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Abstract— In this paper, a robust receding horizon control
(RHC) method and its application to a cooperative carrying
task problem by two mobile robots is discussed. In the prob-
lem, a following robot must be controlled autonomously and
it should hold constraint conditions of relative position against
structured uncertainties and bounded disturbances anytime.
Then the proposed robust RHC method is based on the
minimax optimization with bounded constraint conditions. The
proposed method generates the velocity and direction angle
adequately to hold the conditions. A numerical example is
shown to demonstrated the effectiveness of the method.

Keywords– Robust Control, Minimax optimization, Reced-
ing horizon control, Cooperative caring task, Mobile robot

I. INTRODUCTION

IN last few decades, receding horizon control (RHC) has
been widely accepted in the industry. In the standard RHC

formulation, the current control action is obtained by solving
a finite or infinite horizon quadratic cost problem at every
sample time using the current state of the plant as the initial
state [1]. One of the significant merits of RHC is easy handling
of constraints during the design and implementation of the
controller.

On the other hand, a drawback of RHC is its explicit
lack of robust property with respect to model uncertainties
or disturbances since the on-line minimized cost function is
defined in terms of the nominal systems.

A possible strategy for robust RHC is solving the so-called
minimax problem, namely minimization problem over the
control input of the robust performance measure maximized
by plant uncertainties or disturbances.

One of the early works on robust RHC was proposed
by Campo and Morari [2], and further developed by Zheng
and Morari [3] for SISO FIR plants. Kothare et al. solve
minimax RHC problems with state-space uncertainties through
LMIs [4]. Cuzzola et al. improve the Kothare’s method [4] to
reduce conservativeness in [5]. Furthermore, other methods
of minimax RHC for systems with model uncertainties or
disturbances can be found in [6], [7]. Also, some works of
minimax RHC for systems with external disturbances in [8],
[9], [10].

These methods are, however, based on infinite horizon
quadratic cost functions, since it is rather hard to solve the
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minimax finite quadratic cost problems. The issue of minimax
robust RHC therefore still deserves further attention[11].

By the way, recently, according to the progress of control
theories and robot technologies, robots are expected to work
for human support, or instead of human, under the dangerous
condition. For example, rescue robots[12], which save the
people life at the disaster e.g., big earthquake and so on, has
been researched and developed in the world-wide. Also, many
working robot in factories[13] or in construction work[14] are
developed.

Under such situations, if two or more mobile robots can
work cooperatively and autonomously, we can expect that the
work efficiency is improved and the work plan is able to
be flexible. From such a viewpoint, there have been many
researches about the control problems with multiple mobile
robots for various tasks. For example, the formation control
using information of the relative distance and angle between
leading robot and each following robot has been developed
by [15]. The tracking control considering collision avoidance
among followers by [16] is also targeted multiple robots.
Anyway, powerful and effective control method is need for
these problems [17], [18].

In this paper, therefore, new robust control method based
on minimax RHC for the cooperative carrying task problem
of two two-wheeled mobile robots with model uncertainties.
In this problem, the most important constraint is that the fol-
lowing robot must be controlled anytime to hold the condition
of relative position with given margin. The following robot is
controlled by using only relative position information (without
using absolute position information). The relative position
must be within the restricted range in any situation to prevent
a carried thing from dropping. The minimax RHC seems to
be a best way to improve the control performance meeting
with such severe requirements. Numerical examples are given
to demonstrate the effectiveness of the proposed method.

This paper is organized as follows. In section 2, the robot
model and the cooperative carrying task is introduced. Then, in
section 3, the robust control problem of cooperative carrying
task is formulated. In section 4, the proposed method is shown
as main contribution and in section 5, numerical simulation
results are given. Finally, in section 6, concluding remarks
and future works are stated.

