

Abstract: - The goal of this paper is to study the possibility of

using alternative computing solution in cryptography, the use of a

graphic processing unit in non graphical calculations. We tried to use

the graphic processing unit as a cryptographic coprocessor in order to

obtain more computing power and better runtime for AES. In this

paper we present an implementation of AES on NVIDIA GPU using

CUDA. The results of our tests show that the CUDA implementation

can offer speedups of almost 40 times in comparison to the CPU. The

tests are conducted in two directions: running the tests on small

amount of data that is located in memory and a big amount of data

that are stored in files on hard drives and as news, the access time for

the information on the hard disk is added to the encrypting time.

Key-Words: - Benchmark, AES, CUDA, GPU, Cryptography,

I. INTRODUCTION AND RELATED WORK

raphic Processing Units are being used nowadays

not only for 3D rendering, games engines and film

encoding/decoding, but also for a vast area of

applications. One of these is Cryptography. In the field of

Cryptography from the moment, when compatible DX10

Graphic Processing Units (e.g. G80) offered support for

integers and byte operations, GPU had become an eligible

competitor for a cryptographic coprocessor.
It is much easier to develop benchmark applications that

are oriented on certain goals by reaching isolated points. The
main advantage of benchmarks is the simplicity of the obtained
and presented results: they are easier to understand. Any
component (software or hardware), is acquired based on its
characteristics. Characteristics are obtained and presented after
some benchmarks (CPU frequency, memory frequency, hard
disk capacity/ read/write speed, etc.).

In order to be up to date with the technological

development, benchmarks have to be continuously upgraded,

so that the results obtained are accurate [7]. The trend is to sell

products mentioning the results obtained for certain tests

advantaging the respective product. Moreover, producers

design products to run better on certain sets of tests so that the

results exceed those of competing products putting them in

front. There are some special cases where benchmarks are

designed so that they run in the shortest time possible on

certain products, in order to advantage them on the market [9].

Generally a benchmark executes a finite number of

instructions. The system that finalizes that instructions set

within the shortest period is placed in the top of the test. In

antithesis, we [9] can present benchmark models that do not

require the completing of the test within a period of time, but

are directed on calculating the work volume. In [17], it is

presented a benchmark called HINT[3][7], which does not

belong to any category described above.

In the recent years, because of the slow processors evolution,

big computing power application developers oriented towards

other type of processors. Graphic Processor Units have been

taken in consideration. Video Graphic Card vendors designed

more powerful graphical video cards and gave software

developers the chance to write their own programs to use co

processing on CPU and GPU.

Yeom analyzed the improved performances using DirectX

and OpenGL [12], and after finalizing his research he

concluded that an Intel Core 2 Quad (QX6850) processor is

able of speeds up to 96 GFLOP, while a NVIDIA GeForce

8800GTX is capable of 330 GFLOP. In his tests AES has a

4.5 Gbps on this GPU.

Kipper writes about implementing AES on GPU and

concludes that the algorithm is 14.5 faster than on a classic

processor [4].

 Luken speaks about encrypting with AES and DES using

GPU hardware acceleration [5]. The tests were done on data

volume up to 100 Mb, and the performances were as

following: AES is 3.75 faster on GPU than on CPU.

Manavski tested CUDA compatibility in hardware

acceleration for AES on NVIDIA graphic cards [6]. His best

result was on AES 128, for an 8 MB input file, the

performance being of 8.28 Gbps. The GPU algorithm was 19,

60 times faster than the CPU algorithm.

II. AES ALGORITHM

At the beginning of AES the message (plaintext or cipher

text), being a 128 bit block is segmented in 16 Bytes. The

input block has 16 units, each having 8 bit and can be

represented as InBl=m0,m1,...,m15[11].

Rijndael based his theory on Galois Field, meaning that

certain operations are defined at byte level and bytes represent

elements in a finite field GF(28). As every finite field GF(28)

representation are isomorphic, classic polynomial

representation can be chosen that has a positive impact on

implementation complexity. [11]

AES Algorithm Adapted on GPU Using CUDA

for Small Data and Large Data Volume

Encryption

Tomoiagă Radu Daniel, Stratulat Mircea

G

Issue 2, Volume 5, 2011 71

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

All byte values are represented as eight bit concatenation

in this order {b7,b6,b5,b4,b3,b2,b1,b0}. The polynomial

representation for a byte is :

b7x
7 + b6x

6 +b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x
1 + b0x

0 =

∑
=

7

0i

i

i xb [15]

The internal structure of an input bloc is a 4x4 matrix:





















=

151173

141062

13951

12840

mmmm

mmmm

mmmm

mmmm

InBl [11]

Internaly, AES operations are done on a vector called

State. This is composed of four rows of bytes. The State is

similar to a matrix and every element has two indices:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

Elements from the input block (m0, m1,..., m15) are copied

in the State. Encrypting or decrypting operations are applied

on the State, and in the final step are copied in an exit matrix

[15]:

AES algorithm is based on a number of iterations that

apply transformations, called rounds:

Round (State, RoundKey) [11],

where RoundKey is the round corresponding key, obtained

from the key provided at the beginning of the algorithm.

