
 

 

  
Abstract—Chaotic phenomena are widespread in a variety of 

research fields. In this paper, we investigate the complexity of 

one-dimensional chaotic maps with entropy characteristic. First we 

analyze the dynamics of one-dimensional chaotic maps. Then we 

analogize the iteration of maps to a one-sided shift transformation, and 

give a probability explanation of Lyapunov exponent by Ergodic 

Theory. We use the entropy of corresponding shift to reflect the 

complexity of these maps, providing a new way to characterize 

complexity of chaotic systems. 

 

Keywords—Chaos, Complexity, Entropy, Ergodicity, Lyapunov 

Exponent.  

I. INTRODUCTION 

INCE the middle of 20th century, a large number of chaotic 

phenomena have emerged in the research of physics, 

astronomy, meteorology, life sciences, sociology, economy, 

etc. The Lorenz system in meteorology and Van der pol 

equations in electrology are two well-known examples. Because 

of its difficulty and great value in solving practical problems, 

the research on chaotic phenomena with different structures has 

continued to today since 1960s, and it is still a frontier and hot 

spot in non-linear science. The fundamental research on chaotic 

phenomena, which is based on application background widely, 

is of great significance not only in mathematical theory but also 

in practical applications. So in the last decades, there are many 

good research results of chaos appear [12]-[16]. 

One of the essential properties of chaos is the sensitive 

dependence on initial conditions. A sufficient condition for a 

system to have this property is to have a positive Lyapunov 

exponent. Therefore, to see whether a system has a positive 

Lyapunov exponent along critical orbits is an important method 

to study chaos. One-dimensional maps are the most fundamental 

maps, so the investigation in these maps has great value in 

non-linear science. The study in this field is started by 

considering maps which are induced from special maps. In 1983, 

Benedicks and Carleson [1] gave metric condition for 

)11(,1);( 2 ≤≤−−= xaxaxF , where a is a parameter in 

(0,2), to be Collet-Eckmann (i.e. to have a positive Lyapunov 

exponent along the orbit of the critical point). In 1993, D.Sands 

 
Sen Pei is with LMIB and School of Mathematics and Systems Science, 

Bihang University, Beijing, China; e-mail: peisenbuaa@gmail.com. 

Zhiming Zheng  is with LMIB and School of Mathematics and Systems 

Science, Bihang University, Beijing, PR China, 100191. 

This work is partially supported by National Key Basic Research Project of 

China Grant No.2005CB321902. 

 

[7] analyzed the mechanism of chaos on general S-unimodal 

maps in a topological point of view. Later in 2003, Zhang 

Tingting [6] studied a class of maps
21);( axaxF −= , and 

gave topological conditions for positive Lyapunov exponent of 

these maps. In order to generalize their works, here we study 

more general maps, which are multi-modal, in a topological 

perspective. 

Complexity is an important property of a chaotic system. In 

some research fields, such as informatics, computer sciences, 

statistical mechanics and complex networks, entropy are used to 

characterize the complexity of a certain system. In this paper, 

we want to use entropy to depict the complexity of 

one-dimensional dynamical systems, so that we can compare the 

complexity of two different dynamical systems. 

In this paper, we construct a topological tool which applies to 

general multi-modal maps. We partition the iteration interval 

[-1; 1] into infinite small open intervals with the pre-images of 

critical values. We depict a point’s position by the small open 

interval which it falls into. Analyzing critical orbits by this tool, 

we find that the critical orbits behave somewhat periodically. 

Then we analogize the iteration of maps to a one-sided shift 

transformation. By Ergodic Theory, we give a probability 

explanation of Lyapunov exponent, which provides a numerical 

computation method to calculate this exponent. We use the 

entropy of corresponding shift to reflect the complexity of these 

maps, providing a new way to characterize complexity of 

chaotic systems. 

II. BASIC DEFINITIONS 

In this section, we will introduce the definitions of regular 

family of maps and Lyapunov exponent, which are the main 

research objects in this paper. We will see that maps satisfying 

these conditions are ubiquitous. Assume IIf →:  to be a 

2C map, where I = [-1; 1]. Our research work is based on the 

regular map family Paaf ∈}{ with perturbable parameter
*a . 

