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Abstract—Nowadays, in automobile industry are found many 

working situations, in which the use of an articulated arm that 

supports the activities developed by operators is inevitable; out side 

the assembly line of a car, activities such as searching for parts 

needed to produce a vehicle, handling the cars tires, among others, 

are performed manually in many different companies. In this work is  

exposed the design of a robot that helps the operator to develop those 

activities, which is determined by a mechanical arm, made up by four 

(4) segments and four (4) joints, located on a mobile platform with 

two (2) wheels, each controlled by an independent engine. Through 

this work is intended to cover mathematics and physics present in the 

above mentioned device, taking advantage of the computational 

power symbolic of the software MAPLE. Although this development 

is focused on the automotive sector, applications of this kind of 

device in other fields of industry are innumerable.  

 

Keywords—Arm, Automobile, Denavit, Electromechanical, 

Euler, Hartenberg, Langrange. 

I. INTRODUCTION 

HIS paper is focused on describing and analyzing the 

mechanical arm movements using the MAPLE ® software.  

The topic is directly studied using two physical mathematical 

models, which describe some physical situations, principally 

appreciated using animations and graphics. The objective of 

the fist part of the paper is to analyze the parameters needed to 

comprehend how a mechanical arm can develop its 

movements, considering a specific action. In this part we 

implemented direct kinematics theory bases on the Denavit-

Hartenberg method in order to obtain a global coordinated 

system, to define the position of a mechanical arm; similarly, 

we use the Euler-Lagrange equations in order to analyze its 

angular displacements, angular velocities, angular 

accelerations and torque forces according to a specific 

movement. 

The second part proposes connecting the arm to a motor 

platform in charge of moving the arm through a flat surface, 

the platform is made up of a chassis, a support geometry and 

two (2) wheels, each of  which is controlled by an independent 

engine; this part of the paper focuses in the parametric control 

of all the system “arm+platform”,  through a particular 

trajectory, by means of  applying particular voltages to each 

engine of the platform, that allow the wheels of the system to 

 
 

 

spin in a particular way according to the intended movement. 

We can identify the reason of this investigation as the 

purpose to analyze the kinematic and dynamic qualities in a 

locomotive system, defined by the actions of a mechanical arm 

and a mobile platform that favors the displacement of the arm. 

The article´s dynamic is to show an example of how to 

physically connect two systems that may have some kind of 

relation, and establish a general proposal of a physical 

mathematical support that might be used in the generation of 

ideas and concepts focused towards these particular types of 

applications. 

There are quite a lot of previous works focused on studying 

kinematics of mechanical arms and displacement robots by 

using computer algebra techniques (polynomial system 

solving, Groebner basis [1], [2], etc), but this paper tries to 

contribute to the study of mobile structures in general, based 

on the use of the configuration (physics and math libraries) and 

computer power of the MAPLE ® software, which along with 

the association of different physical and mathematical models 

allow to generate and use graphics, animations and specialized 

symbolic relations, that reverberates in a better appreciation 

and understanding of these kinds of devices. 

II. PROBLEM FORMULATION 

2.1 Arm analysis 

For this subsystem we analyze the kinematic and dynamic 

qualities that define a mechanical arm and its movements. In 

this part the document was configured in three stages: the first 

one determines the context of the mechanical arm, its formal 

characteristics, its movements and restrictions; the second 

stage determines the matrix form of the Denavit-Hartenberg 

method, to create a generic coordinate system for all points in 

the arm depicted [3], also by using this method, an arm 

movements animation by defining the change in the joints is 

presented. Finally, in the last stage is analyzed the behavior of 

the system in fall (with an anchor point on a frame) by using 

the Euler-Lagrange equations [4], to determine the angular 

positions, angular velocities, angular accelerations and 

generated torques at each joint; lastly, detailed results, 

procedures and conclusions are presented. 
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2.2. Platform analysis 

For this subsystem we developed a kinematic and dynamic 

model, involving the concepts of the subsystem’s total energy 

and the Lagrange equation, in order to define the subsystem’s 

movement and certain electrical and mechanical variables 

typical to the specific configuration of this platform; then, in 

the last stage we proceeded to analyze the behavior of the two 

(2) subsystems under determined initial conditions. Also, 

detailed results, procedures and conclusions were presented.  

