

Abstract— The presented article describes one of the potential

system approaches to teaching of programming. The focus is given
on the interdisciplinary interconnection between physics, informatics

and mathematics. First, a simple analysis of the researched process is

carried out - that means the decomposition of the light into a colour
spectrum with a simultaneous arising of a rainbow on one side and,

on the other side, the additive composition of colours demonstrated

by lightening a white area with the help of three light sources of
varied colours. This is followed by a mathematical description of the

composition of colours from three basic components – red, green and

blue - on the screen of the computer monitor. The numerical code of
the resulting colour is expressed in the binary, hexadecimal and

decimal numerical systems. The final part of the paper presents a
simple program which enables using a computer monitor for an

analysis of the additive composition of colours. It simultaneously

also demonstrates advantages and disadvantages of expressing the
numerical code of the composed colour in various numerical systems.

Keywords— additive composition of colours, computer

simulation of experiments, decomposition of the light,

definition of colours on a computer monitor, experimental

composition of colours, numerical systems.

I. INTRODUCTION

N the last years the students´ interest in humanities has been

increasing in the Czech Republic, and simultaneously the

interest in classical natural sciences, as mathematics, physics

or chemistry, has been declining. In courses in informatics it is

not problematic to give explanations concerning the basic

operations of using the most varied programs. But when a

certain activity has to be supported by a mathematical

calculation, students usually start being defensive, and their

interest in further training vehemently declines. One of the

potential causes of this situation is an isolated way of teaching

mathematics as a purely theoretical subject. The time not long

enough is devoted to solutions of practically aimed logical

tasks; and there is no continuous emphasis on interdisciplinary

relations.

II. PROBLEM FORMULATION

The system approach to teaching of programming will be

further demonstrated on linking a task in optics with using of

numerical systems in mathematics. This way, informatics,

concretely programming, creates a link between physics and

mathematics. (Similar topic, i.e. using algorithm development

and programming in education of physics and mathematics,

can be found e.g. in [1], [2], [3], [4]).

In courses in physics (the chapter concerning Optics)

students are (among other issues) made familiar with the

decomposition of the light which falls from the Sun to the

Earth. This light is considered as white but its decomposition

results in occurrence of the colour spectrum.

In physical laboratories the light decomposition is realized

with help of a glass prism [5]. However, students can consider

this experiment as an artificially created situation. In that case

they are to be referred to a real life, in which they may have

experienced a light decomposition on rain drops, while,

simultaneously, a rainbow came into being (see Fig. 1).

Fig. 1: A rainbow over a city

Fig. 2: A rainbow on a fountain

 In summer months it is possible to observe a similar

process of the occurrence of the rainbow also in towns, where

such a decomposition of the light happens for example on

water drops from fountains and waterworks onto which Sun-

Programming as a method of interdisciplinary

relations in learning

Vladimír Jehlička

I

Issue 4, Volume 4, 2010 111

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

rays are falling (see Fig 2).

 For students who are more advanced in optics, a more

detailed description of this natural event should be made

available. Sun-rays which fall on individual water drops refract

on the interface air – water, they go through the water, they

partly bounce off from the back drop-wall (most of the drops

go through the back drop-wall without a back bounce-off),

they refract again on the interface air – water and they proceed

to an observer’s eye. At this point students are to be explained

principles of the fracture of rays on the interface of an

optically thinner and an optically thicker environment. It is

necessary to explain when the rays refract towards the

perpendicular and when, on the contrary, the rays refract off

the perpendicular which is set to the level of the impingement

at the point of the hit of the ray. It is obvious that students

should also know the principle of the rays bouncing off the

mirror, which is what happens on the back drop-wall.

The radiation of a varied wave length refracts under a varied

angle on the given interfaces of environments of a varied

optical thickness. And just this reality is a cause of a colour

decomposition of the Sun-light. It is possible to continue with

a concrete analysis and calculation of the angles formed by the

rays entering into a water-drop and the rays coming out of this

drop. This calculation concerns radiations of varied wave

lengths, and thus of varied colours. Students should be then

able to give reasons for the order of the colours in the rainbow,

and they should be able to answer the question whether this

order is random or, on the contrary, always the same.