We demand a  is very close to
*a . In the following discussion, 

we denote )(xf i  as
ix   for any point Ix∈ . 

Definition 2.1[2] A point c is called a critical point of f 

if 0)(' =cf ; and let }0)('|{)( =∈= cfIcfC . A critical 

point )( fCc∈  is said to be non-flat, if there exists a 

neighborhood of c and a constant 2≥cτ , such that f is cC
τ
 in 

the neighborhood of c and 1,,2,1,0)(
)( −== c

i
icf τ⋯ , 
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0)(
)( ≠cf cτ

, equivalently, if there exist positive constants 

*c and *c  such that 

1*1

* |)(|
−− ≤≤ cc cxDfc

ττ ρρ  

where ))(,()( fCydistx =ρ =min{ || tcx − | )( fCc t ∈ }. 

We call IIf →: non-flat, if for every )( fCc∈ , it is 

non-flat. 

Lemma 2.2[2]  Let IIf →: be a
2C map without flat critical 

points. Then  f  consists of finite critical points. 

Let },,,{ 21 kccc ⋯ be the set of critical points of  f, where 

kccc <<< ⋯
21

. Define 1,1 10 =−= +kcc . 

Definition 2.3[2] f is said to be a bounded distortion from 

linearity if it satisfies that for Iyx ∈, , 

|)|
)(

exp(|
)(

)(
| 0 yx

y

c

yDf

xDf
−≤

ρ
 

where 
0c  is a positive constant and ))(,()( fCydistx =ρ . 

Definition 2.4[2] Let P be an interval of parameter. A map 

family PaIxxfa ∈∈ ,),( is regular, if )(xfa  is 
2C w.r.t. (x, 

a) and for every Pa∈ , )(xfa is a bounded distortion from 

linearity without flat critical points. 

Definition 2.5[2] Let Paaf ∈}{ be a regular map family. A 

parameter Pa ∈*
is said to be perturbable w.r.t. 

family
Paaf ∈}{ , if 

(M) There exists a neighborhood of )( *
a
fC , V=∪ )( *a

fCc cV∈
, 

where cV is the neighborhood of )( *
a
fCc∈ , such that 

∅=
≥

VfCf
n

a

n

a
∩∪

1

))(( **  

and *
a
f has no stable periodic point. That is, there exists 

0* >ε ,such that 

*

1

* ))()),((( ** ε≥
≥
∪
n

aa

n

a
fCfCfdist  

and *
a
f has no stable periodic point. 

(CE) There exists
*ε  > 0, such that for every ),0( *εδ ∈ and 

n≥ 1, if Ix∈ satisfies )(* δVf i
a

∉ =∪ )( *

),(
a
fCc

cc
∈

+− δδ  

for i=0, 1, 2,…,n-1 and )()(* δVnf n
a

∈ , then 

*|)(| * kxDf n
a

≥ . 

(T)  

,0)(|
)),((

)),((
|lim

**)(

1

1

**)(

0 ≠=
∂
∂

−∞→
iQ

aacf

aacf
in

x

in

a

n
 

where )( *ac il denote the lth iteration of critical point )( *ac i of 

map *
a
f , i=1, 2, …,n. 

These maps are very common in one-dimensional maps. For 

example, for function
21);( axaxF −= , we can prove that 

a=2 is a perturbable parameter of the map. 

We give the definition of Lyapunov exponent. Assume 

IIf →: is a map and let C(f)  be the set of critical points of  f. 

We define the Lyapunov exponent of  f  as 

.
|)))(((|log

inflim n

fCfDf
n

n ∞→

 

If f  has a positive Lyapunov exponent, we know that for each 

critical point 
tc , 

,0
|))((|log

inflim >
∞→ n

cfDf tn

n

 

equivalently, there exist k > 0 and λ > 0, such that for all 1≥n  

.|)(| ntn kcDf λ>  

Notice that, by the chain rule,if the critical orbits fall into a 

near neighborhood of critical points, Lyapunov exponent will 

suffer a great down in value. So we need to investigate the 

dynamics of the critical orbits if we want to analyze Lyapunov 

exponent. 

