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Abstract— It is well known that maintaining a stable queue size
and high throughput in routers operating in high bandwidth-delay
product networks is a difficult task. Fortunately, some newly proposed
active queue management solutions (by Sun et al. and Ren et al.)
seem to work quite well in such environments. In this paper we
demonstrate that two additional factors make the task of achieving a
stable queue size and high throughput very difficult. Namely, when
the congestion level is low or the target queue size is short, none
of the known AQMs performs reasonably well - the queue is very
unstable and the throughput often goes far below fifty percent of the
link capacity. Therefore, new AQM algorithms, able to work well in
such scenarios, are needed.
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I. INTRODUCTION

The active queue management (AQM) algorithms for In-
ternet routers (see, for example, [2]-[24]) are designed with
several objectives in mind (see [15] for a comprehensive list).
However, the stability of the queue size, in terms of low
queue size variance, plays a central role in this list as it is
strictly connected with other requirements. For instance, an
AQM that is able to maintain a very low variance of the queue
size guarantees also that the achieved throughput is close to
maximal possible one. This is due to the fact that the empty
queue probability is very low in a system with such AQM.
Therefore, a stable queue size automatically provides a good
throughput.

The other important objective of the active queue manage-
ment is a low queue size. Obtaining a stable but long queue
is not a very demanding task, and even a simple drop-tail
algorithm can do that to some extent. Therefore, these two
requirements, stable and short queue size, have to be always
presented together.

What are the factors that make it difficult to preserve a stable
and short queue size in the router’s buffer? In [16] a large
propagation delay was identified as the reason of unstability
of several popular AQM algorithms. However, the newest
algorithms, like AN-AQM [23], can keep a stable queue even
if the RTPT is as long as 500ms. Therefore the question arises
whether the problem was definitely solved.

In this paper we show that it is not so. In particular,
we demonstrate that two other factors make the AQMs to
be prone to high queue size variations. These factors are:
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low congestion level and low average queue size. The best
algorithms can stabilize the queue size very well, but only
when the congestion is heavy or moderate and when the buffer
and the target queue size are not very small. For instance, in
[23] the superior performance of AN-AQM is shown using at
least 300 flows on 45Mb/s link, which is equivalent to a rather
heavy congestion. Moreover, a large buffer (900 packets) was
used and the target queue size was set to 300 packets (50 in
one of the experiments).

In this paper we study the stability of the queue size using
a small buffer (90 packets), a low congestion level and a
new AQM testbed specification. The results indicate that the
variation of the queue size grows when the congestion level
diminishes or when the queue gets shorter. In fact, none of
the algorithms used in our experiments performed very well
when these two unfavourable factors were involved. Therefore,
new algorithms that can stabilize the queue size under such
network conditions are needed.

The remaining part of the report is organized in the fol-
lowing way. In Section II, we present a detailed description
of the network model and simulation environment used in
our experiments. In Section III, we describe briefly six active
queue management algorithms used in the paper. Then, in
Section IV, the simulation results are presented and discussed.
In particular, the average queue size, the standard deviation
and the variation coefficient are presented for different queue
management algorithms and congestion scenarios. The final
remarks and conclusions are given in Section V.

II. NETWORK MODEL

In simulations we follow the trans-oceanic link scenario
described in [25]. This is a long-delay scenario, suitable for our
purposes. In particular, the standard dumb-bell topology with
two routers, A and B, the bottleneck link A-B, and six network
nodes, N1-N6 are used (see Fig. 1). The link propagation
delays are the following:

N1-RA: 0ms,
N2-RA: 12ms,
N3-RA: 25ms,
N4-RB: 2ms,
N5-RB: 37ms,
N6-RB: 75ms,
RA-RB: 65ms.

Therefore, the longest RTPT (N3-N6-N3) is equal to 330s. All
the links have the capacity of 100Mb/s.

The TCP senders are located in nodes N1-N3 and they trans-
mit data to nodes N4-N6 over all nine possible transmission

Issue 1, Volume 3, 2009 9

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



Fig. 1. The dumb-bell network topology.

paths: N1-N4, N1-N5, N1-N6, N2-N4, N2-N5, N2-N6, N3-
N4, N3-N5, N3-N6.

The total numbers of TCP connections on the bottleneck
link A-B depends on the congestion scenario. Three congestion
scenarios are considered:

• 10 TCP connections - the uncongested network scenario,
• 100 TCP connections - the mild congestion scenario,
• 1000 TCP connections - the heavy congestion scenario.

What is important, all the TCP connections are uniformly
distributed among nine transmission paths listed above.