The State, in the first round, will get the input values from

InBL, and for the final round it will output the message

(encrypted or decrypted) A round (except the final one)

contains four transformations :

Round (State, RoundKey)

{

SubBytes(State)

ShiftRows(State)

MixColumns(State)

AddRoundKey(State, RoundKey)

}[11]

The final Round differs from a normal round through

missing the MixColumns transformation. For decription, the

inverse function is used: Round-1(State, RoundKey).

Internal functions are applied on a finit field. This is done

using modulo f(x) polynomial, where f(x) is an irreducible

polynomial:

f(x)= x8+x4+x3+x+1. [11]

and any modulo f(x) polynomial will be maximum a 8 rank

polynomial and is represented as follows:

b7x
7 + b6x

6 +b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x
1 + b0 [11],

where b7b6b5b4b3b2b1b0 frotm a byte or an integer on 8 bit.

If we have two hex numbers „57” and „83”, then „57” ⊕

„83”= „D4”, in other words 01010111 ⊕ 10000011

=11010100 and in polynomial form (x6+x4+x2+x+1) ⊕ (

x7+x+1)= x7+x6+x4+x2[15]. In this example we have modulo 2

adding (or XOR) where 1 ⊕ 1=0, 1 ⊕ 0=1 and 0 ⊕ 0=0.

When multiplying modulo f(x) for the given example „57”

and „83” we will have „57” • „83”= „C1” because

(x6+x4+x2+x+1) • (x7+x+1)= x13+x11+x9+x8+x7+ x7 + x5

+ x3 + x2 + x + x6 + x4 + x2 +x+ 1 = x13+x11+x9+x8 + x6 + x5 +

x4 + x3 + 1 modulo f(x)= x7 + x6 + 1 [15].

If b(x)a(x) + f(x)c(x)=1 and a(x) • b(x) mod f(x) =1, then

b-1(x)= a(x)mod f(x) and so a(x) • (b(x)+c(x))=a(x)

• b(x)+a(x) • c(x) [15].

 These operations together with byte operations like

xtime() are used internally by AES. As it can be seen these

operations are not complex and computing power consuming,

as the operations used in asymmetric algorithms.

When encrypting, internally transformations as

SubBytes(),ShiftRows(), MixColumns(), and AddRound

Key() are used.

SubBytes() is a substitution that operates on every byte

using a substitution table (S-box). This table (fig. 1) is built

using two transformations:

� b(x)a(x) + f(x)c(x)=1

� bi’= bi ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕

ci where bi and ci is the ith bit from the byte b or

c.

In matrix form it can be written as shown next:

































+



































































=



































0

1

1

0

0

0

1

1

00011111

00111110

01111100

11111000

11110001

11100011

11000111

10001111

7

6

5

4

3

2

1

0

'

7

'

6

'

5

'

4

'

3

'

2

'

1

'

0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

 [15]

Issue 2, Volume 5, 2011 72

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 1 S-BOX Subtitution valus in Hexazecimal [15]

In ShiftRows() a byte is shifted cyclic in the last three

rows of the State (fig 2). The effect is that a byte is moved in

“inferior” positions of the row. The first row is not shifted.

Fig. 2 ShiftRows(). [15]

A Rijandael computational complexity analysis was done

by Fabrizio Graneli and Giulia Boato in [2].

In MixColumns() the State is operated column by

column. Every column is treated as a polynomial with four

elements. This is multiplied modulo x4+1 with a polynomial

a(x), where a(x)= }02{}01{}01{}03{ 23 +++ xxx [15]. In

other words:)()()(' xsxaxs ⊗=

After these operations the four bytes from the column

are replaced by these:

Table 1. AES Computational complexity. Operations[2]

In [2] the authors compare Rijndael, Camelia and Shacal-

2. They conclude that “Rijndael is very good and can be used

as reference for benchmarks”. In table 1 values regarding AES

are presented according to the tests done by the authors.

In AddRoundKey() a new round key is added

(RoundKey) using XOR() as in the Fig. 4.

Fig. 3 MixColumns().[15]

Fig. 4 AddRoundKey().[15]

Issue 2, Volume 5, 2011 73

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

III. G80- ARCHITECTURE AND SPECIFICATIONS

NVIDIA 8800 GT is based on G80 Core, which is the first

65nm NVIDIA Kernel. This contains 754 millions transistors

and 128 processors. 8800 GT operates at 600 MHz, having

512 MB of memory at 900 MHz connected at 256 Bit Bus and

each processor has a frequency of 1,5 GHz.

G80 has 16 Multiprocessors that are contained on a single

chip. Every Multiprocessor contains 8 ALU, which are

controlled by one SIMD(Single Instruction Multiple Data).

The Instruction Unit commands a single Instruction from ALU

at every four clock cycles [1]. This fact offers a 32 SIMD

capacity for every multiprocessor. Every multiprocessor has

32 bit registers, shared memory and constant cache. All other

type of memory is located in global memory [1].