II. ROBOT MODEL AND COOPERATIVE CARRYING TASK

The two-wheeled robot has two motors which rotate in-
dependently. Although there are many control methods using
velocities and angular velocities as manipulated variables[19],
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Fig. 1. Two-wheeled robot

TABLE I
DEFINITION OF ROBOT PARAMETERS

Iw Inertia moment [Nms2/rad]
M Weight [kg]
Iv Inertia moment about rotation center [Nms2/rad]
l Distance between wheel and rotation center [m]
c Viscosity coefficient of friction [Nms/rad]
r Wheel radius [m]

φr/φl Rotation angle of left/right wheel [rad]

the dynamic model of the robot is used in this paper. Therefore,
motor torques are set as manipulated variables[20], then the
robot is torque-controlled and has two independent inputs. We
assume the center of gravity (C.G.) of the robot corresponds to
center of the two wheels, and let the position of C.G.set (x, y),
and θ denotes robot’s direction (see fig. 1). The dynamic
model of robot can be described following state space model
eq. (1)[21]. Controlled variable v and ω are the velocity of
C.G. and angular velocity respectively, ur and ul is right and
left motors torques. The definition of parameters is shown in
table. I.

[
v̇
ω̇

]
=

[
a1 0
0 a2

][
v
ω

]
+

[
b1 b1
b2 −b2

][
ur

ul

]
(1)

where

a1 =
−2c

Mr2 + 2Iω
, a2 =

−2cl2

Ivr2 + 2Iω l2 ,

b1 =
r

Mr2 + 2Iω
, b2 =

rl
Ivr2 + 2Iω l2

Generally, parameters, a1, a2, b1, b2，have uncertainties orig-
inated in the measuring errors of physical parameters or
modeling errors. Therefore we need to take into account the
uncertainties.

Controlled variable v and ω are the velocity of C.G. and
angular velocity respectively, ur and ul is right and left motors
torques. The definition of parameters is shown in tab. I. The
relation between (v, ω) and (x, y, θ ) is described in eq. (2).

ẋ = vcosθ , ẏ = vsinθ , θ̇ = ω (2)

Input torques ur and ul change v, and ω according to eq. (1),
v and ω change x, y, and θ according to eq. (2), too. Thus, we
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Fig. 2. Cooperative carrying task by Leader and Follower

need to get proper torques which lead the robot to a desired
position.

Fig. 2 shows the cooperative carrying task. We assume that
working environment is horizontal flat surface and there is no
obstacle. A mobile robot’s moving path is determined by the
leading robot , which is assumed to be controlled by human,
called “Leader”, and the following robot is called “Follower”.

Follower calculates its relative position (x, y), direction θ
and velocities (v, ω) from the communication with leader (by
using leader’s position and direction). The control purpose
is to generate follower’s input torques u f r and u f l which
converge relative distance D to be desired distance Dd without
violation of the position constraint described eq. (3) wherever
leader is.

Dmin ≤ D ≤ Dmax (3)

Leader’s and follower’s behaviors are summarized as follows.

Leader : runs arbitrarily (driven by a human), and position,
direction and velocities at each sampling time is expressed by
(xl, yl, θl), (vl, ωl) respectively.

Follower : calculate own input torques u f r and u f l us-
ing relative position, direction and velocities expressed by
(x f , y f , θ f ), (v f , ω f ) respectively from the communication
with the leader.

III. PROBLEM FORMULATION

A. Control law

Generally, the nonholonomic two-wheeled robot is not able
to be controlled by the continuous feed-back law. About this
point, Astolfi has been proposed the discontinuous feed-back
law [22]. Astolfi’s control law leads the robot to the origin
wherever the robot is initially.
Astolfi’s control law

The robot’s position and direction (x, y, θ ) are converted three
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variables (ρ , α, φ) according to eq. (4) (see fig. 3).

ρ =
√

x2 + y2

α = −θ + arctan
−y
−x

(4)

φ =
π
2
−θ

Then we can get v and ω which converge (x f , y f , θ f ) to (0,
0, π/2) according to eqs. (5) and (6). Kρ , Kα and Kφ are the
control parameters.

v = Kρ ρ (5)

ω = Kα α + Kφ φ (6)

Although this method is a superior method for the normal
tracking control problem of one mobile robot, it’s not applica-
ble to the cooperative carrying task problem with two robots as
it is. If we use the Astolfi’s law as it is in the problem, follower
may crash to leader, also maybe dropping the carrying object.
Since Astolfi’s law aims to make a robot reach the fixed origin
without taking account of carrying object.