Looking at the above given questions, a question concerning

the radius curvature of the rainbow could arise. Is this radius

always the same or does it vary? What does the value of this

radius depend on? Can (in an extreme case) the radius of a

rainbow be infinitely big, it means, can a rainbow have a shape

of parallel lines? Or, on the contrary, can a rainbow exist in the

shape of concentric circles of different colours?

It is obvious that this well-known physical phenomenon can

provoke a number of interesting questions which cannot be

answered without a proper analysis of the researched

phenomenon. If a student then wants to seriously find the

correct answers to the above given questions, then s/he cannot

do that without knowledge of the principal laws of optics, the

principles of mathematics and geometry. An interdisciplinary

importance of solutions of this type is obvious.

Let’s come back to the initially researched physical

phenomenon, which means to the light decomposition. Having

in mind the fact that the white light can be decomposed into a

colour spectrum; we can come to a logical conclusion that the

reverse process should be realizable, when the white light is

re-composed from the colour spectrum.

PHYSICS – AN EXPERIMENTAL ADDITIVE COMPOSITION OF

COLOURS

Within the framework of teaching of the principles of

physics, students are (among other issues) made familiar with

the principles of the electronic transfer of colour pictures. In

case of classical screens of colour TV sets or monitors, the

final colour of each point of the screen is composed of three

basic colour components - the red, green and blue one.

If a teaching process at schools is to be illustrative, then the

above given facts are necessary to be supported by a suitable

experiment. For a demonstration of this process it is necessary

to have three sources of the light radiation with the exactly

defined wave lengths and of the same light intensity. This is

realizable in a highly equipped laboratory environment. But

within the framework of school teaching, this is a hardly

solvable problem.

Even the above given example of the decomposition of the

light coming out of the Sun is not as easy as it could seem at

the first sight. All of us are used to the Sun light, which is

considered to be white. However, if we switch on the light

over the table at home, this light is considered to be white, too.

But an artificial light can be realised by a lit classical bulb, an

economical fluorescent tube etc. From our own experience we

know that each of these sources is characterized by a certain

colour of the light. Once the light is considered as “warm”,

then as “cold”, but every time the light is considered to be

white. It is clear that human eyes are very tolerant to the

phenomenon of the “white light”.

But in case of precise physical experiments we should and

we must, above all, precisely define “white light”.

Theoretically, the white light is defined by temperature of

radiation of absolutely black body. However, the c of the Sun

radiation, which is decomposed with a glass prism, resp. which

is decomposed into the form of a rainbow does not fulfil the

above given definition of the white light. He radiation falling

to the Earth from the Sun is generally considered as white

light, but in reality it contains the spectrum of radiations with

different wave lengths, which only get close to the theoretical

white light.

If we want, on the contrary, demonstrate the composition of

the white light from three basic colours, precisely defined

wave lengths of the radiations of the individual sources [6],

[7], [8] should be available. In ordinary teaching practice these

assumptions are not realizable. That is why we have to accept

the reality that to the students we will demonstrate experiments

which more or less only get near the theoretical ideal.

 The use of the Lego Mindstorms NXT 2.0 construction

sets [9] can be considered as an example of simple and easily

realizable experiments. A kind of a programmable

construction set is concerned, which has not only several input

sensors, but also output members which make e.g. a movement

of the compiled programmed robots [10] possible. These

construction sets are primarily intended for training of the

programmers - beginners.

 One of the output elements is the source of the light

radiation producing a red, green or blue light. If three robots

are used, when each of them radiates one of the basic colours,

then it is possible to realize simple experiments with

composing of colours, see Fig. 3.

Issue 4, Volume 4, 2010 112

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 3: Lego Mindstorms robots in a fully lit experimental room

As it has been stated above, no professional experimental

device is concerned - a school experiment using an easily

available construction set of the Lego Mindstorms is in

question. In case of these construction sets, none of the above

given basic colours is precisely defined through the wave

length of a particular radiation. That is why it is not possible to

expect that the composition of all the three colours can lead to

an ideal white light.