Fig.. 5. NVIDIA 8800 GT. Architecture [16]

Fig. 6. Processing data oriented GPU [14]

IV. CUDA (COMPUTE UNIFIED DEVICE ARCHITECTURE)

CUDA was introduced in 2006 as new parallel computation

architecture with a new set of Instructions and a new

programming parallel model. CUDA offers a software

environment which allows the programmers to use C as a high

level programming language for the GPU. When using CUDA,

the GPU is seen as computational device capable of executing

a high number of threads in parallel. The GPU operates as a

coprocessor for the CPU. If a part of a program that executes

several times independently can be isolated this can be

rewritten to be executed on GPU as more independent threads.

When a kernel is invoked it will run on a grid. The number

of block and threads on a grid can be configured.

Under CUDA, threads can access different memory

locations. Every thread has a private memory. Every Block has

a shared memory which is accessible for every thread within

the block. All threads form all blocks can access the global

memory.

A kernel can be executed by many blocks of threads, so that

the maximum number of threads equals the maximum number

of thread for each block multiplied by the number of blocks.

These blocks are organized in one or two dimensional grids

[14].

All threads within a block will be executed on one

multiprocessor. This allows for threads within a block to share

data using the shared memory. Communications between

blocks is not permitted as there is no synchronization solution

available [1]

Operations

AND OR Shift(bytes)
Adding

32 bit

AES

General
5836 4254 1336 0

Key

expansion
1536 1536 846 144

Encryption 4912 3624 1188 0

Decryption
1489

6

1111

2
3654 0

Operation
Algorithm (key size)

128 192 256

AND 7236 8784 10334

OR 5418 6536 7667

Issue 2, Volume 5, 2011 74

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

 Fig. 7. GPU threads [14]

Fig. 8. Grid with bloks and threads [14]

V. AES IMPLEMENTATION AND RESULTS

When adapting AES on GPU, and more specifically CUDA

we had to rethink the optimization done for the CPU, as it

would not normal work also for GPU. For instance the CPU

optimization would rely on lookup tables which are stored in

memory. Our expectations would be that the global memory

of the GPU is much slower to access than to compute the

values. In tests done in [15] the authors concluded that in the

case of high number operations the GPU operates faster than

in the case when lookup tables are used and memory is

accessed.

The GPU is also designed to run tasks in parallel, so AES

should be adapted to run the most part of the algorithm in

parallel. The only two modes that permit AES to be run in

parallel are ECB and CTR. CBC mode can be parallelized

only for decryption. For the tests done in this paper we chose

CTR.

kiforiNonceKEKi ,...1,),||,(: == and
iii KPC ⊕=: (1)

CTR uses a simple method to generate the keys. It

concatenates a nonce with the current counter value and

encrypts it in a single block. The nonce must be smaller than

the block size, as it must be concatenated with the counter

value. The main advantage of CTR is that it can be used for

parallelizing high speed applications. Another advantage is

that for decryption the same code can be used.

 The key expansion is done on CPU and the encryption is

done on the GPU. The key expansion is done serially and it

will slow the GPU down, so that is why we choose to do it on

the CPU.

To try an optimization we will set all the threads to use the

global memory. In doing this we group all the access to the

memory, all data will coalesce to permit the more rapidly

memory read/writes. [4]. Access to global memory is done in

the initial phase, before processing data. The data is moved in

shared memory where it can be accessed faster. If every thread

loads data in the shared memory form global memory which it

will possibly not use then we need a synchronization step

before the actual load in the shared memory. This

synchronization step is necessary and when writing back in the

global memory [4].

Another optimization in implementing AES in C for CUDA

is in that of using lookup tables, similar to the CPU

optimization. The size of these tables is 16x16 bytes. These

tables, having constant values, can be loaded in the shared

memory of the GPU in order to be accessed by threads faster.

For small sizes it is expected that the CPU will encrypt faster

than the GPU [4]. Although in the tests done in [15] the

authors proved that for large data better performances are

obtained if the values are calculated instead of looking them

up in tables stored in memory.

An alternative would be the use of constant memory for

storing the SBOX and the round keys. The advantage in this

solution is that the values can be appended from the design

phase and can be accessed even by the CPU [5].

In [4] authors designed a parallel implementation of AES on

the CPU, but we must mention that a CPU has not the

possibility of running a high number of threads as a GPU does.

This is why a parallel CPU implementation will not have the

same result as GPU.

 In developing AES in C for CUDA we follow two

Issue 2, Volume 5, 2011 75

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

directions: in the first we will try to use the GPUs computing

power for calculating all AES operations and the second one

we use lookup tables instead of calculating the values. Because

we use CUDA we could easy chose to implement AES with

lookup tables as GeForce 8800 GT/G80, is a scalar processor

and it is not necessary cu combine instructions in vector

operations to obtain maximum computing power. In the same

time G80s ability to execute 32 bit XOR operations offers a

performance boost to this solution.