In Ref [4], it is proved that an interval will expand 

exponentially for a long time on the condition that the parameter 

a is very close to perturbable parameter
*a , which means the 

interval will cover critical points in finite iterations. This 

property guarantees the feasibility of the construction method of 

our topological tool introduced in the next section. 

III. POSITION FUNCTION 

In this section, we will partition the interval [-1; 1] into 

infinite subintervals, so that we can use the subinterval which a 

point locates to depict the distance between this point and 

critical points’ set C(f). 

We take one of the critical points
tc as an example. Obviously, 

the interval ),( 1+tt cc  is the largest monotone open interval 

under f on the right side of 
tc . We partition this interval with a 

topological method, which is uniform to all the critical points. 

Without loss of generality, we only consider the situation of 

right side. We begin our partition process by induction. 

Definition 3.1 For kt ,,2,1 ⋯= , define open interval 

),()0,,( 1−= tt cctRI . Let 





∅≠−−

∅=−−
=

)1,,()(   ))1,,((

)1,,()(   ))1,,((
),,(

mtRIfCmtRJf

mtRIfCmtRIf
mtRI

∩

∩
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where J(R,t,m-1) is the component of  I(R,t,m-1)\C(f)  which 

contains
t

mc . The parameter t means we consider the critical 

point
tc ; m denotes the induction time; R means the interval we 

discuss is on the right side of
tc . If we discuss the left side, we 

use parameter L instead of R. We can also define I(L ,t, m) as 

above. 

We know that when an interval covers critical point, the 

monotonicity under f will change. So the largest monotone 

interval on the right side of 
tc will diminish. We only consider 

the largest monotone interval that contains critical points J(R, t, 

m-1) in the following induction. We call this manipulation a 

cutting process. If the interval I(R, t, m) covers any critical point, 

we call the induction time m a cutting-time, which is denoted by 

a function F(R, t, n). Here, the parameter n means this is the nth 

cutting process since the induction began. Notice that I(R, t, m) 

may cover more than one critical point. We only concern the 

one which is the nearest to
t

mc . We denote this critical point 

by
),,( ntRNc , so the endpoints of J(R, t, m) are

t

mc and
),,( ntRNc . 

Consider the pre-image of J(R, t, m) under
mf −

. Obviously, one 

endpoint is
tc , and we denote the other by ),,( ntRγ . In fact, 

),,(

),,(),,( ntRN

ntRFcntR −=γ . By the analysis above, we have F(R, t, 

n + 1) = max{m≥ F(R; t; n) |
)),,(,(

|
ntRc

m
tf

γ
is monotone},  

where ),,( ntRγ  = sup{x∈  [
tc ,

1+tc ] |
),(

1),,( |
xc

ntRF
tf +

is 

monotone}. 

Definition 3.2 Define the cutting-interval of C(f) as follows: 

⋯∪ ,2,1)),,,(),,,(()(
1

==
=

nntRntLnV
k

t

γγ  

  We have finished the partition of interval [-1; 1]. The situation 

around
tc  is shown in Figure 1 below. 

 

Figure 1 

Now we introduce the Position Function P. We use this 

function to reflect the distance between a point and critical 

points. In the following discussion, we use (a; b) to denote the 

open interval whose endpoints are a and b for simplicity. 

Definition 3.3 For x∈ [-1,1], define 

}.monotone is ||max{),(
);( xc

m
tfNmxtP ∈=  

P(t, x) is a step function, which is non-decreasing as x gets 

close to
tc and can be arbitrarily large. The discontinuities of 

this function must be pre-images of critical points, but not all the 

pre-images are discontinuities. In fact, the discontinuities are 

corresponding γ . We have 

)}.;();(|min{),( xccFxtP tt ⊂= γ  

Hereγ  is corresponding to the cutting time F. By the definition 

of  F(R, t, n + 1), we know that F(R, t, n + 1) =max{m≥ F(R, t, 

n)|
m

ntRct
f

)),,(,( γ
is monotone}. Considering im

If

i

I

m ff −= || , 

we have that F(R, t, n + 1) = F(R, t, n) +max{m ≥

0|
)),,(,(),,(|
ntRcf

m
tntRFf

γ
is monotone }. Combine with the 

position function P, we can get 

).),,,((),,()1,,( ),,(

t

ntRFcntRNPntRFntRF +=+  

So the value of position function is a cutting time, and the 

difference between two successive cutting times is also a cutting 

time. 