The basic problem is rooted already in the overall lightening

of the room in which the given experiment is carried out, and

also in the distance of the robots from the lit surface. In Fig. 3,

which was taken in the conditions of a standard artificial

lightening of the experimental room, is the resulted lightening

nearly white in the whole lit surface. In Fig. 4, which was

taken in the conditions of a considerably weaker lightening of

the experimental room, individual colours and their

composition are better visible.

Fig. 4: Lego Mindstorms robots in a merely partly lit experimental

room.

The best possible results can be reached in darkened rooms

where the light rays radiated by individual robots fall onto the

white surface. In Fig. 5 the composition of green and red lights

is demonstrated. A yellow light comes into being in the

overlapping sphere.

Similarly, Fig. 6 demonstrates the composition of red and

blue lights. The overlapping sphere is lit in violet. It is

necessary to keep constantly in mind that only simple school

experiments are discussed, the results of which get only partly

close to the ideal condition.

Other experiments, which are not demonstrated by concrete

pictures in this presentation, are based on placing the

individual robots in different distances from the lit surface. It

is a well-known fact that the light intensity decreases with the

second power of the distance between the light source and the

lit surface. If the individual robots with their light sources are

continuously moved, the students can be demonstrated

continuous colour transitions between two selected colours, or

continuous colour transitions of the three basic colours can be

combined.

Fig. 5: Composition of green and red lights.

Fig. 6: Composition of red and blue lights

INFORMATICS – COMPOSING OF COLOURS ON THE COMPUTER

SCREEN

Within the framework of teaching of programming, the issue

Issue 4, Volume 4, 2010 113

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

of solving of the quadratic equation is usually the content of

one of the first seminars. A typical task, suitable for a

presentation of a program branching, is concerned. Depending

on the value of the discriminant, the solution to the quadratic

equation are two real different roots or one real multiplicative

root, or resp. two complexly joined roots. The algorithm thus

contains simple conditions, on the basis of which the solution

of the tasks makes three individual branches.

However, students´ relation to programming is negatively

influenced due to a purely mathematical essence of the solved

problem. On the contrary, tasks which attract students´

attention because of a practical use, as it is for example

stereoscopic displaying of three-dimension objects [11], are

accepted very positively.

While teaching, it is not possible to skip some needed but

sometimes not enjoyable topics. A sensitive approach to

students is essential, as well as a continual progress from easy

tasks to more difficult ones and a constant focus on keeping

students´ attention. Within the framework of the computer

graphics [12] it is thus suitable to deal with the creation of

colours.

On a computer monitor it is possible to realize a

composition of colours in various programming languages.

With respect to our purposes, the development environment

Delphi has been chosen as it enables to create very well-

arranged and transparent programs.

As it has been stated, each point on the screen has its own

colour which is composed of three basic components: red,

green and blue ones. The resulted colour is expressed with a

numeral which is stored in the computer memory. For

generating of this colour it is possible to use e.g. the function

rgb (Red,Green,Blue), where the individual

parameters of the function can be of the value from 0 to 255

and they express the intensity of the given colour component.

The numerical values of the three given parameters can be

entered in the decimal system, so it is not essential to deal with

the real way of storing the colour numbers in the computer

memory. However, a deeper knowledge of the computer work,

concerning the way of storing data in its memory, is useful not

only for future professional programmers.

It is generally known that the smallest part of the computer

memory is created by one bit, into which it is possible to write

only the values zero or one. A bigger memory unit is one byte,

which includes 8 bits. Into one byte it is possible to store

binary numerals within the range from 00000000 to 11111111.

For storing of the numeral which expresses the colour of the

particular point on the computer monitor it is necessary to

allocate minimally 3 bytes, see Table 1.

Table 1: Storing of the colour number in the computer memory

III. MATHEMATICS – NUMERICAL SYSTEMS

Table 1 presents a content of a part of the computer

memory, where number one is stored in all the appropriate

bits. That means that all the three basic colour components

have the maximal intensity, which is expressed by the

numerical value of 255. The resulting colour is white. If, on

the other hand, the value of zero was stored in all the bits, then

all the three colour components would have the zero light

intensity and the resulting colour would be black.