When writing the application we were designing it similar to

the ones in [9] an [10].

In the beginning we generate a random value that will be

used for encrypting.

 Input sizes are the same to the ones used in [9] an [10].

First the random value is generated that will be used in the

encryption. This value has the size of 128 bit, the exact AES

block size.

In this paper we test AES algorithm that encrypts data

stored in the GPU memory and by doing this we simulate „on

the fly” data encryption. The algorithms are run repeatedly

recursively: buffer = algoritm_encrypt(buffer+random value).

The chosen iterations number is 1.000.000 like the tests we did

in [9] an [10].

The runtime is measured and divided by the iteration

number, obtaining the average algorithm runtime for one

step(iteration).

The obtained results were compared with the results that we

obtained using the algorithm developed by [13]. In table 1 are

three values presented. The first represents the AES algorithm

implementation done in [13], the second one represents the

time used by the GPU to encrypt data using AES on GPU

based on SBOX and lookup tables and in the third column is

the value that we obtained by running AES on GPU that

calculates all values necessary without the use of SBOX and

lookup tables.

The algorithm that uses SBOX tables got the result

0,00116233 ms. This value does not contain the time

necessary to obtain the random value. It contains only the data

stored in the shared memory that are read/ written encrypted

and re encrypted for 1.000.000 times. The time obtained is not

affected by the time necessary to bring data form the CPU

because data is stored and read directly from the GPU

memory. Taking in consideration that all threads need to

access the lookup tables, these were stored in the shared

memory so that they would be accessible for every thread

In the case of the algorithm that does not use lookup tables

the time we obtained was 0,00121234 ms and is greater than

the one obtained using lookup tables. As in the case of the

previous algorithm, data was stored form the shared memory

of the GPU and was read/ written in the same memory to be

accessible for the next iteration.

Comparing the two results obtained for the data stored in

memory we can conclude that, as in the case of AES

optimization for the CPU, the fastest AES is the one that is

using lookup tables, tables that are stored in the GPU memory.

Comparing the best time we obtained on the CPU using the

test done in [9] an [10] that were run on the same platform as

the GPU tests we can say that the time obtained by the GPU is

better than the one obtained by the CPU. On the CPU the best

time was obtained by running AES on Java and had the

following value 0,156324 ms. The performance ratio in this

case was aprox. 134. In the case of AES without lookup tables

the performance ratio was aprox. 128.

Analyzing the three results we obtained in the tests done in

this paper we can say that one of our implementation is faster

than the one described in [13] and the other one is slower.

Results are not so different and performance ratio between

these algorithms can be observed in Fig. 5.

Using the results obtained for this platform in [9] an [10]

and analyzing Fig. 6 we can conclude that AES

implementation using CTR in order to benefit of

parallelization is much more faster than the standard one that

uses standard libraries that are offered by the programming

language (VB,C# and Java) when implementing AES for

CPU. Values presented in Fig. 6 are obtained taken from [10].

Based on our results we concluded that CUDA AES is up to

134 times faster than AES CPU(JAVA). Of course, Java

having the best time in the CPU tests, it is easy to understand

that algorithms designed in VB and C# are slower than Java

and AES CUDA is much faster than 134 times.
Table 2. GPU Comparison

GPU NVIDIA 8800

[13]
AES with

SBOX

AES

without

SBOX

0,00118259 0,00116233 0,00121234

0,00113

0,00114

0,00115

0,00116

0,00117

0,00118

0,00119

0,0012

0,00121

0,00122

T
im
e

[13] AES with SBOX AES

withoutSBOXAES GPU

Fig. 9. Encrypting memory data.

Issue 2, Volume 5, 2011 76

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

0,001

0,01

0,1

1

A
E
S
 w
it
h

S
B
O
X
(G
P
U
)

A
E
S
 w
it
h
o
u
t

S
B
O
X
(G
P
U
)

V
B
(C
P
U
)

C
#
(C
P
U
)

J
A
V
A
(C
P
U
)

T
im
e
(m
s
)

AES GPU vs CPU

Fig. 10. GPU-CPU Comparison

Table 3. CPU results obtained in [10]

PC1

VB C# Java

0,1653
4

0,1568
1

0,1563
2

PC2

VB C# Java

0,2118 0,2118

0,4054

4

PC3

VB C# Java

0,0326
6

0,0318
6

0,2037
4

Table 4. Test platform description

Test Platform Descryption

Procesor

Intel (R) Core(TM)2 Duo CPU

E6750 @ 2.66GHz ,

Code Name Conroe

LGA775,

L1 I-Cache32 KB L1 D-Cache32 KB

L2 Cache4096 KB, L2 Cache

Speed2666.69 MHz

Memory

(4GB)

Slot 1

Manufacturer Kingston

Capacity 2048 MBytes

DDR2 SDRAM SpeedDDR2-666

(333 MHz) Data Width64 bits

Slot 3

Manufacturer Kingston

Capacity 2048 MBytes

DDR2 SDRAM SpeedDDR2-666

(333 MHz) Data Width64 bits

Hard disk

Vendor Seagate

Model ST3500320AS

SATA Size500 GBytes

Current UDMA mode 5 (ATA-100)