Therefore, we should modify and extend it with taking
account of the leader’s movement and carrying object as
follows.

α

y

x

θ

ρ

(0,0)

Fig. 3. Polar coordinate model

Firstly, coordinate conversion which changes (xl , yl, θl)
to origin (0, 0, π/2) is done. After this conversion to
(x f , y f , θ f ), it changes to (x′f , y′f , θ ′

f ) as shown in fig. 4.
Then, (x′f , y′f , θ ′

f ) is converted to (ρ ′, α ′, φ ′) according to
eq. (7).

ρ ′ =
√

(x′f )2 +(y′f )2

α ′ = −θ ′
f + arctan

−y′f
−x′f

(7)

φ ′ =
π
2
−θ ′

f

ρ ′ is equal to D. Our purpose is to converge ρ ′ to Dd .
If we apply Astolfi’s control law without any modification,
it converges ρ ′ to 0 (follower collides leader). To avoid

the collision we should converge ρ ′ −Dd (see fig. 4) to 0.
Moreover, we should take account in the Leader’s velocity.
From these points, we modify eq. (5) to eq. (8). The first term
of right side in eq. (8) works to converge ρ ′ to Dd , and the
second term compensate the effect of vl .
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Fig. 4. Coordinate after conversion

vd
f = Kρ

(
ρ ′ −Dd

)
+ vl (8)

We do not modify eq. (6) because changing ω affect to follow
Leader too much. Therefore, we use eq. (9), which is same
eq. (6).

ωd
f = Kα α ′ + Kφ φ ′ (9)

B. Generation of constraints

x

y

Dmax

Dmin

(xl,yl,θl )^ ^^

(xl,yl,θl )

(xf,yf,θf )

C.G. of Leader
at current step

C.G. of Leader
at next step

Fig. 5. The feasible region of follower

Follower must follow leader satisfying relative position
condition at all time. In other words, follower must be inside
of the yellow region, namely inside of circle C2 and outside of
the circle C1 as shown in fig. 5, if any physical constraints due
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to the motor performance do not exist. The center of the C1
and C2 is predictive position and direction of leader (x̂l , ŷl, θ̂l)
at next time-step, according to eq. (14)(Ts denotes sampling
interval). The radius of the circle C1 is Dmin and C2 is Dmax.

This is feasible position area of follower at next step
include physically impossible area. However, follower has
constraint conditions due to motor performance actually. They
are expressed with max values of velocity and angular velocity
respectively. Therefore, the actual position is restricted smaller
than this yellow region as follows.

Firstly, the leader’s position and direction at next step are
predicted as

x̂l = xl + vl cosθl Ts

ŷl = yl + vl sinθl Ts (10)

θ̂l = θl + ωl Ts.

Then, we derive the velocity constraints due to motor perfor-
mance described as follows.

(v f min ≤) v f ≤ v f max (11)

In fig. 6, we first consider the line segment from (x f ,y f ) to

x

y

Dmax

Dmin

^ ^^

(xf,yf, )

P1P2

C1
C2

 

(xl,yl,θl )

(xl,yl,θl )

C.G. of Leader
at current step

C.G. of Leader
at next step

P’

Fig. 6. The region restricted by velocity constraint

(x̂l , ŷl), and we set P1 the intersection point of the segment
with C1. P1 uses to obtain v f max, and is obtained by the smaller
solution of following simultaneous equations eq. (12).

√
(x̂l − x f )2 +(ŷl − y f )2 = D

(xP1 − x̂l)2 +(yP1 − ŷl)2 = D2
min (12)

(xP1 − x f )2 +(yP1 − y f )2 = (D−Dmin)2

Then we consider tangent line from (x f ,y f ) to point of
tangency P′, and we set P2 the intersection point of the
line with C2. P2 uses to obtain vmin. Now, P′ is needed to

obtain P2, and is obtained by one of the solution of following
simultaneous equations eq. (13).

(xP′ − x̂l)2 +(yP′ − ŷl)2 = D2
min

(xP′ − x̂l)(x f − x̂l)+ (yP′ − ŷl)(y f − ŷl) = D2
min

(13)

Then, P2 is obtained by one of the solution of following
simultaneous equations eq. (eq:p2).