It is easy to know, when ))1,,(),1,,(( tRtLx γγ∈ , P(t, x) ≥  

1, and P(i, x)=0 for i≠ t. We only concern the nonzero one. So 

we can use P(x) to denote the largest value of all P(t, x). 

Now we define some notations related to position function. 

For ))1,,(,( tRcx t γ∈ , if P(x) = F(R, t, n), denote the 

corresponding γ as
),,(

),,()( ntRN

ntRFcxP −= . Define )(xP+
 =F(R, t, 

n + 1), )(xP−
= F(R, t, n-1). Especially, if there exists n > 0 

such that )()( fCxf i ∉ , i=0,1,…,n-1, and )()( fCxf n ∈ , 

we denote P(x) = n, )(xP = x. 

IV. THE DYNAMICS OF CRITICAL ORBITS 

We analyze the dynamics of critical orbits with position 

function. We only consider the right side of a critical point, the 

other side is just similar. 

Recall ρ (x) is the distance between x and C(f). According to 

the definition of )(xP , we know that for any )( fCct ∈ , 

))(()( t

n

t

n cPc ρρ > . Besides, by the definition of F(R, t, n), 

the interval )),,(,( ntRct γ is monotone under
if , 1≤  i≤  F(R, 

t, n + 1). 

Consider the definition of the function F, we have 

Lemma 4.1 For ))1,,(,( tRcx t γ∈ , if there exists a cutting 

point ),( xcc tN

F ∈= −γ ,, then P(x)≥ F. Here N∈ {1,2,… k}, F 

is a cutting time. 

Lemma 4.2 Assume F = F(R, t, n), N = N(R, t, n). For i < F, we 

have ))(()( N

F

it

i cfPcP −≥ . 

Proof: If it is not in this case, we have Figure 2 below. 

 

Figure 2 

By the definition of P , Figure 2 implies F-i > )( t

icP . However 

);(
|)( tN

F cc

it

i fcP
−

∈ , i.e. );(
)(

tN

FicP
ccc t

i
−−−

∈ , which means 
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that )( t

icP  + i > F. So we get contradiction. 

Lemma 4.3 For any },,2,1{, 21 kNN ⋯∈ , and 21 NN ≠ , 

denote ),,( 2 ii mNRFF = , i = 1, 2, where
im are positive 

integers with 21 mm < . If the distribution of 1

2

1

1
, N

F

N

F cc −− and 2Nc  

is like Figure 3 below, 

 

Figure 3 

then 2

2

2

1
, N

F

N

F cc must be in ))1,,(),1,,(( 11 NRNL γγ . Besides, 

if 2

2

2

1
,

N

F

N

F cc are on the same side, )()( 2

1

2

2

N

F

N

F cPcP ≥ . 

Proof: By the definition of γ , the corresponding critical points 

of 2

2

2

1
, N

F

N

F cc are all 1Nc . If )()( 2

1

2

2

N

F

N

F cPcP < we have Figure 4. 

 

Figure 4 

According to Figure 4, we have 212 FFF >− , which 

contradicts with the definition of F. 

Now we discuss the dynamics of the orbits of critical points. 

For any )( fCct ∈ , I(R, t, m) will cover critical points 

infinitely according to the discussion in Ref [4]. But f has finite 

critical points. So there must be a critical point
Nc covered by 

the interval for infinite times, which is shown in Figure 5 below. 

 

Figure 5 

Here, we have ⋯<<< 321 FFF .By Lemma 4.3, we have 

)()(
1

t

F

t

F ii
cPcP ≥

+
, i = 1,2,…. So

tc will get closer to
Nc under 

the iteration. 

Now let us discuss the iteration of the map. For any x∈

[-1,1]\C(f), we assume x falls into the neighborhood of
tc c, 

+= FxP )( ,
+

+−
= N

F
cxP )( , as shown in the following figure. 