Let us come back to the above given value 255. Why is

specifically this value given? Let us realize that for each

colour component there is a limitation of one byte, i.e. 8 bits,

in which just 0 or 1 can be stored. That means, into the part of

the memory which is limited in this way it is possible to store

maximally eight-place binary numerals. The value of the

highest eight-place binary numeral expressed in the decimal

system is:

2551248163264128

22222222 01234567

=+++++++

=+++++++
 (1)

If each of the three colour components can have the value

from 0 to 255, then the given system enables to define

215777162553
= (2)

colour tones in total.

The white colour can be numerically expressed in the binary

system as 2111111111111111111111111 or in the decimal

system as 1021577716 . It is obvious that both the ways are

not transparent because the light intensity of the individual

colour components is not visible at the first sight.

The expression of numerical values in the binary system is

essential in the work of computers, but it is very non-

transparent for human eyes. A partial transparency is reached

at the moment when a numeral from the binary system is

converted into the octal, or hexadecimal system. Practically it

means that in case of the octal system, three numerals of the

binary expression of the number are joined into just one

numeral of the octal expression.

Then in case of the hexadecimal system, four numerals of

the binary entry are then joined into just one numeral of the

hexadecimal system. This way, the original entry in the binary

numerical system becomes more transparent. The basic

conversions of the numerical values between decimal, binary,

octal and hexadecimal systems are given in Table 2.

The optimal solution is to express the number of the colour

in the computer memory in the hexadecimal system. Each

colour component occupies 8 bits in the computer memory,

which corresponds to an eight-place numeral written down in

the binary numerical system or a two-place numeral expressed

in the hexadecimal numerical system.

Issue 4, Volume 4, 2010 114

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Table 2: Conversion of numbers between numerical systems

The maximal intensity of the colour component is thus

expressed in the given numerical systems as follows:

10162 255FF11111111 == (3)

The white colour, which is written down in the binary

system in Tab. 1, can be written in a more transparent way in

the hexadecimal system, see Tab. 3.

Table 3: Expressing of the white colour in the hexadecimal system

Colours and their hexadecimal expressing, which were

discussed in the previous text, can be summarised into the

following survey:

• 00 00 00 black,

• 00 00 FF red,

• 00 FF 00 green,

• FF 00 00 blue,

• 00 FF FF yellow,

• FF FF 00 violet,

• FF 00 FF cyan,

• FF FF FF white

IV. PROGRAMMING – AN EXEMPLARY PROGRAM

A simple program called “Color” has been created for a

transparent presentation of the additive composition of colours

in the Delphi environment

While creating the program, it is first necessary to define

the width and height of the basic form, and then to place the

following components into it:

• image – place for drawing of graphical outputs of

the program,

• scroll bar – in total three scroll bars for setting of

the intensity of the lightening by individual basic

colours, i.e. red, green and blue,

• label – in total,

The overall design of the placement of the above given

components in the form of the final program is given in Fig 7.

Fig. 7: Design of the form of the program

The developing environment Delphi creates automatically

the basic structure of a future program. While individual

components are placed into the form, the sort of the TForm1

of the created form is automatically modified. Through the

placement of the components into the form, their qualities are

automatically specified, among which above all their sizes and

placement are important. The programmer’s task is to write

and successfully prove the sub-program which will be evoked

after the program is opened, and, followingly, at the time of

any change of the position of any sliding box of any scroll

bars.

The following print-out of the basic unit presents the

concrete declaration of the type of the used form, and, above

all, the sub-program TForm1.FormCreate, which is

evoked not only when the form is opened but also as a reaction

to a shift of the sliding box of any scroll bars, and assures all

the activities of the program..