Rotational Speed 7200 RPM

(Nominal)

Video

Adapter

NVIDIA GeForce 8800 GT

512 Mbytes

The results we obtained in this phase concluded that AES

with SBOX has a performance of 13.12 Mbps and AES

without SBOX has a performance of 12.59 Mbps. These

performances compared to [8] are mediocre. In [8] the author

obtains cca. 10-20 Mbps for 4 KB input and 20-35 Mbps for

16 KB input. The reason for these results is that the input has

the size of 16 KB, the same size as AES block(128 bit) and the

number of encrypted blocks is 1, so, in this case the

performance is affected by the overhead necessary starting

the kernel. Obtaining these results we concluded that there is

desired to pick an input that has a larger size. We chose an

input value size of 10 MB. For this test the results are

presented in the table 5.

Table 5. GPU results obtained for 10 MB stored in memory

AES with SBOX AES without SBOX

914,2342 817,20711

 Analyzing table 5 there can be seen that the results

present a big performance jump if they are compared to the

results obtained for 16KB input. The results obtained in this

phase lead to the conclusion that AES with SBOX obtains a

performance of 10,68 Gbps and AES without S-BOX is much

faster obtaining a performance of 11,95 Gbps. [13] obtained

1832,34 ms meaning a performance of 5,3 Gbps. Comparing

our results with the one obtained by the algorithm

implemented in [13] we can say that the speedup of our

algorithms is notable. These results couldn’t be compared to

the results obtained by the CPU as in the tests done in [9] and

[10] the input of 10 MB was not used. The comparison

between GPU and CPU can be only done for the 16KB size.

0

500

1000

1500

2000

T
im
e
(m
s
)

RAM ENCRYPTION FOR 10 MB

[13] AES with S-BOX AES withoutS-BOX

Fig. 11. GPU results obtained for 10 MB stored in memory

In the second phase the same tests were run for large data

stored on the hard disk. In this phase files of 1GB, 2 GB..10

GB were encrypted. In the first step only three files with the

size of 100 MB, 1 GB and 10 GB were tested. To these three

files we added the 5 GB file and observed that the results

obtained were in contradiction with the ones obtained for the

100 MB, 1 GB and 10 GB files. Because of this, the decision

was taken of running the tests on all 10 files with the sizes of

1GB, 2 GB..10 GB.

The results of the tests are presented in table 5 and are

represented in seconds. A comparison between CPU and GPU

was done also for this phase. The values for the CPU were

obtained from the tests done in [9] and [10].

Regarding the values acquired after running both

implementations (with SBOX and without SBOX), it can be

said that the trend is not and uniform ascending one. For files

smaller than 3 GB AES with SBOX has better results, but

starting from 4 GB to 8 GB AES without SBOX is the one that

Issue 2, Volume 5, 2011 77

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

obtains better results. For the 9GB and 10GB files, AES with

SBOX has, again, better results than AES without SBOX.

Taking in consideration also the results from the tests in the

first phase we could assert that AES with SBOX is faster for

smaller values then 3 GB, and for values over 3 GB the better

one is AES without SBOX. In contradiction with this

statement come the last two results obtained for the files with 9

GB and 10 GB size where the situation was turned upside-

down. As factors that could intervene in this situation, we

could say that UNIX operating system may have problems in

manipulating very large files stored on NTFS partition. The

same behavior was seen in [9] and [10] were the trend was

turned upside-down for the algorithms tested in

UNIX/OpenSSL that ware 9 GB and 10 GB.

Analyzing the results from the two tables, 5 and 6, we can

try to evaluate the performance difference in performance

between CPU and GPU. For the tests done on CPU there are a

lot of results on different development platforms, and none of

the platforms having an ideal/linear behavior, we chose to

calculate the speedup in two steps. We chose the best

performance obtained form the GPU and compared it to the

best result obtained by the CPU for the same file size. This

comparison is found in table 7. In table 7 we also present the

best time for GPU compared with the worst time on CPU. The

best time on GPU has a maximum speedup of 17 compared to

the best time obtained on the CPU for large data. This ratio is

characteristic for a 100MB file, where the GPU is 17 faster

than the CPU. If we compare the worst performance obtained

on the CPU with the best result obtained on the GPU we can

say that the GPU is aprox. 40 times faster than the CPU. Both

these speed ups are characteristic for 100 MB file. For the

other files the ratio is generally smaller than 10. For 1 GB file

size the ratio between best time obtained on GPU and best

time obtained on CPU is 5.5. If we compare best time

obtained on GPU and worst time obtained in CPU for 1 GB

file size the ratio is 10.6.

From the values presented in table 9 we can conclude that

AES with S-BOX has the best performance for 1 GB file size.