 

Figure 6 

Definition 4.4 For t = 1, 2, …, k, n = 1, 2,…, if F =F(R, t, n), 

define 
+F = F(R, t, n + 1). For any cutting time F, denote Δ F = 

FF −+
. For every given F, denote 

iF ={F(R, i, m)|F(R, i, m)

≤ F; and F(R, i, m + 1) > F}. 

Here, we denote the cutting time corresponding to
ic which is 

no bigger than F as iF . In the next lemma, we will see this 

cutting time is an important parameter. 

Lemma 4.5 For FFi ≠ , )()( iF FxP
i

∆= . 

Proof: If
+)( iF = F(R, t, l), denote 

*N = N(R, t, l). We have the 

figure below. 

 

Figure 7 

Though
*

)(

N

Fi
c +−

may coincide with
N

Fc− , this situation will not 

affect our proof. For );(
*

)(
i

ii

N

F

N

F cxc ∈∆− , by Lemma 4.1, 

)()( iF FxP
i

∆≤ . 

Because );( i

ii

Nt

FF ccx ∈ , we have )()( t

FF ii
cPxP ≥  Apply 

Lemma 4.2 to
tc and

*

)(

N

Fi
c +−

, we have )()(
*

)(

N

F

t

F ii
cPcP ∆−≥ . 

If i

N

F FcP
i

∆<∆− )(
*

)( , then there exists a cutting 

time
+< )( ix FF , such that );(

*

)()(
i

iix

NN

F

j

FF ccc ∆−−− ∈ . So we 

have Figure 8. 

 

Figure 8 

+< )( ix FF , so ix FF ≤ . No matter ix FF < or ix FF = , 

they all contradict with the definition of i

i

N

Fc− . So we have 

i

N

F FcP
i

∆≥∆− )(
*

)( and )()( iF FxP
i

∆≥ . 

Finally, we have )()( iF FxP
i

∆= . 

 Lemma 4.6 If FFFxPFF Fi −=∆≥= +)(, . Especially 

when there exists );( N

F

j

F
cxc ∈+−

, FxP F ∆=)( . 

Proof: The distribution of the points is shown in the figure 

below. 
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Figure 9 

  By Lemma 4.2, )()()( N

F

t

FF cPcPxP ∆−≥≥ . We can 

prove FcP N

F ∆≥∆− )( as above. So FxP F ∆≥)( . Especially, 

when );( N

F

j

F
cxc −−

∈+ , we have );( N

F

j

F cxc ∈∆− , by Lemma 

4.1, FxP F ∆≤)( , so FxP F ∆=)( . 

Based on the analysis above, we have the next theorem. 

Theorem 4.7 For any point ))1,,(,( tRcx t γ∈ , assume 

FxP =− )( , )(xFm = max{ |)( iF∆ i=1,2,…,k}. Then for i 

=1, 2,…, 1)( −− xP , 

.)))(,,()),(,,(()(
1

∅=
=

xFiRxFiLxf mm

k

i

i γγ∪∩  

We can see that, for i =1, 2,…, 1)( −− xP , )(xf i  always 

stays outside of a neighborhood of critical points, but 

)()( xf xP−

may fall into this neighborhood. By the chain rule, 

we know that if the critical orbit falls into a near neighborhood 

of critical points, Lyapunov exponent will suffer a great down in 

value. If critical orbits stay a distance from critical points for a 

long time, which makes an exponential increase to Lyapunov 

exponent, Lyapunov exponent will keep positive. Lyapunov 

exponent first increases exponentially under finite iterations, 

then decreases to much degree, followed by a gradual 

exponential increase again. So the great decrease and gradual 

increase alternate with each other. On the whole it keeps 

positive and the iteration of the function on the critical points 

behaves somewhat like a periodical movement. 

V. THE ERGODICITY OF CRITICAL ORBITS 

 First introduce some important definitions and results in 

ergodic theory. 

Definition 5.1[3] Suppose ),,( 111 mX β , ),,( 222 mX β are 

probability spaces. A transformation 21: XXT →  is 

measurable if 12

1 )( ββ ⊂−T (i.e. 12

1 β∈− BT ). A 

transformation 21: XXT → is measure-preserving if T is 

measurable and )())(( 222

1

1 BmBTm =−
for any

22 β∈B . 