Issue 4, Volume 4, 2010 115

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

unit Unit1;

interface

uses

 Windows, Messages, SysUtils,

 Variants, Classes, Graphics,

 Controls, Forms, Dialogs,

 ExtCtrls, StdCtrls;

const

 Hexa: array[0..15] of String[1] =

 ('0','1','2','3','4','5','6','7',

 '8','9','A','B','C','D','E','F');

type

 TForm1 = class(TForm)

 Image1: TImage;

 ScrollBar1: TScrollBar;

 ScrollBar2: TScrollBar;

 ScrollBar3: TScrollBar;

 Label1: TLabel;

 Label2: TLabel;

 Label3: TLabel;

 Label4: TLabel;

 Label5: TLabel;

 Label6: TLabel;

 Label7: TLabel;

 Label8: TLabel;

 Label9: TLabel;

 procedure FormCreate(Sender:

TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender:

TObject);

begin

 with image1.canvas do

 begin

 brush.Color:=rgb(0,0,0);

 pen.Mode:=pmcopy;

 Rectangle(0,0,400,400);

 pen.width:=0;

 pen.Mode:=pmmerge;

 brush.Color:=

 rgb(ScrollBar1.Position,0,0);

 Ellipse(0,0,200,200);

 brush.Color:=

 rgb(0,ScrollBar2.Position,0);

 Ellipse(100,0,300,200);

 brush.Color:=

 rgb(0,0,ScrollBar3.Position);

 Ellipse(50,100,250,300);

 Label4.Caption:=

 IntToStr(ScrollBar1.Position);

 Label5.Caption:=

 IntToStr(ScrollBar2.Position);

 Label6.Caption:=

 IntToStr(ScrollBar3.Position);

 Label7.Caption:='RGB('+

 IntToStr(ScrollBar1.Position)

 +', '

 +IntToStr(ScrollBar2.Position)

 +', '

 +IntToStr(ScrollBar3.Position)

 +')';

 Label8.Caption:='$00'+

 Hexa[(ScrollBar3.Position

 div 16)]

 +Hexa[(ScrollBar3.Position

 mod 16)]

 +Hexa[(ScrollBar2.Position

 div 16)]

 +Hexa[(ScrollBar2.Position

 mod 16)]

 +Hexa[(ScrollBar1.Position

 div 16)]

 +Hexa[(ScrollBar1.Position

 mod 16)]

 +' ... hexadecimal';

 Label9.Caption:=IntToStr

 (256*256*ScrollBar3.Position

 +256*ScrollBar2.Position

 +ScrollBar1.Position)

 +' ... decimal';

 end;

end;

end.

If any of the above given situations come into being (i.e.

opening of the form, any change of the position of sliding box

of any scroll bar of any basic colour), then the subprogram

TForm1.FormCreate first draws a black coloured square and,

followingly, three mutually overlaying colour circles, see Fig.

8.

While creating a program, it is necessary to correctly set the

qualities of the image component, the quality of the drawing

pen image.canvas.pen.mode specifically. Implicitly it

is set to pmcopy. If we kept this setting, then the individual

colour circles would be coloured everywhere in the colour to

which the brush is just set. In that case the original colour of

the background would not have any impact on the resulting

colour of the given area, and it would not be possible to

demonstrate the composition of colours of two mutually

overlaying circles.

Issue 4, Volume 4, 2010 116

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

 Fig. 8: Output of the Color program

To make the composition of colours possible, the Mode

parameter of the drawing pen is necessary to be set from the

original form pen.Mode:=pmcopy; to a new form

pen.Mode:=pmmerge;. When individual circles are

coloured, then the colour of the circle being coloured is added

to the colour of the background. Thus the numerical values of

the appropriate colours are added and the resulting number

gives the number of the colour filling the given area. This way,

the additive composition of colours is made possible on the

monitor screen.

The composition of colours can be explained on the

example when the yellow colour comes into being. First, a

rectangle will appear in the black colour in the whole range of

the image component. Then a red circle is drawn – the

resulting colour comes into being through adding of the colour

of the background and the colour of the new circle.

• background 00 00 00 black

• circle 00 00 FF red

• resulting colour 00 00 FF red

Followingly, a green circle appears. The summation of

colours on the so far untouched background is as follows:.

• background 00 00 00 black

• circle 00 FF 00 green

• resulting colour 00 FF 00 green

At the place where both the circles are overlaying, the

resulting summation of the colours is as follows:

• background 00 00 00 black

• 1st circle 00 00 FF red

• 2nd colour 00 FF 00 green

• resulting colour 00 FF FF yellow

The intensities of the composed colours can be set with help

of sliding boxes on the appropriate scroll bars marked with

red, green and blue colours. The current position of the sliding

box is in case of each scroll bar written through a numeral in

the decimal numerical system.