The performance in this case is 122 Mbps. In case of AES

without S-BOX the best performance is obtained for the same

1GB file size, but is slower than AES with S-BOX. This is 99

Mbps. Starting from the 2 GB file size the performances of the

two algorithms drop and than for the next files they are having

an ascending trend. In table 9 CPU performances from [9] and

[10] are presented for all the programming languages used for

the entire pool of tests and for all files used in the test pool

stored on the hard drive. It can be seen that if compared to the

same tests done on GPU the CPU is much slower.
Table 6. GPU results for large file sizes

 [13]
AES with

SBOX

AES without

SBOX

100 MB 0,517 0,1435 0,835

1 GB 6,015 8,3556 10,344

2 GB 45,514 35,436 40,653

3 GB 72,048 50,660 51,588

4 GB 80,0260 59,3220 55,1460

5GB 85,5820 75,8590 70,5650

6 GB 92,7550 88,7670 81,6450

7 GB 102,3660 93,6430 89,8940

8 GB 110,725 102,276 101,863

9 GB 119,056 109,236 112,034

10 GB 125,646 120,434 121,470

Table 7. CPU results for large file sizes

 VB C# OpenSSL

100 MB 4,867000 2,437500 5,835000

1 GB 50,148000 23,734375 64,344000

2 GB 69,854000 72,687500 128,653000

3 GB 217,92150 155,421875 194,588000

4 GB 263,92150 196,703125 265,146000

5GB 312,00000 255,609375 326,565000

6 GB 474,26400 679,140625 408,645000

7 GB 435,60900 732,487500 507,894000

8 GB 578,79650 589,921875 529,863000

9 GB 606,43900 789,625000 602,034000

10 GB 615,75000 812,812500 656,470000
Table 8. GPU/CPU ratio

GPU best vs.

CPU worst

GPU best vs

CPU Best

100 MB 40,662021 16,986063

1 GB 10,697257 3,945865

2 GB 3,630573 1,971272

3 GB 4,301648 3,067941

4 GB 4,808073 3,566952

5GB 4,627861 3,622325

6 GB 8,318215 5,005144

7 GB 8,148347 4,845807

8 GB 5,791326 5,201722

9 GB 7,228615 5,511315

10 GB 6,749029 5,112759
Table 9. GPU performance Mbps

AES with

SBOX

AES without

SBOX

100 MB 69,68641 11,97605

1 GB 122,5525 98,99459

2 GB 57,79433 50,37759

3 GB 60,63956 59,54873

4 GB 69,0469 74,27556

5GB 67,49364 72,55722

6 GB 69,21491 75,25262

7 GB 76,54603 79,73836

8 GB 80,09699 80,42174

9 GB 84,36779 82,26074

10 GB 85,02582 84,30065
Table 10. CPU performance Mbps

 VB C# OpenSSL

100 MB 2,054654 4,102564 1,713796

1 GB 20,41956 43,14417 15,91446

2 GB 29,31829 28,17541 15,91879

Issue 2, Volume 5, 2011 78

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

3 GB 14,09682 19,76556 15,7872

4 GB 15,51977 20,82326 15,44809

5GB 16,41026 20,03056 15,67835

6 GB 12,95481 9,046727 15,03505

7 GB 16,45512 9,785833 14,11318

8 GB 14,15351 13,88658 15,4606

9 GB 15,19691 11,67136 15,30811

10 GB 16,63013 12,59823 15,59858

0

20

40

60

80

100

120

140

[10] AES withSBOX AES withouSBOX

100 MB 1 GB 2 GB 3 GB 4 GB 5GB 6 GB

7 GB 8 GB 9 GB 10 GB

Fig. 12. Large file encryption

0

20

40

60

80

100

120

140

100 MB 1 GB 2 GB 3 GB 4 GB 5 GB 6 GB 7 GB 8 GB 9 GB 10 GB

[13] AES withSBOX AES without SBOX

Fig. 13. GPU comparison

VI. MATHEMATICAL COMPLEXITY OF AES

AES algorithm handles al bytes as Finite Field Elements.

Finite Field Elements can be added and multiplied, but these

operations differ from the ones used on numbers [15].

Adding of two finite field elements is done by modulo 2

adding (XOR operation) coefficients of the polynomials of the

corresponding powers. Adding can be considered and addition

of every bits in those bytes. Finite field elements adding is

represented by: ⊕ .

Multiplication in finite field is represented by • , and in

polynomial representation it corresponds with the

multiplication of polynomials modulo irreducible polynomial

of 8 degree. In case of AES this polynomial is f(x)= x8+x4 +x3

+x+1 [15].

If we use two numbers in hexadecimal notation „57” and

„83”, then „57” ⊕ „83”= „D4”, meaning 01010111

⊕ 10000011 =11010100 and in polynomial form it can be

written as follows (x6+x4+x2+x+1) ⊕ (x7+x+1)=

x7+x6+x4+x2[15]. Using this example modulo 2 addition is

described where 1 ⊕ 1=0, 1 ⊕ 0=1 and 0 ⊕ 0=0.