(xP2 − x̂l)2 +(yP2 − ŷl)2 = D2
max

yP2 − y f = tanθ1(xP2 − x f ) (14)

tanθ1 =
yP′ − y f

xP′ − x f

Finally, we calculate the velocity constraint as shown in
eq. (15). Since v f max is obtained by dividing the distance
between (x f , y f ) and (x̂l, ŷl) in the time Ts. If v f is not larger
than v f max, follower does not approach than Dmin at next step
(after Ts seconds). On the other hand, if v f is not smaller than
v f min, follower does not part from Dmax at next step.

v f max =

√
(xP1 − xf )2 +(yP1 − yf )2

Ts

v f min =

√
(xP2 − x f )2 +(yP2 − y f )2

Ts

(15)

Next, the angular velocity constraint is also described as
eq. (16).

(ω f min ≤) ω f ≤ ω f max (16)

In fig. 7, let’s consider P3 which is obtained as well as P2

x

y

Dmax
^ ^^

(xf,yf,θf )

P2

θmin

θmax

P3

C2

Dmin

C1

(xl,yl,θl )

(xl,yl,θl )

C.G. of Leader
at current step

C.G. of Leader
at next step

P”

P’

Fig. 7. The region restricted by angular velocity constraint

using the other solution P′′ of eq. (13). The relative angles θmax

and θmin are set as shown in fig. 7, respectively. Then, ω f max
and ω f min are calculated by following eq. (17). Since ω f max

is obtained by θmax/Ts, follower’s direction turns between P2
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and P3 at next step if v f satisfy the constraint.

ω f max =
θmax

Ts
=

arctan
(yP2 − yf )
(xP2 − xf )

−θ f

Ts

ω f min =
θmin

Ts
=

arctan
(yP3 − y f )
(xP3 − x f )

−θ f

Ts

(17)

x

y

Dmax

Dmin

(xl, yl, θl)
^

(xl, yl, θ l )

(xf, yf, θf )

P1P2

P3

^^

C2
C1

Fig. 8. The actual region restricted by all constraints

Finally, follower ’s actual reachable position at next step
without dropping the carrying object is restricted by velocity
and angular velocity constraints due to physical motor perfor-
mance into the green region in fig. 8. Namely, follower must
be controlled to be in this green region at every next step.

C. Minimax RHC problem

Eq. (18) is expressed by the discretized dynamic model with
uncertainties by sampling time Ts as follows.

z f (k + 1) = (Ad + L�RA)z f (k)+ (Bd + L�RB)u f (k) (18)

where

z f (k) =
[

v f (k)
ω f (k)

]
, u f (k) =

[
u f r(k)
u f l(k),

]

and where � is a diagonal structured uncertainties parameters
matrix satisfied �T�≤ I. L, RA and RB are constant matrices.
All these vectors and matrices have appropriate dimensions.
Then, we can transform this system as

z f (k + 1) = Adz f (k)+ Bdu f (k)+ Lw(k) (19)

η(k) = RAz f (k)+ RBu f (k) (20)

where w(k)(= �η(k)). Moreover, assume that the uncertain-
ties has a generalized range constrained as follows;

wT (k + j)Pww(k + j) ≤ 1
( j = 0, · · · ,N −1) (21)

where Pw,(Pw � 0) are positive symmetric matrix for a weight
of constraint. For this systems, the quadratic performance
measure with finite horizon with positive weighting constant
matrices Q and R (Q,R � 0) as :

J(k) =
H p−1

∑
i=0

‖z f (k+i+1)− zd(k)‖2
Q +‖u f (k+i)‖2

R (22)

is used. Where zd(k) =
[

vd
f (k)

ωd
f (k)

]
, z f min(k) =

[
v f min(k)
ω f min(k)

]

and z f max(k) =
[

v f max(k)
ω f max(k)

]
.