 The area in which all the three colour circles are

overlaying is coloured in the resulting summation colour. Its

numerical expression is given not only individually in the RGB

code, where the contributions of the individual colours are

listed in the decimal system, but also as a resulting numerical

value of the colour in the hexadecimal and also in the decimal

numerical system.

To enter the RGB code in the decimal numerical system is

very easy. In the above given printout of the unit, the Title

Label7 is composed from a chain of signs in which

individual numerical values are converted through the

IntToStr functions into particular chains of signs.

For the expression of a particular colour in the hexadecimal

system it is first necessary to convert the intensity of each

colour individually from the decimal numerical system into the

hexadecimal numerical system. The converted number, e.g. for

the blue colour, is first divided by sixteen through the integer

division with the help of the operation

ScrollBar3.Position div 16. The result The

result of this integer division is the first numeral of the

resulting hexadecimal entry. The second numeral is gained

through the operation ScrollBar3.Position mod 16.

The result of the operation is the remainder after the integer

division, which simultaneously represents the second numeral

of the resulting hexadecimal entry. The whole operation in the

above given unit is described while designing the Label8.

The description of the resulting colour in the decimal

numerical system is in the above given unit given by the

Label9. The resulting numeral in the decimal numerical system

is given by the summation of the value of the intensity of the

blue light multiplied by 256*256, the value of the intensity of

the green light multiplied by 256 and the value of the intensity

of the red light.

V. USING OF THE “COLOR” PROGRAM WHILE TEACHING

The “Color” Program can be used as a suitable motivation

for students, which supports understanding of numerical

systems and mutual transformations of numerical expressions.

As it has been already shown in Tab 1 and in relation (3), the

expression of numbers in the binary system is hardly

transparent. The conversion of numbers from the binary

system into the octal system makes the work with numbers

originally expressed in the binary system easier and more

Issue 4, Volume 4, 2010 117

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

transparent. The octal system was used decades of years ago,

mainly while working with mainframe computers. Nowadays it

is not significantly applied any more.

Then it is suitable to give a focus on a comparison of the

entries in the decimal and hexadecimal numerical systems. A

survey of the basic colours and their numerical expressions are

given in Table 3.

Table 3: Numerical expression of basic colours

Let us imagine a situation when we are to create a program

which would simulate switching on and switching off of three

colour reflectors and through that it would create continual

colour transitions.

 Let us start from the black colour and let us gradually

increase the intensity of the red light from the minimal value of

0 to the maximal value of 255. The value of 1 will be added in

the decimal system in the cycle from 1 to 255, or the value of

$00000001will be added in the hexadecimal system. In both

the systems the expression of colours is comparable.

 Let us make the same consideration for the green colour. In

that case in each step of the given cycle the value of 256 will

be added in the decimal system or the value of $00000100 will

be added in the hexadecimal system. The advantage of the

hexadecimal system is already quite obvious here.

If the same consideration is made for the blue colour, then

in each step of the given cycle the value of

536652562
= will be added in the decimal system or the

value of $00010000 will be added in the hexadecimal system.

The advantage of the hexadecimal system is then absolutely

without any discussion.

 And what would be a continual transition like, e.g. from the

blue to red the colour, as it is given in Fig 9.

Fig. 9: Colour transition from blue to red colour

 First the width and height of the form of the resulting

program is decided. Then the Image1 component is inserted

into the form, its size is tailored in accordance with the inner

size of the form. See Fig. 10.

Fig. 10: Form of the Blue –red program

The numerical values of both the colours are given in Table

3. In the hexadecimal system it is started from the value of

$00FF0000. The blue light is gradually reduced, that means

the value of $00010000 will be subtracted. Simultaneously, the

red light will be added, thus the value of $00000001 will be

added. Let us suppose that the up-dated value of our colour

will be stored into the particular characteristics of the drawing

pen of the variable called MyColor. Then in each step the

new value of the colour will be set through the order:
Pen.Color:=Pen.Color-

$00010000+$00000001;

If this operation is carried out 255 times in total in the cycle,

then the numerical code of the resulting colour will be

$000000FF; that means the resulting colour will be the

required red colour.