2.3. Mechanical arm 

Our mechanical arm was defined with 4 links and 4 joints; 

this system is depicted in Figure 1. 

 
Figure 1. Schematic configuration of the analyzed mechanical 

arm. 

The joint and link numbering go from 0 to 3, being the point 

of the angle θ0, the anchor point to the mobile platform. Figure 

2 presents the variables configuration in the arm structure. 

 

 
Figure 2. Analyzed variables of the arm structure. 

θ i : is the link orientation, defined as the angle between  X i-1  

and  X i ,  measured counter clock-wise,   starting at Z i-1 . 

α i : is the torsion in each link defined as the angle between  Z 

i-1  and  Z i measured counter clock-wise, starting at
 
X i  .     

d i : is the dephase between two serial links, this distance is 

measured from X i-1   to X i , .through  Z i-1 .
 

a i : is the link length, measured between the joint axis from i 

to i-1, through X i . 

 

Additionally for this analysis, the following restrictions 

were established: 

 

1) Axis X i is perpendicular to axis Z i-1. 

2) Axis X i intersects axis Z i-1. 

2.4. Mobile platform 

The following configuration is used for the mobile platform; 

the components of this subsystem were divided into three (3) 

parts, as seen on Figure 3. 

 

 
(a)                                          (b) 

 

Figure 3. 

(a) Shematic view of the platform. 

(b) Analyzed mobile platform definition. 

 

From the previous figure, the support geometry is a critical 

factor to define the system’s general stability (arm-platform); 

this parameter becomes a crucial element when it’s time to 

define the device’s gravity center (which must be conveniently 

close to the floor), however, for practical effects this parameter 

will not be considered, since it depends on geometry a lot, and 

on the chosen components in the device’s set up. It’s important 

to considerate that the mobile platform’s application is for flat 

surfaces. 

III. PROBLEM SOLUTION 

The first problem posed is the kinematic and dynamic 

analysis of an arm when is controlled to be moved in a specific 

way, later when it is released from an initial configuration, and 

then allowed to oscillate as a complicated 4-part pendulum. 

This is useful to explain the behavior of articulated structures 

under imposed restrictions and arbitrary conditions, all of them 

present in typical industry situations. 

For the second analysis a physical mathematical model 

development was set out, focused towards the definition of a 

trajectory for the mobile platform along with the mechanical 

arm; implementing particular voltages applied to the 

platform’s subsystem, under initial determined conditions. 

3.1  Arm´s first action 

We use the Direct Denavit-Hartenberg Method [5] to setting 

up a coordinate system associated with all model links, the 

first step was pose transformation matrices associated with the 

parameters "a, d, α, θ" depicted above, which describe the arm 

configuration.      
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Then, the matrices were multiplied in the presented order to 

obtain the transformation matrix of local coordinates, which 

involves all the required parameters for the arm movement. 

 

        (5) 

 

The parameters implicated in the equation 5 were replaced 

by the followings data set, which represent the configuration of 

each segment, in this case four (4) links. 

 

θ0=πt  ,d0=0, a0=5, α0=0                       (6) 

θ1=(π/3)+t  ,d1=0, a1=5, α1=0                 (7)                                                             

θ2 =t , d2=0, 2i=5, α2=(π/4)+t                  (8)                                                          

θ3= (π/8)
*
t , d3=0, a3=5, α3 =(7π) /10            (9)                                                

 

We obtained as result, four (4) transformation matrixes 

(Matrix {transf 0}, Matrix {transf 1}, Matrix {transf 2}, and 

Matrix {transf 3}). Now, equation 10 allows to describing a 

link in terms of the coordinate system of the previous link. 

 

(i-1)Ri=Ai.ri                                                  (10) 

 

Where:  

 r i : is the position vector of a point corresponding to the link 

i, voiced as: 
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Ai : is the transformation matrix of the final coordinate 

transformation corresponding to each link. 

 

(i - 1) Ri  : is the transformation vector in local coordinates.  

 

Now, on the basis of this concept, a coordinate 

transformation equation was proposed to transform the 

coordinates of each segment (local coordinates) to a common 

set of coordinates (global coordinates), the equation obtained 

is: 

Ri=T i . ri                                    (12) 

r i :position vector.   