We say that 
21: XXT →  is an invertible measure-preserving 

transformation if T is measure-preserving, bijective and
1−T is 

also measure-preserving. 

Definition 5.2[3] Let ),,( mX β  be a probability space. A 

measure-preserving transformation T of ),,( mX β is called 

ergodic if the only members B of β with BBT =−1
satisfy 

m(B) = 0 or m(B) = 1. 

If T is measure-preserving, then the following statements are 

equivalent: (1) T is ergodic; (2) whenever f is measurable and 

f �  T(x) = f(x) a.e. then f is constant a.e. 

The first major result in ergodic theory was proved in 1931 by 

G.D.Birkhoff. 

Theorem 5.3[3] (Birkhoff Ergodic Theorem). 

Suppose ),,(),,(: mXmXT ββ →  is measure-preserving 

and )(1 mLf ∈ . Then ∑ −

=

1

0
))(()/1(

n

i

i xTfn converges a.e. 

to a function )(1* mLf ∈ . Also
** fTf =� a.e. and if m(X) 

< ∞ , then ∫∫ = fdmdmf *
. 

If T is ergodic then
*f is constant a.e. and so if m(X) < ∞ , 

*f  = (1/m(X)) ∫ fdm  a.e. If ),,( mX β  is a probability 

space and T is ergodic we have 

1Lf ∈∀ , ∑ ∫
−

=→∞
=

1

0
)()/1(lim

n

i

i

n
fdmxTfn a.e. 

Let T be a measure-preserving transformation of the 

probability space ),,( mX β  and let )(1 mLf ∈ . We define 

the time mean of f at x to be 

∑ −

=→∞

1

0
exists.limit   theif ))((

1
lim

n

i

i

n
xTf

n
 

The phase or space mean of f is defined to be 

∫ .)( dmxfX
 

The ergodic theorem implies these means are equal a.e. for all 

)(1 mLf ∈  if and only if T is ergodic. 

A special type of product space will be important for us. Here 

each space ),,( iii mX β is the same space ),,( µℓY  and Y is 

the finite set {0,1,…,k-1},
Y2=ℓ  (the collection of all subsets 

of Y ), and µ is given by a probability vector (
0p ,

1p ,…
1−kp ) 

where })({ipi µ= .We shall denote the set 

{ |)( ∞
∞−ix jj ax = for nj ≤|| } by nnnn aa ],,[ ⋯−−  and call it 

a block with end points -n and n. We 

have )],,,,[( 1)1( nnnnnn aaaam −−−−− ⋯  = ∏ −=

n

nj a j
p The 

measure m is called the ( 0p , 1p ,… 1−kp ) -product measure. 

Sometimes we consider blocks with end points h and l where h

≤ l. Such a set is one of the form llhh aa ],,[ ⋯ = 

{ |)( ∞
∞−ix jj ax = for lih ≤≤ }.It has measure 

∏ =

l

hi ai
p .Let ),,( mX β = ∏

∞

0
),2,( µYY . If we write 
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points of X in the form ( 0x , 1x ,… ), Yxi ∈ , then define T : X 

→  X  by T( 0x , 1x , 2x ,… ) =( 1x , 2x ,… ). This transformation is 

called the one-sided  ( 0p , 1p ,… 1−kp )-shift. It has proved that 

T is measure-preserving, although it is not invertible. Moreover, 

T is ergodic[3]. 

We analogize the iteration of map to a one-sided shift. First 

we will construct a probability space (X,Ω ,m). 

We divide the interval [-1; 1] into m parts equally. Here we 

demand m is large enough so that the derivation in each part 

does not change much. We denote the symbol set {0,1,…,m-1} 

as Y , and use
Y2 to denote the collection of all subsets of Y .μ is 

a probability measure, and we will introduce its definition later. 

),2,( µYY is a probability space. Let (X, Ω ,m) = 

∏
∞

0
),2,( µYY , where m means the corresponding product 

measure. Then (X,Ω ,m)  is the product space corresponding to 

),2,( µYY . 