It is obvious that in this case it is not sensible to deal with

the entry of the above given order with help of the decimal

numerical system although the task is solvable in any

numerical system.

 A print-out of the basic unit of the Blue – red Program

follows:

unit Unit1;
interface

uses

 Windows, Messages, SysUtils, Variants,

Classes, Graphics, Controls, Forms,

 Dialogs, ExtCtrls;

type

 TForm1 = class(TForm)

 Image1: TImage;

 procedure FormCreate(Sender:

TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender:

TObject);

var I: Integer;

begin

 with image1.Canvas do

 begin

 Pen.Color:=$00FF0000;

Issue 4, Volume 4, 2010 118

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

 for I:=0 to 255 do

 begin

 MoveTo(I,0);

 LineTo(I,100);

 Pen.Color:=Pen.Color-

$00010000+$00000001;

 end;

 end;

end;

end.

The “Color” Program can be used for demonstration of the

conversion of numerals from the decimal system into the

hexadecimal one. This conversion is realized with help of the

integral division and calculation of the division remainder.

VI. SIMULATION PROGRAMS

After students master the work with colours while creating

programs, they can be given tasks to create programs which

enable to simulate real processes of everyday life. Simple and

for students interesting tasks are represented e.g. by a

simulation of mixing of cold and hot water. While running the

water into a washbasin, bathtub or shower, the cold water runs

when the lever battery is set to the blue mark, the hot water

runs when the lever battery is set to the red mark.

Analogically, on the computer monitor, cold water can be

illustrated by the blue colour; hot water can be illustrated by

the red colour. Besides, the resulting colour of the mixed water

can be illustrated by the colour which is created by the

transition between the blue and red colour, the colour of the

mixed water corresponds to its temperature.

To make it simple, let us suppose that the blue colour will

illustrate the water of temperature 0 °C, the red colour will

illustrate the water of temperature 100 °C. Fig. 11 illustrates

the output of the program which enables to illustrate a

rectangle area whose colour corresponds to the current water

temperature. The sliding box of the scroll bar enables to set the

required water temperature. The currently set water

temperature is illustrated also by the colour corresponding to

the water temperature. All the numerical values are given in

°C.

Fig. 11: Simulation of heating of water

 First the width and height of the form of the resulting

program is decided. Then these components are placed into the

form. See Fig. 12:

• Image for a colour expression of the water

temperature,

• ScrollBar for setting of the water temperature,

• Label for pro setting the lower and upper limit of

the temperatures which are set, and for displaying

the resulting temperature.

Fig. 12 Form of the program Temperature of water

The printout of the unit of the program Temperature of

water follows. For setting of the colour of the mixed water the

RGB function is used for change.

unit Unit1;

interface

uses

 Windows, Messages, SysUtils, Variants,

Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls;

type

 TForm1 = class(TForm)

 Image1: TImage;

 ScrollBar1: TScrollBar;

 Label1: TLabel;

 Label2: TLabel;

 Label3: TLabel;

 procedure FormCreate(Sender:

TObject);

 procedure ScrollBar1Change(Sender:

TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

 Form1: TForm1;

implementation

Issue 4, Volume 4, 2010 119

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

{$R *.dfm}

procedure TForm1.FormCreate(Sender:

TObject);

begin

 with Image1.Canvas do

 begin

 Pen.Color:=clBlue;

 Brush.Color:=clBlue;

 Rectangle(0,0,100,200);

 end;

end;

procedure

TForm1.ScrollBar1Change(Sender: TObject);

var MyColor: TColor;

begin

 with Image1.Canvas do

 begin

 MyColor:=RGB(Round(255*(100-

ScrollBar1.Position)/100),0,

Round(255*(ScrollBar1.Position)/100));

 Pen.Color:=MyColor;

 Brush.Color:=MyColor;

 Rectangle(0,0,100,200);

 end;

 Label3.Caption:=IntToStr(100-

ScrollBar1.Position);

 Label3.Font.Color:=MyColor;

end;

end.

VII. CONCLUSION

The system approach to the way of teaching of

programming has been proved to be worth realizing. The

emphasis on the interdisciplinary relations between individual

subjects has been proved as increasing students´ attention and,

simultaneously, also their motivation for their independent

activities.