The detailed description of the TCP traffic is the following.
90 percent of the TCP flows on each transmission path are
using 1500 bytes long packets and the remaining 10 percent
– 536 bytes long packets. All 536-bytes-long connections
and 75 percent of the 1500-bytes-long connections are FTP
flows transmitting large files. The remaining 25 percent of
the 1500-bytes-long TCP connections transmit data in a way
that is supposed to mimic HTTP traffic. Namely, through
each of these connections a large number of small files is
sent. Transmissions of these small files begin according to the
Poisson process with rate 12.5 in the uncongested network,
1.25 in the mild congestion scenario and 0.125 in the heavy
congestion scenario. The file sizes are Pareto-distributed with
the average size of 50 kbytes and the shape parameter set to
1.3.

Additionally, reverse traffic is simulated. The total number
of reverse flows is 1, 10 and 100 in the uncongested, mildly
congested and heavily congested network, respectively. They
are uniformly distributed among all nine transmission paths.
The reverse flows are UDP CBRs with 1000-bytes-long data-
grams and the sending rate chosen so that the total reverse
traffic uses 10 percent of the bandwidth of the bottleneck links
in the reverse direction.

If not stated differently, the buffer size of 90 packets was
used, which is approximately 10 percent of the bandwidth-
delay product (with the average delay equal to 100ms). This
buffer size was chosen to achieve short queue sizes. In some
experiment a larger buffer (900 packets) was used, but all such
experiment are clearly indicated.

The following metrics on the bottleneck link are collected
from 30th to 100th second of the simulation time: the average
queue size, the average throughput, the standard deviation of
the queue size and the coefficient of variation of the queue
size. Additionally, the queue size is recorded every 0.1 second
in order to present its time-dependent behavior.

The Ns2 simulator ver. 2.33 is used [26]. In addition to
classic drop-tail queue (DT), six other AQM algorithms are
used: RED, BLUE, PI, REM, AVQ and AN-AQM. Default
Ns2 implementations and parameterizations of RED, PI, REM,
AVQ are used, BLUE was implemented and parameterized
following [8], AN-AQM is implemented and parameterized
according to [23] with the target queue size equal to 30% of
the buffer size.

We will describe briefly these algorithms in the next section.

III. AQM ALGORITHMS

RED (Random Early Detection, [2], [4]) was the first widely
studied AQM algorithm. Its functionality begins when the
queue gets longer than the minimum threshold value. When
this happens, the packets are marked and dropped according
to the linear marking probability function. Passing through the
maximum threshold the dropping probability is set to 1 and
all the packets are dropped. An important feature of the RED
algorithm is the exponentially weighed moving average used
for low-pass filtering of the queue size.

The BLUE algorithm [8] uses packet loss and link uti-
lization history to manage congestion. The main difference
between BLUE and RED (and many other AQMs) is that
BLUE does not use instantaneous or average queue length
in the process of dropping/marking packets. The value of the
dropping probability is increased when the queue starts to drop
packets due to the buffer overflow. As a result, the rate of
congestion notification is increased. When the queue becomes
empty, the dropping probability is decreased, which enables
managing effectively the link utilization.

REM’s (Random Exponential Marking, [5]) idea is to de-
couple congestion measure from performance measure. Two
main features of REM are the adjustment of the amount of
user’s data rate to the link capacity and calculating value
called ”the price”. This value is then used in packets dropping
process. The probability marking function is exponential.

The fourth algorithm used herein is PI [7]. It is based on a
classic proportional integrator controller. In opposite to RED,
the loss probability is calculated from instantaneous queue
length, not the averaged queue length. PI tries to regulate the
steady-state of the queue at desired value.

The fifth AQM used is AVQ [13]. The idea behind this
acronym states for maintaining an adaptive virtual queue
(VQ). It is used to detect overflow events caused by virtual
representative of the real packet. Virtual queue capacity is set
equal or smaller to the capacity of the link. Its buffer size
is also equal to the buffer size of the real queue. After the
occurrence of the overflow event, the real packet is marked
or dropped. This approach enables the system to control
utilization of the link, not the queue size.
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Finally, the AN-AQM (Adaptive Neuron AQM, [23]) is a
novel, neuron-based scheme that is designed especially for the
purpose of the queue size stabilization.

We decided not to use the DC-AQM algorithm (see [16])
in our experiments, although it is designed especially for long
delay networks. This is due to the fact that it has some serious
practical limitations (RTPT has to be constant and known).