In case of modulo f(x) multiplication, if we use the same

values as in the previous example „57” and „83”, we can write

„57” • „83”= „C1” because

(x6+x4+x2+x+1) • (x7+x+1)= x13+x11+x9+x8+x7+ x7 + x5 +

x3 + x2 + x + x6 + x4 + x2 +x+ 1 = x13+x11+x9+x8 + x6 + x5 + x4

+ x3 + 1 modulo f(x)= x7 + x6 + 1 [15].

Multiplication, opposed to addition, has no longer simple

byte level operations. Multiplication, as defined before, is

associative, and, if another polynomial is used, b(x) with a

degree less than 8 then b-1(x) is its inverse. If b(x)a(x) +

f(x)c(x)=1 and a(x) • b(x) mod f(x) =1, then the following

can be concluded b-1(x)= a(x)mod f(x) and a(x)

• (b(x)+c(x))=a(x) • b(x)+a(x) • c(x) [15].

Multiplying by x is obtained reducing the result modulo x8+

x4 +x3 + x + 1. If the polynomial has the maximum 7 degree

than the result of the multiplication is already in reduced form.

Four term polynomials that have coefficients in GF(28) are

different from the one already presented meaning that these

polynomials have as coefficients bytes instead of bits.

In this case we can presume that we have two polynomials

a(x)= a3x
3 + a2x

2 + a1x
 + a0 and b(x)= b3x

3 + b2x
2 + b1x

 + b0.

Multiplication is done in two steps. In the first step c(x)

polynomial is obtained this way: c(x)= c6x
6 + c5x

5 + c4x
4 + c3x

3

+ c2x
2 + c1x

 + c0 , where[15]:

c0=a0 • b0

c1=a1 • b0 ⊕ a0 • b1

c2=a2 • b0 ⊕ a1 • b1 ⊕ a0 • b2

c3=a3 • b0 ⊕ a2 • b1 ⊕ a1 • b2 ⊕ a0 • b3

c4=a3 • b1 ⊕ a2 • b2 ⊕ a1 • b1

c5=a3 • b2 ⊕ a2 • b3

c6=a3 • b3

In the second step , the result, c(x) is reduced modulo

polynomial of degree 4. For AES AES this polynomial is x4+1.

a(x) multiplied by b(x) is d(x) and tha corresponding notation

is d(x)=a(x) ⊗ b(x). d(x)= d3x
3 + d2x

2 + d1x
 + d0 , where[15]:

d0=(a0 • b0) ⊕ (a3 • b1) ⊕ (a2 • b2) ⊕ (a1 • b3)

d1=(a1 • b0) ⊕ (a0 • b1) ⊕ (a3 • b2) ⊕ (a2 • b3)

d2=(a2 • b0) ⊕ (a1 • b1) ⊕ (a0 • b2) ⊕ (a3 • b3)

d3=(a3 • b0) ⊕ (a2 • b1) ⊕ (a1 • b2) ⊕ (a0 • b3)

These operations together with byte operations like xtime()

are used as internal operations in case of AES. As it can be

seen, these are not complex operations and are not consuming

a lot of computing power as asymmetric algorithms do.

VII. CONCLUSION AND FUTURE WORK

The goal of this paper is to study the possibility of using an

Issue 2, Volume 5, 2011 79

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

alternative solution in cryptography. The alternative we

studied is the use of GPU in non graphic operations. As we

concluded in this paper and in [9] and [10], results obtained

after running the tests processors offer results that varies

according to the file size, algorithm tested, memory capacity,

programming language or operating system.

The results obtained have proven that implementing a

cryptographic algorithm on a video processor brings a

significant performance speedup compared to legacy processor

performances obtained on test platforms. The performance

gain was 134 faster than the processor, when data is stored in

RAM, and up to 17 times faster then the processor when large

data, stored on hard drive are used. When testing large file

encryption a element that affected the performance was the

time necessary to bring the data form the hard disk, these data

being large volume data. AES performance on CUDA was

between 12 Mbps and 11,95 Gbps

The tests in this paper were done in three phases. All of

them were using data stored in the GPU memory. One of them

was the implementation done by another researcher [13]. The

other two were implementations that we designed. One was

using AES with lookup tables and the other implementation

uses the GPU computational power to calculate each operation

instead of using lookup tables.

AES implementations in this paper were done using

parallelization. Parallelization that GPU offers is a greater that

CPU can offer. This fact alone is enough reason in doing these

tests. The values we obtained proved that GPU high

computing power, GPU memory bandwidth are advantages in

choosing this processor as a cryptographic coprocessor. The

big difference in performance was obtained due to the fact that

classic processors are optimized for serial processes, use of big

cache sizes and complex instruction sets. In order to obtain a

better performance than the CPU we had to ensure the use of

all GPU kernels

In this paper we did the followings:

In doing the tests in [9] an [10] we realized that it is

necessary to implement cryptographic primitives on a different

platform. AES algorithm was chosen and the platform on

which the tests had to be done was a video processor (GPU).

As a special feature the chosen GPU had to offer is that it is

capable to run CUDA code, the programming environment

that is NVIDIA proprietary.