 The privileged position of informatics is given by the fact

that, for example, within the framework of programming it

enables to interconnect an experimental teaching subject (e.g.

physics) with a purely theoretical mathematics. On the given

example it is possible to demonstrate the use of a relatively

arid issue of numerical systems while practically creating

simple programs with created colour definitions. Manifold

varieties of simple school tasks linked with the given issue are

quite fruitful and they have been accepted in a very positive

way by students.

REFERENCES

[1] S. Hubalovsky, E. Milkova, P. Prazak P, “Modeling of a Real Situation

as a Method of the Algorithmic Thinking Development and Recursively

Given Sequences”, WSEAS TRANSACTIONS on INFORMATION

SCIENCE & APPLICATIONS, Issue 8, Volume 7, August 2010,

pp.1090-1100

[2] S. Hubalovsky, E. Milkova, “Modelling of a real situation as a method

of the algorithmic thinking development”, In: Advanced Educational

Technologies, Proceedings of 6th WSEAS/IASME International

Conference on Educational Technologies (EDUTE’10), WSEAS Press,

Kantoui, Sousse, Tunisia, May 3-6, 2010, pp. 68–72

[3] S. Hubalovsky, “The system approach to teaching of algorithm

development”, in Proc. WSEAS/IASME International Conference on

Applied Computing (ACC’10), WSEAS Press, Timisoara, Romania,

2010, pp. 22-27.

[4] M. Musilek, S. Hubalovsky, “Cryptoanalysis as a Method of the System

Approach in the Algorithm Development”, in Proc. WSEAS/IASME

International Conference on Applied Computing (ACC’10), WSEAS

Press, Timisoara, Romania, 2010, pp. 16-21.

[5] (The Joy of Visual Perception) [online]. c2009 [cit. 2010-10-11].

Newton's Experiment. Available:

<http://www.yorku.ca/eye/newton.htm>.

[6] (Wikipedia) [online]. [cit. 2010-10-11]. Additive color. Available:

<http://en.wikipedia.org/wiki/Additive_color>.

[7] (The Joy of Visual Perception) [online]. c2009 [cit. 2010-10-11].

Additive Color Mixing of Light. Available:

<http://www.yorku.ca/eye/3color.htm>.

[8] (American WideScreen Museum) [online]. c1998 [cit. 2010-10-11].

Additive and Subtractive Color Systems Explained. Available in WWW:

<http://www.widescreenmuseum.com/oldcolor/additive-

subtractive.htm>.

[9] Lego Mindstorms manual. Available: http://mindstorms.lego.com/en-

us/Default.aspx.

[10] L. Stirb, Z. Marian, M. Oltean, An autonomous approach to wheel

changing problem, Studia univ. Babes-Bolyai, Informatica, Vol. LV,

No. 1, 2010, pp. 41-50.

[11] S. Hubalovsky, A. Hubalovsky, “Utilization of ICT in creation and

modeling of the stereoscopic picture”, Media4u Magazine. No. 1,

2010, pp. 73-76. Available: www.media4u.cz (in Czech).

[12] H. Kohout, “Use of colours in computer graphics”. Media and

education 2009, Media4u Magazine. No. X6, 2009, pp. 52-54.

Available: www.media4u.cz (in Czech).

Vladimír Jehlička was born in Pardubice, Czech Republic in 1951. In 1975

he received degree Ing. in the Processes, equipment and automation of

chemical processes at the University of Pardubice, in 1981 he received degree

Ph.D. in the Technical cybernetics at the University of Pardubice, in 1998 he

became associate professor in the Automation of machines and technological

equipment at the Technical University in Ostrava.

Since 1975 he worked as an assistant professor at the University of Pardubice,

since 1998 worked as a associate professor at the University of Hradec

Kralove, where since 2005 he is Dean of the Faculty of Education.

Doc. Ing. Vladimír Jehlička, CSc. is a member of the Department of

informatics, Faculty of Science, University of Hradec Kralove, where he

focuses on programming, modeling and simulations of real systems.

Issue 4, Volume 4, 2010 120

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