Finally RHC controller solves the following minimax opti-
mization problems to get the input torques of follower against
the model uncertainties.� �

min
û f

max
w(k+ j|k)

J(k) (23)

subject to

z f (k + i+1) = Adz f (k + i)+ Bdu f (k + i)
z f min(k) ≤ z f (k+i) ≤ z f max(k)
wT (k + j)Pww(k + j) ≤ 1 (24)

i = 0,1, · · · ,H p−1
� �

IV. HOW TO SOLVE THE MINIMAX RHC PROBLEM

At each step k the following state feedback is employed;

u f (k + j|k) = −Fk+ jz f (k + j|k) ( j = 0,1, · · ·N −1) (25)

where Fk+ j is a feedback gain matrix. Then, introducing the
following vectors.

Z :=
[

z f (k + 1|k) z f (k + 2|k) · · · z f (k + N|k) ]T

U :=
[

u f (k|k) u(k + 1|k) · · · u(k + N −1|k) ]T

W :=
[

w(k|k) w(k + 1|k) · · · w(k + N −1|k) ]T

Λ :=
[

η(k|k) η(k + 1|k) · · · η(k + N|k) ]T

and using state space equation recursively, we can derive

Z = Ãx(k)+ L̃W (26)

Λ = R̃F Ãx(k)+ R̃F L̃W (27)
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where

R̃F := RA −RBF

F :=

⎡
⎢⎢⎢⎣

−Fk 0 . . . 0
0 −Fk+1 . . . 0
...

. . .
. . .

...
0 . . . 0 −Fk+N−1

⎤
⎥⎥⎥⎦

Ã :=

⎡
⎢⎢⎢⎣

Ad
(Ad −BdF0)A

...
(Ad −BdF0)N−2Ad

⎤
⎥⎥⎥⎦

L̃ :=

⎡
⎢⎢⎢⎢⎣

L 0 . . . 0

(Ad −BdF0)L L
. . .

...
...

. . .
. . . 0

(Ad −BdF0)N−2L (Ad −BdF0)N−3L . . . L

⎤
⎥⎥⎥⎥⎦

Hence, we can transform the minimax problem (23) to

min
F

γ (28)

subject to max
W

Π ≤ γ
z f (k + i+1) = Adz f (k + i)+Bdu f (k + i)
z f min(k) ≤ z f (k+i) ≤ z f max(k)
wT (k + j)Pww(k + j) ≤ 1

( j = 0, · · · ,N −1)

where γ > 0 (scalar parameter) and where;

Π :=
{
‖ Ãz f (k)+ L̃W ‖2

Q̂ + ‖ FZ ‖2
R̂

}
,

Q̂ :=

⎡
⎢⎣

Q 0
. . .

0 Q

⎤
⎥⎦ , R̂ :=

⎡
⎢⎣

R 0
. . .

0 R

⎤
⎥⎦

To eliminate the maximization procedure, we have to re-
move W term in the first constraint. For this, in the first place,
following basis for all variables and transformation matrices
are defined.

ζ :=
[

z f (k) W T 1
]T (29)

Z = Hzζ (Hx :=
[

Ã L̃ 0
]
) (30)

FZ = Huζ (Hu :=
[

FÃ FL̃ 0
]
) (31)

Λ = Hηζ (Hη :=
[

R̃F Ã R̃F L̃ 0
]
) (32)

1 = (H1ζ )T (H1ζ ) (H1 :=
[

0 0 1
]
) (33)

By using these, we can express the first constraint condition

max
W

{
‖ Hzζ ‖2

Q̂ + ‖ Huζ ‖2
R̂

}
≤ (H1ζ )T λ (H1ζ ) (34)

Please take notice that both the left side and the right side of
this inequality are expressed by the quadratic forms and they
have positive scalar values. Hence, if the inequality is hold
by maximum values of W and Λ in left side, this inequality
must be hold by any other values of them. This fact means
that we can eliminate the maximization procedure in the first
constraint. We can only check the following condition instead
of the first constraint.{

‖ Hzζ ‖2
Q̂ + ‖ Huζ ‖2

R̂

}
≤ (H1ζ )T γ(H1ζ ) (35)

In the second place, Hw( j) is defined. This matrix pick out
the suitable block from W and satisfy the relation of w(k+ j) =
H( j)

w ζ . Then, we can derive

(H( j)
w ζ )T Pw(H( j)

w ζ ) ≤ (H1ζ )T (H1ζ )
( j = 0, · · · ,N −1).