Ri :is analogous to  (i - 1) Ri . 

Ti: is the selective multiplication of transformation matrices to 

create a global matrix.  

 

Ti =Matrix {transf 0}. Matrix {transf 1}. 

Matrix {transf 2}. Matrix {transf 3}                (13) 

 

These matrixes are then multiplied according to each link 

position as:  

Segment 0=Matrix {transf 0}                         (14)   

                                                    

Segment 1=Matrix {transf 0}.Matrix {transf 1}            (15)  

                                                  

Segment 2=Matrix{transf 0}.Matrix{transf 1}.Matrix {transf 2} (16) 

 
Segment 3=Matrix {transf 0}.Matrix {transf 1}. 

Matrix {transf 2}. Matrix {transf 3}                   (17) 

 

Based on the above equations and defined a length for each 

link, we used the equation 12 to transform the vertices’ 

positions of the four segments in the arm with respect to a 

specific origin, in this case (according to the equations 

14,15,16 and 17 ) the arm`s origin would be referenced with 

the first link. 

Then, we proceeded to determine the points and the 

geometry that each arm segment would have, for ease and 

accuracy in the arm representation, the geometry chosen was 

the cube, which was modeled using the MAPLE ® software, 

planting a matrix treatment to generate point clouds, like you 

see in the Figure 4. 

 

 
 

Figure 4. Arm model (4 segments - 4 articulations) using 

MAPLE. 

 

This first analysis of the arm illustrates the above theory 

applied to a specific action, which is explained graphically 

(taking advantage of the qualities in computer graphics 

available in the MAPLE ® software) using an animation [3], 

showing the result of varying the arm articulations by 

introducing the parameter "t" in equations 6, 7, 8 and 9; the 

animation is depicted here below in the Figure 5. 

 

After establishing the arm movement, we determined the 

speed in each segment, this was done using two types of 

analysis; the first one was obtained from the following 

equations: 

                                     (18)                                                                                    

Implying: 

                                                   (19) 
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                                        Figure 5. Animate arm representation. 

 
Then, the velocity  

 .                                          (20) 

That in general terms it can be voiced as 

 

.                                       (21) 

Where:  

i : represents the arm segment. 

j: represents the articulation. 

qj: represents the angle variation of two arm segments, 

analogous to the angle variation in the joint. 

 

With equation 22 constrain: 

 

                                              (22) 

Considering: 

                                         i<j                                  (23) 

 

We could then choose the end points between the segments 

that best represent union between the links, and obtain the 

velocity values of the structure. 

3.2.  Arm´s second action 

In the second part of this analysis we suggested the use of 

Euler-Lagrange equations [6], [7] to determine the angular 

position, angular velocity, angular acceleration and torques 

involved, when the arm is released at a given position, this 

would be a situation in which the arm finish an operation or 

action and is simply dropped (in this case the arm is fixed to a 

stationary structure in the origin of the plane (x,y) described in 

Figure 6 (a), which is used to detail the arm in Figures 6 (b) 

and 6 (c)). 

 

 
(a)                               (b)                             (c) 

 

Figure 6. 

(a) Arm orientation plane. 

(b) Arm position. 

(c) Arm angles and lengths. 

 

Now, in the second analysis of the arm, the first thing we 

did was define the height of each segment in relation to a 

reference, which in this case is the origin of the first segment. 

 

x0(t)=a0.sin (β0(t))                             (24) 

 

y0(t)=a0.cos (β0(t))                             (25) 

 

x1(t)=a0.sin (β0(t)) +a1.sin (β1(t))                (26) 

 

y1(t)=a0 .cos (β0(t)) + a1.cos (β1(t))              (27) 

 

x2(t)= a0 .sin (β0(t)) + a1.sin (β1(t)) - a2.sin (β2(t))     (28) 

 

y2(t)= a0.cos (β0( t)) + a1.cos (β1(t)) – a2.cos (β2(t))    (29) 

 

x3(t)= a0 .sin (β0(t)) + a1.sin (β1(t)) –  

a2.sin (β2(t)) –a3.sin (β3(t))                  (30) 

 

y3(t)= a0 .cos (β0(t)) + a1.cos (β1(t)) + 

 a2.cos (β2(t)) + a3.cos (β3(t))               (31) 

 

In this case the potential energy will be: 

 

V=m0 g0 x0(t)+ m1 g1 x1(t)+ m2 g2 x2(t)+ m3 g3 x3(t)       (32) 

 

And the kinetic energy: 

 

(33) 

 

The Lagrangian is defined as the difference between kinetic 

energy and potential energy. 

