2 (53)
v=to Blc,+c,)
\/E 0 1 2,

Applying the Gronwall inequality and definition (49), we
obtain the proven inequality (47) together with the formula for

the coefficient C(t)

o(t)=c,VTe™ ot o

Note that if we weaken the accuracy requirement, relations
(53) can be simplified. By virtue of (38) we can take C;

instead of C, and replace the value CDn(O) contained in C,
by one of its upper bounds from (37).

V1. SOLUTION OF THE GALERKIN SYSTEM
Here we consider a method of solving the system (11),
(12). Let us introduce, on the time segment [O,T ] a grid with

step 7=T/M and nodes t, =mz, m=01,...,M . An

approximate value of W (tm) denoted by W; is determined
by a difference scheme of the form

-\4 m m—2 -\ 2
m-1 o) W, +W, 7
(g5

m m-2 Y m m—
X(a+ﬂ§2j2(wnj) +2(W”i 2) JWm +Wi?

= 2 (54)
1
- f-m—i-f-m_z,
2(' 1 )
i=12,...n, m=23,...M,

with the conditions

(55)

7’
x [a + ﬂzz Jzago)zﬂ a”,
-1

where f™' = f(t ), 1=0,2.

From (54) and (55) it follows that if the counting is
performed from level to level, then, knowing the results for
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the preceding levels, at the mth time level, m=2,3,...,M ,

i.e. for t=1,, we have to solve a system of nonlinear

equations with respect to W', i =1,2,...,n, which has the

ni’
form

r? (i) aY
I+ —|—||a+|—
2\ L L

=2wh
i=12,...,n

System (56) is solved by the iteration method consisting in
calculating successive approximations by Jacobi’s rule [19]

(=1
e (o, + (a2 )

(57)

X (Wnl k+1 + Wnl F )
2

+%(fi”‘ + fim‘z),
1=12,...

= 2wy ¢
n, k=01...,

where Wi, and Wy are the kth and the final iteration

approximation of W and W', 1 =1,2.
For fixed i, (57) is a cubic equation with respect to

Wr:': k- The Cardano formula [15] allows us to determine

w™ . inan explicit form. We get

ni,k+1

112

w2
iWrr1ri],k+-1 e ——
) N NE
-> I ] S I (58)
= 2 4 27
k=01..., i=12,...,n
where

=40

3
+g(iwﬂ?}2 f +%(&j !
3 i\

S —giwm‘2 q +Q(iw"“2)2 B 3
i 3 ni,F i 9 ni,F Tzizﬂﬂ T

2iw; £ ' NP
X —3 + 2iwy; ¢ 2(1‘i + f, 2),

Thus the proposed algorithm is reduced to the calculation by
formula (58). Having W,k, we can construct the series

Zwmksm

exact solution W(X,t) of problem (1), (2) for t =t

X, which gives an approximate value of the

The case where f(x,t): 0 in (1) was considered in the
author’s paper [21].
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