IV. SIMULATION RESULTS

In Figures 2-8 the bottleneck queue size process for seven
queue management algorithms in the mild congestion scenario
is shown. Although the congestion level was not very low
in these simulations, it becomes obvious at first glance that
none of the algorithms were able to keep a stable queue size
during the experiment (for comparison, see very flat plots
obtained in [23]). Detailed queueing characteristics for the
mild congestion scenario are presented in the third column
of Tabs. I-IV. The standard deviation of the queue size is high
for every algorithm, resulting in a relatively low throughput
(varying from 71 to 92 percent of the bottleneck link capacity).

uncongested mild heavy
network congestion congestion

DT 1,8 22,0 73,5
RED 0,4 4,3 22,2

BLUE 1,7 17,5 48,8
REM 1,7 21,8 70,6

PI 1,6 21,8 70,9
AVQ 1,0 13,1 21,5

AN-AQM 0,6 4,1 18,9

TABLE I

THE AVERAGE QUEUE SIZE (IN PACKETS).

uncongested mild heavy
network congestion congestion

DT 40,5% 92,0% 100,0%
RED 24,2% 71,6% 94,5%

BLUE 39,3% 91,9% 100,0%
REM 39,3% 92,3% 100,0%

PI 35,2% 91,9% 99,8%
AVQ 34,5% 87,6% 98,0%

AN-AQM 24,6% 72,0% 99,3%

TABLE II

THE AVERAGE THROUGHPUT.

The situation gets even worse when we further decrease the
network congestion. In the second column of Tabs. I-IV we
can see the queueing performance in the uncongested network.
The queue is very unstable in this case – the coefficient of
variation varies from 471 to 692 percent. This unstability of
the queue size yields a very poor throughput (see Tab. II),
which is only 40 percent in the best case. Sample queue size

uncongested mild heavy
network congestion congestion

DT 8,6 25,6 21,4
RED 2,4 7,9 9,7

BLUE 8,1 24,4 38,9
REM 8,1 25,2 22,0

PI 8,0 24,9 22,1
AVQ 5,5 18,0 17,9

AN-AQM 3,9 7,9 9,8

TABLE III

THE STANDARD DEVIATION OF THE QUEUE SIZE (IN PACKETS).

uncongested mild heavy
network congestion congestion

DT 473,5% 116,2% 29,1%
RED 674,2% 184,5% 43,6%

BLUE 472,7% 145,1% 79,7%
REM 471,1% 115,8% 31,1%

PI 496,3% 114,2% 31,2%
AVQ 530,1% 137,6% 83,3%

AN-AQM 692,9% 191,8% 52,2%

TABLE IV

THE COEFFICIENT OF VARIATION OF THE QUEUE SIZE.

queue throughput std. dev.
size queue size

DT 227,0 94,0% 272,0
RED 4,7 60,2% 17,4

BLUE 213,6 97,8% 287,2
REM 25,6 93,3% 47,6

PI 3,6 61,5% 13,6
AVQ 38,0 79,4% 74,6

AN-AQM 38,1 83,6% 63,8

TABLE V

QUEUEING PERFORMANCE FOR A LARGE BUFFER (900PKTS) IN THE

UNCONGESTED SCENARIO.

processes in the uncongested network are presented in Figs.
9-11 (for DT, RED and AN-AQM, respectively).

In the previously discussed results, both short buffer and
low congestion level could influence the network performance.
Now, let us check an impact of a short queue size only. For
that purpose, we should analyze the fourth column in Tabs.
I-IV containing results for the heavy congestion scenario. The
throughput is much better now, but the standard deviation of
the queue size is still high and the queue is still not very stable
(see also sample queue size processes in the heavy congestion
scenario presented in Figs. 12-14 for DT, RED and AN-AQM,
respectively).

Finally, we should check a bare impact of the low conges-
tion level, allowing the queue size to be high. For that purpose
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Fig. 2. The queue size process in the mild congestion scenario with the DT
algorithm.

Fig. 3. The queue size process in the mild congestion scenario with the RED
algorithm.

we performed a number of experiments in uncongested net-
work using a large buffer (900 packets). The result are shown
in Tab. V. Again, none of the algorithms were able to maintain
a stable queue size and high throughput. We can observe either
a low throughput (RED, PI AVQ, AN-AQM) or a very high
deviation of the queue size. Sample queue size processes for
a large buffer in the uncongested network are presented in
Figs. 15-17. As we can see, especially unstable behaviour is
observed for DT and AN-AQM queues.

V. CONCLUSIONS

In this paper, using the newest AQM testbed, we have shown
the network conditions that are likely to make the queue

Fig. 4. The queue size process in the mild congestion scenario with the
BLUE algorithm.

Fig. 5. The queue size process in the mild congestion scenario with the
REM algorithm.

size unstable. Namely, we demonstrated that, in addition to
large propagation delays, low congestion levels and low target
queue sizes are especially unfavourable for both the classic
and the newest algorithms. These two factors influence the
stability independently, and when they are both present, the
performance of the network deteriorates drastically due to the
queue size instability. In our experiments, in the worst cases,
about 75 percent of the network resources was lost, due to the
very low throughput of the queueing algorithm (e. g. RED,
AN-AQM in Tab. II).

Therefore, new algorithms that can stabilize the queue size
under these conditions are needed.
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Fig. 6. The queue size process in the mild congestion scenario with the PI
algorithm.

Fig. 7. The queue size process in the mild congestion scenario with the
AVQ algorithm.
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