 

L=T-V                                    (34) 
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Defining the action of the structure as the integration in time 

of the Lagrangian,  replacing "t" for "τ", and then, replacing 

the Lagrangian of the above equation in equation 35. 

 

                                                   (35) 

 
After that, we proceed to find the Euler-Lagrange equations 

which are defined as functional derivatives of the action; 

consequently, it was performed the functional derivative of the 

action on β0, β 1, β 2 and β 3, obtaining then, the equations of 

each segment: 

 

Segment 0= 

(36) 

 

Segment 1= 

(37) 

 

Segment 2= 

(38) 

 

Segment 3= 

(39) 

Then, we define the following constants (in the international 

system units) to give numerical solutions to equations 36, 37, 

38 and 39. 

 

a0=0.2, a1=0.2, a2=0.2, a3=0.2, m0=0.1, m1=0.1, m2=0.1, 

m3=0.1, g=9.8                              (40) 

 

We also defined the initial position of the angles β0, β 1, β 2 

and β 3, and the initial angular velocities in the articulations to 

solve the system of differential equations; the results were 

plotted using the MAPLE ® software as is shown in Figures 7, 

8 and 9. 

 

 
 

Figure 7. Angular position in each articulation. 

 

 
 

Figure 8. Angular velocity in each articulation. 

 

 
 

Figure 9. Angular acceleration in each articulation. 
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If we multiply the values of the acceleration in each segment 

by their respective inertia (which in this case would be the 

same in each segment, considered as a constant square section 

bar), it would be obtained the torques generated in the arm 

falling; in the same way, if we analyze the value of the torques 

generated at each joint in a certain position, then, we could 

define a counter torque to keep the arm in a static state for a 

period of time, as in the case of a controlled system, where the 

arm is operated by a rotor system that generate external 

torques. Similarly, we could define one or more functions 

depending on the time-varying forces and introducing them 

into the equations of motion of the arm (equations 36,37,38 

and 39 non-zero equal, but these forces), then, we could solve 

the system and consequently obtaining the values of β0, β1, β2 

and β3 in their own time and replacing these values in the 

equations of motion of the arm, and therefore, we could get the 

value of torque for each position; all this as a form of inverse 

dynamic analysis. 

3.3.  Platform structure 

We analyze this subsystem, element by element, starting 

with the chassis, which in this case is shaped by a frame 

(conformed by a cylindrical and a cubical structure) and a 

holding geometry; here below is detailed all this structure, 

initially basing on kinematic considerations.  

3.3.1. Chassis 

First, we supposed a variable lineal velocity called as vp(t), 

and a variable rotational position θp(t), both associated with 

the chassis. In relation to those variables we proposed to find 

the acceleration of the holding geometry together with the 

mechanical arm (static and non-operated), all this like a 

subsystem linked with the chassis; therefore, we can associate 

the chassis with the complete device. 

In this configuration we considered for the platform 

movement, three (3) DOF (Degrees Of Freedom), which are 

embodied implicitly in terms of accelerations in the equation 

41.   

 

   (41) 

 

Where: 

 

x(t): function of displacement  in the axis X . 

y(t):  function of displacement in the axis Y  

θp(t): function of angular position. 

wp(t): function  of angular velocity. 

vp(t): function of  lineal velocity. 

 

Then, we proposed to find all the kinetics and potentials 

energies of the chassis and the arm, just as it is showed below: 

 

E c-a= ½ (mc + ma) vp(t)
2
 + ½ (Ic + Ia) wp(t)

2
           (42)  

 

Where: 

mc: mass  of the chassis. 

ma: total mass of the arm (m0+m1+m2+m3). 

Ic: inertia of the chassis. 

Ia: total inertia of the arm (I0+I1+I2+I3).  

 

Although in the above equation we could have talked about 

potential energy of the system, this is assumed as negligible, 

because the device is always in the same plane. 