In the first phase we tested the algorithm implemented in

[13] and the results were compared with the ones obtained in

[9] an [10].

In the next phase we implemented our own AES on GPU

using CUDA using the video graphic card as a cryptographic

coprocessor to help the CPU. In this step we analyzed the

existing work done by other researchers and after doing this

we proposed our own implementation of AES on

GPU(CUDA).

We propose, implemented and tested two solutions: in one

we used SBOX lookup table for the SubBytes() transformation

and in the second one we used the GPU computing power to

calculate the operations necessary in SubBytes() without the

use of lookup tables. In doing so we tested and compared how

fast data is accessed from memory and how fast the operations

are done by the GPU.

In this paper we have not done the followings:

In the research we did we have not done the decryption part

of the AES algorithm. The decryption process is identical with

the encryption process, because the code is the same. The

counter value is concatenated with the nounce and encrypted.

The value is XORed with the data block.

The AES algorithm we chose to implement is AES 128

(block size 128 bit, key size 128 bit , 10 rounds),but we didn’t

implemented AES 192 and AES 256.

We have not done a security analysis and possible attacks,

after implementing the algorithm on the GPU in C for CUDA.

The test were done without stopping the X server(Kubuntu

9.04).

Implemented AES algorithms that are adapted for CUDA

were not tested on other operating systems (Windows etc), but

only in Kubuntu.

AES parallelization implemented for CUDA and GPU was

not done also for CPU with more cores.

In a second stage, we will try to integrate the algorithm from

the previous step in a software application like OpenSSL, so

that this can use the algorithm and benefit from the graphic

processor acceleration. Also this OpenSSL implementation

will benefit also from the decryption phase.

We will also try to implement and test AES 192 and AES

256 on GPU, encryption and decryption and OpenSSL

adaptation to use these algorithms.

ACKNOWLEDGMENT

I offer my regards to all of those who supported me in any

respect during the completion of this project.

REFERENCES

[1] O.W. Harrison, „Practical Symmetric Key Cryptography on Modern
Graphics Hardware”, 17th USENIX Security '08 Symposium, San Jose USA,
2008

[2] F. Granelli , A novel methofology for analysis of the computational
complexity of block ciphers, University of Trento, 2004

[3] J.L. Gustafson, HINT: A new way to measure computer performance.
Hawaii International Conference on System Sciences, 1995, pp I:392-401.

[4] M. Kipper, J. Slavkin, and D. Denisenko, ”Implementing AES on GPU”,
University of Toronto, http://www.eecg.toronto.edu/ ~moshovos/
CUDA08/arx/AES_ON_GPU_report.pdf, 2009

[5] B. Luken and M. Ouyang “AES and DES Encryption with GPU”,
Proceedings of the ISCA 22nd International Conference on Parallel and
Distributed Computing and Communication Systems, pp 67-70, 2009

[6] S. Manavski, ”CUDA Compatible GPU as an efficient Hardware
Accelerator for AES Cryptorgraphy” , IEEE International Conference on
Signal Processing and Communication, ICSPC 2007, pp. 65–68, Nov. 2007

[7] M.Solga, B.Groza, “Evaluarea performanŃelor computaŃionale pentru
funcŃii criptografice simetrice şi asimetrice, pe platformele Windows şi
Unix,” unpublished 2008.

[8] Takeshi Y., „AES Encryption and Decryption on the GPU”, GPU Gems 3,
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch36.html, 2007

[9] R. Tomoiaga and M. Stratulat, “Evaluation of DES, 3 DES and AES on
WINDOWS and UNIX platforms”, ICCC-CONTI 2010 IEEE International

Issue 2, Volume 5, 2011 80

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Joint Conferences on Computational Cybernetics and Tehnical Informatics,
Timişoara 27-29 may 2010

[10] R. Tomoiaga and M. Stratulat, “AES Performance Analysis on Several
Programming Environments, Operating Systems or Computational
Platforms”, The Fifth International Conference on Systems and Networks
Communications ICSNC 2010, 22-27 August 2010

[11] M. Wenbo, Modern Cryprography : Theory an Practice (Hewlett-
Packard Profesional Books),Ed. Prentice Hall

[12] Y. Yeom, Y. Cho, and M. Yung “High-Speed Implementations of
Block Cipher ARIA Using Graphics Processing Units,” in Proceedings of the
2008 International Conference on Multimedia and Ubiquitous Engineering
(April 24 - 26, 2008). MUE. IEEE Computer Society, Washington, DC, 271-
275. 2008.

[13] http://math.ut.ee/~uraes/openssl-gpu/ 17.05.2010

[14] Nvidia CUDA Programming Guide, 2009 , NVIDIA

[15] Federal Information Processing Standards Publication 197, 26.11.2001,
Advanced Encryption Standard(AES)

[16] http://www.hardwareheaven.com/reviews/8800GTs/whatis.php

[17] HINT, 2006, www.sc1.ameslab.gov/sc1/HINT-HINT.html.

Issue 2, Volume 5, 2011 81

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