(36)

Then, constraints with w and max can be transformed into

∀ζ �= 0 ; ζ T (
HT

1 γH1 −HT
z Q̂Hz −HT

u R̂Hu
)

ζ ≥ 0 (37)

subject to ζ T (HT
1 H1 − (H( j)

w )T PwH( j)
w )ζ ≥ 0

( j = 0, · · · ,N −1) .
(38)

Then, we can transform the original minimax problem to
the following one by using S-procedure [23].

min
F0

γ (39)

subject to HT
1 γH1 −HT

x Q̂Hx −HT
u R̂Hu

−
N−1

∑
j=0

[τw
j Sw

j + τu
j Su

j + τη
j Sη

j ] 
 0

( j = 0, · · · ,N −1)

where
Sw

j = (HT
1 H1 − (H( j)

w )T PwH( j)
w ) ,

Su
j = (HT

1 H1 − (H( j)
u )T PuH( j)

u ) ,

Sη
j = (HT

1 H1 − (H( j)
η )T PηH( j)

η ) ,

and where τw
j , τu

j , τη
j and τz

j are positive semi-definite scalars.
It must be noted that this transformation satisfies only a suffi-
cient condition of S-procedure, since S-procedure is not the so-
called “lossless” in this case. We can not therefore avoid that
the design results are slightly conservative. Nevertheless, we
can expect the reduction of conservativeness in design result
by this technique in contrast with the results by preexisting
methods. Because the conservativeness caused by S-procedure
is too small to put a matter for practical purposes.

Finally, using ”Schur-complement” [24], we can transform
the minimization problem (23) into the following problem
which can be solved easily by using some optimization tools.
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min
F0,τ

γ (40)

subject to

⎡
⎣ HT

1 γH1 −Σ HT
x HT

u
Hx Q̂−1 0
Hu 0 R̂−1

⎤
⎦ 
 0

τ j ≥ 0 ( j = 0, · · · ,N −1)

where

Σ :=
N−1

∑
j=0

[τw
j Sw

j + τu
j Su

j + τη
j Sη

j ]

and where τw
j is positive semi-definite scalars.

It must be noted that this transformation satisfies only a
sufficient condition of S-procedure, since S-procedure is not
the so-called “lossless” in this case. We can not therefore avoid
that the design results are slightly conservative. Nevertheless,
we can expect the reduction of conservativeness in design re-
sult by this technique in contrast with the results by preexisting
methods. Because the conservativeness caused by S-procedure
is too small to put a matter for practical purposes.

Then the proposed method based on minimax RHC algo-
rithm which calculates follower motor torques is summarized
as follows.

Step 1 Set initial values to all parameters.

Step 2 The controller get leader’s information (xl , yl , θl),
(vl , ωl), and follower’s information (x f , y f , θ f ), (v f ,
ω f ) at current time-step k.

Step 3 The controller calculates follower’s reference veloc-
ities according to eqs. (8) and (9), and conditions
according to eqs. (15) ∼ (17).

Step 4 The controller calculates input torques u f r and u f l
by minimax RHC.

Step 5 Follower runs by the input torque in Step 3-2. Return
to Step 2 after Ts seconds.

V. NUMERICAL EXAMPLE

In this section, a example that illustrate the effectiveness of
the proposed method is given. The parameters of robot shown
in table I are Iw = 0.005, Iv = 0.05, and r = 0.05. The control
parameters are initially set Kφ =−0.3, Kρ = 1.5, and Kα = 1.5.
Now we assume the following perturbations of l and c

l ∈ {l|0.08 ≤ l ≤ 0.12} ,

c ∈ {c|0.03 ≤ c ≤ 0.07} (41)

x[m]

y[
m

]

ω ：π/ 5
 v ： 0.7

ω ：-π/ 10
 v ： 0.8 ω ：-π/ 5

 v ： 0.5

ω ：π/ 5
 v ： 0.3

ω ：0
 v ： 0.8

ω ：0
 v ： 0

Fig. 9. Circular path

The weights of the cost function in eq. (22) are

Q =
[

150 0
0 20

]
, R =

[
0.5 0
0 0.2

]
.