Now, we apply the Euler-Lagrange formulation in order to 

find the movement equations of the chassis, the holding 

geometry and the articulated arm, joined together as a system; 

initially, we propose the Lagrangian of the system Lc-a , and 

then, we considered all forces and torques generated in the 

chassis by the traction in both wheels during the allowed lineal 

and angular movement; this situation is represented using the 

following equations: 

 

            (43) 

 

Where: 

P: position of the device. 

Fr: force generated by the traction of the right wheel.  

Fl: force generated by the traction of the left Wheel. 

 

             (44) 

Where: 

rc: radius of the chassis. 

 

Equations 43 and 44 may be expressed in a simplified form: 

 

                         (45) 

 

                         (46) 

 

Now, the equations 45 and 46 are replaced in the equation 

41, with the aim of generating the movement equations of the 

system expressed as rectangular and angular variables. 

 

     (47) 

 

In the same way, if we multiply and    by the 

mass and  by the inertia, we would obtain the system 
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behavior in terms of lineal forces and toques respectively, 

which (between a lot of dynamic considerations) can be very 

useful at the moment of analyzing the maximum permissible 

stress of the structure and which must be the resistance of their 

materials. 

3.3.2. Wheels 

We analyze the qualities of the velocities generated by the 

wheels in the general system [4]; we found restrictions based 

on the design and movement of the wheels, as is showed in the 

Figure 10. 

 

 
a)                     b)  

                                                                                    . 

Figure 10. 

 

a) Lineal case. 

b) Angular case. 

 

For vl(t) =vr(t): 
 

vp(t) =½ vl(t) + ½ vr(t)                     (48) 

 

Where:  

vr(t): lineal velocity related with the right wheel.                                                 

vl(t): lineal velocity related with the left wheel. 

 

For vl(t) ≠ vr(t): 
 

wp(t) =(vl(t) - vr(t)) /rc                      (49) 
 

After, in the equation 50 using the equations 48 and 49, we 

proceed to replace the terms v(t) and w(t), additionally, we 

introduced the expressions of lineal and rotational kinetic 

energy from each wheel, all this with the aim of find the 

kinetic energy of all the system, arm and mobile platform. 

 

E c-a-w= ½ (mc + ma) (½ rw wl(t) + ½ rw wr(t))
2 
+ ½ (Ic + Ia) 

( rw wl(t)/rc - ½ rw wr(t)/ rc)
2 
+ ½ mw (rw wl(t))

 2
+ ½ mw (rw 

wr(t))
 2 

+ ½ Iw wl(t)
 2 

+ ½ Iw wr(t)
 2     

 
 
(50) 

 

Where: 

 
wr(t): function of  angular velocity related with the right wheel.  

wl(t): function of  angular velocity related with the left wheel. 

mw: mass of the wheels. 

rw: radius of the wheels (the same for the right and left wheel). 

Iw: inertia of the wheels (the same for the right and left wheel). 

rc: radius of the chassis. 

Ic: inertia of the chassis. 

Ia: inertia of the arm. 

 

Now, we apply the Lagrangian formulation to the total 

energy of the system. In this case the Lagrangian will be the 

same kinetic energy E c-a-w, which is stated inside the concept 

of “the action”, from which we obtain the functional derivative 

related with wr(t) and wl(t) (angular velocities); in this situation 

the torques Τr(t) and Tl(t) generated by the traction of the 

wheels will be the external forces of the system that will be 

equaled to their respective functional derivative. 

 

        (51) 

 

                  (52) 

 

              
(53) 

3.3.3. Motor 

In the Figure 11 is described the schematic circuit of a 

motor without iron core; those motors are relatively little and 

can be focused thought this kind of application.   

 

 
 

Figure 11. Schematic view of the circuit implemented. 

 

                   Rr,l  ir,l(t)  =vr,l,(t) - vmr,ml(t)                        (54) 

 

Where: 

 

Rr: rolling resistance of the right motor. 

Rl: rolling resistance of the left motor. 

ir(t) :current circulating through the right motor. 

il(t): :current circulating through the left motor. 

vr (t): rolling potential of the right motor.  

vl (t): rolling potential of the left motor. 

vmr(t): opposing voltage induced by the right motor. 

vml(t): opposing voltage induced by the left motor. 