Choose a critical point
tc , and denote its orbit as a one-sided 

infinite sequence 0l =( 1x , 2x , 3x , … , nx , … ). If
t

nc ∈

[-1+2i/m,-1+2(i+1)/m], take nx = i. We define probability 

measure μ  by a probability vector  ( 0p , 1p ,… 1−mp ), where 

ip  means the probability that i appears in the sequence 0l . 

Then the probability measure space (X,Ω ,m)  is well defined. 

We consider the one-sided shift transformation T on (X,

Ω ,m).We know that T is measure-preserving and ergodic. We 

can analogize the iteration of map to T. 

Assume )(1 mLf ∈ , the time mean of f is 

∑ −

=→∞

1

0
 ))((

1
lim

n

i

i

n
xTf

n
, 

and the phase mean is ∫ .)( dmxfX
By ergodic theorem, 

∑ −

=→∞

1

0
 ))((

1
lim

n

i

i

n
xTf

n
exists a.e. for any )(1 mLf ∈ , and 

dmxfxTf
n

X

n

i

i

n ∫∑ =
−

=→∞
)( ))((

1
lim

1

0
 

We want to calculate the Lyapunov exponent. By chain 

rule, |)(|log 1

tn cDf = |)(|log 1

tcDf + |)(|log 2

tcDf + …

+ |)(|log t

ncDf , so what we need is to calculate 

|)(|log t

icDf . 

Define g : X→ R as follows: for l =( 1x , 2x , 3x ,…, nx ,…), if 

1x  = i, define g(l) as the average value of |)(|log xDf on the 

interval [-1+2i/m,-1+2(i+1)/m].  If 
t

nc  falls into this interval, 

we use g(l) to estimate |)(|log t

ncDf . Obviously, )(1 mLg ∈ , 

so we have 

dmxglTg
n

X

n

i

i

n ∫∑ =
−

=→∞
)( ))((

1
lim

1

0 0  

For any l∈  X, we denote the ith coordinate of l as l(i). Let 

iX ={ l∈  X | l(1)=i}, we have X = ∪
1

0

−

=

m

i iX . 

Now we analysis the meaning of dmxgX∫ )( . 

∑∑∫
−

= ∈

=
1

0

)()()(
m

i Xl

X

i

lmlgdmxg  

∑∑ ∑
−

=

−

= ∈

==
1

0

1

0

).()()()(
m

i

i

m

i Xl

i iXglmXg
i

µ  

The Lyapunov exponent is the synthesis of different values of 

|)(|log t

ncDf  with their probabilities, just analogous to the 

expectation in Probability Theory. ∑ −

=∞→

1

0 0  ))((
1

lim
n

i

i

n
lTg

n
 

just reflects the specific form of this synthesis. By ergodic 

theorem, this formula equals to ∑
−

=

1

0

)()(
m

i

i iXg µ , where μ (i) 

represents the probability that critical orbit falls into the interval 

[-1+2i/m,-1+2(i+1)/m]. We know that when the intervals locate 

near critical points, g(i) is very small. So if we demand the 

Lyapunov exponent keep positive, the probability that critical 

orbit falls into these intervals should be very small. In other 

words, a positive Lyapunov exponent implies small probability 

that critical orbits fall near C(f). From probability point of view, 

it should be quite a long time between two events of small 

probability. So the critical orbit will stay away from critical 

points for a long time before it comes close to critical points 

again. So we give a probability explanation for Lyapunov 

exponent. Besides, we can use this method to calculate 

Lyapunov exponent of a map numerically. 

VI. COMPLEXITY AND ENTROPY 

Kolmogorov introduced the concept of entropy in ergodic 

theory in 1958. In some research fields, such as informatics, 

computer sciences, entropy are used to characterize the 

complexity of a system widely. There are a lot of works on the 

relation with complexity and entropy [17]. Here, as we 

analogize the iteration of map to a one-sided shift, we want to 

use the entropy of one-sided shift transformation to characterize 

the complexity of the dynamical systems. 