The initial positions and directions of leader and follower are
(xl, yl, θl) =

(
1, 1,

π
2

)
and (x f , y f , θ f ) =

(
1, 0.5,

π
2

)
re-

spectively.
Let’s desired relative distance Dd = 0.5, and one example

result of path called ”Circular path” is shown from several
simulations. This path is shown in fig. 9. Leader changes own
velocities on the path.

The relative distance constraint condition is set Dmax =
0.6[m] and Dmin = 0.4[m].

Firstly, we assume no perturbations of parameters l and c,
namely values of l and c are fixed 0.1 and 0.05 respectively.

The result of follower’s path and the time fluctuation of D
are shown in figs. 10 and 11.

From these figures, we can see that follower can follow
leader and there is no violation of relative distance constraint.
This means follower can follow leader from start to goal
without dropping the carrying object. The carrying task is well
done in this nominal case.

Next, the worst case results are shown against the perturba-
tion of l and c in eq. (41) in figs. 12 and 13.

In fig. 13, the red line reaches to upper bound dash line at
26 sec. , the value is 0.600[m] which is maximum value of
constraint. This means follower is too far to leader for almost
dropping the object, but it was just safe. Hence, the two robots
can carry the object against perturbations. Then we can see that
the good robust performance of the proposed method.

VI. CONCLUSION

In this paper, the minimax robust RHC based control
method for cooperative carrying task problem of two mobile
robots has been proposed. The method get the optimal torques
of follower robot under constraint conditions. Simulation re-
sults have been illustrated to indicate the good robust perfor-
mance.
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Fig. 11. Time fluctuation of relative distance without perturbation of l and
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[ nominal result ]

To realize the more practical systems, we need to consider
the effective method of the Digital-to-Analog (DA) conversion
of control inputs. In the control problem of this paper, the
continuous-time objects (robots) are controlled by a discrete-
time controller (computer). In such system, the Analog-to-
Digital(AD) and the DA conversions of signals are indis-
pensable operations. In this paper, the conventional zero-order
hold is assumed to be used for the DA conversion on the
assumption that the analog signals in each sampling interval
are considered as constant values. However, to improve the
control performance, it’s very important to take account of the
behavior of systems in the sampling intervals. For this point,
we have proposed the adaptive DA converter which switch the
sampling functions optimally according to the system status
[25]. Hence, we will apply it to the proposed method and
verify the improvement of the performance as future.

x[m]

y[
m

]

start

goal

Leader
Follwer

Fig. 12. Paths of leader and follower with perturbation of l and c
[ robust result (worst case) ]
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Fig. 13. Time fluctuation of relative distance with perturbation of l and c
[ robust result (worst case) ]

APPENDIX

The proposed approach is easily extended the systems with
other constraints which are specified by ellipsoidal bounds, for
example, state estimation errors and so on as follows.

In the case that z(k) is not full measured and we need
to estimate z(k), where the bound of estimation error e(k) =
z(k)− ẑ(k) is guaranteed an ellipsoidal set as:

eT (k)Pee(k) ≤ 1 (42)

where Pe is a positive symmetric matrix for weight. This
specification of estimation error is standard one. Now we
introduce He as:

He := [1 0 · · ·0 − ẑ(k)] , (43)

then the relation of e(k) = Heζ is hold. And the condition
below is also hold.

ζ T (HT
1 H1 −HT

e PeHe)ζ ≥ 0 . (44)
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Since this condition has same form as other constraints, we
can include this condition into the condition by using a new
variable τe. Furthermore, in this case, a new output equation
with measurement noise ψ(k) is needed as follows.

y(k) = Cx(k)+ ψ(k) ( ψT (k)Pψψ(k) ≤ 1 ) . (45)

We can also include this constraint into the condition of
problem by using a new variable τψ .

Moreover, Although every constraint used in this paper has
been specified by the ellipsoidal bound which has one single
center, it can be extended to the intersection of ellipsoidal
bounds, for example:

w(k) ∈ ∪l=1···N1{w :
[

w
1

]
Pw,l

[
w
1

]
≤ 1} .

However, it should be noted that this extension cause the rise
of computational complexity due to the increase of the number
of variables (τ∗) of S-procedure.
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