 

Assuming that we know the value of all the currents, we can 

know the value of potentials vmr,ml(t); now,  we clear the 

currents form the equation 54 and proceed to replace them in 

the following equation. 

 

Τr,l (t)= Kr,l  ir,l(t)                             (55) 

Where: 
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Τr (t): torque of the right motor. 

Τl (t): torque of the left motor. 
Kr: torque constant of the right motor.  

Kl: torque constant of the left motor.  

 
Then, if we ingress particular voltages to each motor (each 

of which is attached to a wheel), we could obtain kinematical 

results (displacements, velocities and accelerations, but this 

last one is not mentioned here below), as you can see in the 

Figures 12, 13,14,15,16 and 17. 

3.4. Platform´s actions 

For this analysis we used two kinds of animations that 

represent two possible movements of the platform.  

3.4.1. Platform´s first action  

We introduced to both motors the same base voltage, as is 

shown below. 

 

   

     (56) 

 

Now, we replace the equations 55 and 56 in the equations 

52 and 53, in order to find the angular accelerations produced 

by the motors in each time interval.  

 

Then, in the present analysis we assumed certain constants 

explained in the equation 57, together with the constant 

detailed in the equation 40; both equations were inputted based 

on the international system units; additionally, we proposed a 

null value as initial condition for all the variables. 

 

rc=0.35, rw=0.28,   mc=3.3, mw=0.3,  Ic=0.18965, 

Iw=0.0037, Ia=0.975, Kr= 0.061 Kl=0 .061, Rr=1.7, 

Rl=1.7                              (57) 

 
Here below, in the Figure 12 is described the behavior of 

the system under all the conditions and suppositions 

considered previously. 

 

 
(a)                                                     (b) 

Figure 12. 

 

(a) P(t): Position of the complete device. 

(b) Representation of the device´s displacement. 

 

In relation with Figure 12 (b) it is noticed a lineal motion, 

resulted from apply the same voltage in both wheels; the lineal 

and angular velocities of this movement are detailed in the 

Figure 13. 

 

 
(a)                                              (b) 

Figure 13. 

 

(a) Lineal velocity of the complete device. 

(b) Angular velocity of the complete device. 

3.2.1. Platform´s second action 

In this movement we used the same procedures of the first 

action of the platform, and the same constant values presented 

in the equations 40 and 57. Additionally, we introduce 

different voltages to the platform motors, those voltages are 

depicted here below.    

 

      (58) 

 

This voltages causes a particular movement described in the 

Figure 17; the Figures 14 and 15 describe lineal and  angular 

positions respectively, and  Figure 16 describes lineal and 

angular velocities.   

 

 
(a)                                               (b) 

Figure 14. 

 

(a) Variation of the lineal position in the axis X. 

(b) Variation of the lineal position in the axis Y. 
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Figure 15. Angular position of the complete device. 

 

 
(a)                                                     (b) 

Figure 16. 

 

(a) Lineal velocity of the complete device. 

(b) Angular velocity of the complete device. 
 

 
 

Figure 17. Animated representation of the system arm- mobile 

platform [8]. 

 

IV. CONCLUSION 

This algebraic system done by computer is useful to solve 

complex equation systems; in the same way, the mathematical 

expressions and theoretical methods implemented in this 

document are adaptable to any joined structure made of n joins 

y n segments that involves similar kinematic and dynamic 

situations described in this paper. 

 

We conclude that the ways to analyze the arm movement 

independently of the imposed restrictions, suggest the use of 

ideas and concepts belonging to different methods and 

theories; in that sense, the mixing of some mathematical model 

becomes very important depending of the necessity that you 

have and the results that you want obtain. On the other hand, 

we could consider the computational waste at the moment to 

solve the equation systems generated, evaluating the efficiency 

and the physics description, regarding the mathematical 

proceeding.  

 

It’s notorious how the smoothness of the movement 

depicted by the mobile platform depends of the quantity of 

sections of the voltage functions (in relation to a established 

time), giving a larger number of sections greater fluidity of 

movement; but this contrast with the computational waste used 

to process the input data system; the true goal is to find ways 

to be able to develop a particular movement that meets the 

dynamic and kinematics contribution required, with the 

minimum computational waste possible, i.e., the entry (in this 

case voltage) more efficient and simple to implement. 
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