The definition of the entropy of a measure-preserving 

transformation T of ),,( mX β  is in three stages: the entropy 

of a finite sub- σ -algebra of β , the entropy of the 

transformation T relative to a finite-σ -algebra, and, finally, the 

entropy of T. The complete and rigorous definition of entropy of 
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a measure-preserving transformation can be found in Ref [3]. 

We leave out the definition for simplicity.  

In the section before, we analogize the iteration of map to a 

one-sided shift transformation, so we will focus on the entropy 

of one-sided shift. Usually, it is difficult to calculate the entropy 

of a measure-preserving transformation T h(T) from the 

definition directly. But for some special transformations, there 

are calculation methods. By the Kolmogorov-Sinai Theorem, it 

has proved that the entropy of one-sided ( 0p , 1p ,…, 1−kp ) 

shift transformation is ∑
−

=
−

1

0
log

k

i ii pp [3].  

Obviously, the maximum of h(T) is reached if and only if 

0p =
1p =…=

1−kp . But in the discussion in section V, we have 

proved that for one-dimensional chaotic maps, a positive 

Lyapunov exponent means small probability that critical orbits 

fall near critical points. So the uniform distribution does not 

exist, and thus h(T) can’t reach the maximum. 

Definition 6.1 We denote the entropy of one-sided 

( 0p , 1p ,…, 1−mp ) shift transformation as h(T, m). In the 

partition of the interval, let ∞→m , define h(T)=
∞→m

lim h(T, m). 

We call h(T) as the entropy of the dynamical system 
nf . 

We want to know, for every map f, whether the entropy of 
nf exists. 

First, for every m, it is obviously that h(T, m)>0. We refine 

the partition, dividing the interval [-1+2i/m,-1+2(i+1)/m] into 

two part, then the probability vector will become (
0p ,

1p ,…
'

ip ,
''

ip ,…, 1−mp ), where 
'

ip +
''

ip = ip . Because ip log ip = 

(
'

ip +
''

ip ) log (
'

ip +
''

ip )>
'

ip log
'

ip +
''

ip log
''

ip , so the 

entropy will increase. We know for each m, h(T, m)<log m. 

When ∞→m , the maximum can be arbitrarily large. So the 

entropy h(T) can be infinity. 

In informatics, when we compare two different systems, if 

one system has larger entropy, we can tell this system is more 

complex than the other one. Here, we can also explain the 

meaning of entropy of dynamical systems. If a map has fixed 

points or it is attractive, we can say it is relatively simple. The 

critical orbits will always stay in several points or intervals, thus 

the entropy will keep unchanged or increase slowly as m 

increases. These maps have relatively small entropy, so they are 

relatively simple.   

A very good example is the map 
21);( axaxF −= . When 

a=2, the critical orbits will come into the point -1.  So the 

entropy will converge to 0. But when a is close to 2, the 

dynamics of critical orbits will be very complex, and the entropy 

will increase as m increases. For these two chaotic maps, we can 

say the first one is relatively simpler than the later one. In the 

informatics, entropy is a very important parameter to 

characterize complexity. If a system has zero entropy, it is a 

definite system, and it has no information. So in this example, 

when the parameter a is close to 2, the system has more 

complexity than the other one. In fact, in dynamical systems, 

when the parameter a is close to 2, the system is a 

non-hyperbolic dynamical system. It has more complex 

dynamical behaviors. This result is in accordance with the result 

in informatics. 

VII. CONCLUSION 

In this paper, we analyzed the dynamics of a class of 

one-dimensional chaotic maps. A new topological tool is 

constructed with pre-images of critical points, with which we 

can analyze the dynamics of critical orbits. It is shown that the 

critical orbits will come close to C(f), then move away from it. 

After that, critical orbits will come close to C(f) again, which 

behaves somewhat periodically. Then we analogize the iteration 

to a one-sided shift. By ergodic theory, we derive that positive 

Lyapunov exponent implies small probability that critical orbits 

fall near C(f). Also, we give a numerical method to calculate 

Lyapunov exponent of a map by considering the probability that 

critical orbits fall into the divided intervals. Finally, we analyze 

the relation between complexity and entropy. We use the 

entropy of corresponding shift to reflect the complexity of these 

maps, providing a new way to characterize complexity of 

chaotic systems. 
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