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The HOSVD Based Domain and the Related Image
Processing Techniques

Andras Rovid, Laszlo Szeidl and Péter Varlaki

Abstract—In the framework of the paper an improved methodn frequency domain without meaningful quality decline, rel-

for image resolution enhancement is introduced. The enhancemenjfigely large number of trigonometric components is needed.

performed through another representation domain, where the imageygther well known application is the resolution enhance-
function is expressed with the help of polylinear functions on higher

order singular value decomposition (HOSVD) basis. The paper giv’&ent of an image [_12][13][14][15]' |nvest_|gated n the f_rame-
a detailed description on how to determine the polylinear functioMéork of this paper in more details, focusing on its realization
corresponding to an image and how to process them in order to obtaind effectiveness in the proposed domain. Before going into
a higher resolution image. Furthermore, the proposed approach grdails, let us summarize the most frequently used methods
the Fourier-based approach will be compared from the point of vieyy, 4 concepts applicable for this purpose.
of their effectiveness. . . . . .
Numerical reconstruction or recovering of a continuous in-
Keywords—Image resolution, HOSVD, approximation, numericatensity surface from discrete image data samples is considered,
reconstruction. for example, when the image is resized or remapped from one
pixel grid to another one. In case of image enlargement the
color components or in case of grayscale images the intensity
of missing pixels should be estimated. One common way for
Nowadays the importance of image processing and machgstimating the color values of such pixels is interpolating the
vision-based applications is increasing significantly. In orddiscrete source image. There are several issues which affect
to perform the desired task more accurately and reliably, thee perceived quality of the interpolated images: sharpness
related algorithms should be developed[1]. An important factof edges, freedom from artifacts and reconstruction of high
regarding the processing is the applied data representatitgguency details [24].
domain, in which the processing is performed. NumerousThere are numerous methods approximating the image
tasks can be performed more efficiently in one domain thénensity function based on the color and location of known
in another one. Therefore, the investigation of new datsage points, such as the bilinear, bicubic or spline interpo-
representation approaches or domains can be consideredatign all working in the spatial domain of the input image.
an important research topic. Representing an image in otfipending on their complexity, these methods use anywhere
domain may give new possibilities regarding its processingjom 0 to 256 (or more) adjacent pixels when interpolating.
In many cases these representations are related to expres§imgmore adjacent pixels they include, the more accurate they
the image intensity function as a combination of simplezan become, but this comes at the expense of much longer
functions (components) having useful predefined propertiggocessing time [26].
Let us mention some applications and some concepts oBBilinear Interpolation determines the value of a new pixel
the related methods and algorithms from the field of imadesed on a weighted average of the 4 pixels in the nearest
processing, where the applied domain plays a significant rokex 2 neighborhood of the pixel in the original image. The
The image resolution enhancement, filtering [2]-[5], imagaveraging has an anti-aliasing effect and therefore produces
compression [6]-[9] etc. can be performed much more effeiglatively smooth edges with hardly any jaggies [26].
tively when working in another image representation domain The bicubic interpolation considers the closest 4x4 neigh-
[11]. In the frequency domain for instance, the image compre¥rhood of known pixels. Since these are at various distances
sion is much more efficient than in the spatial one. There dfem the unknown pixel, closer pixels are given a higher
image processing approaches indirectly related to the imageighting in the calculation. It produces noticeably sharper
representation domain, which aim, in case of compressiggages than the bilinear one, and is perhaps the ideal combina-
images for example, to directly process the compressed imae)) of processing time and output quality. This is the method
avoiding the compression and decompression prior and affe@st commonly used by image editing software [26]. Because
the processing [10]. On the other hand, to represent the im&jéhe spatial domain, the image in these cases is represented
as a set of discrete color values without any useful predefined
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I. INTRODUCTION
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A new data representation domain is introduced in the paperDenote byA € R+*--xI~ the N-dimensional tensor de-
connected to the higher order singular value decompositicermined by the elements;, . ;,, 1 <i, <I,, 1<n<N
(HOSVD), which is a generalized form of the well knowrand let us use the following notations (see : [16]).
singular value decomposition (SVD). As shown in upcoming , A[X,, U: the n-mode tensor-matrix product,

sections, any n-variable smooth function can be expresseq ARN_, U,,: the multiple product asiX; U; X, U,...My
with the help of a system of orthonormal one-variable smooth U,.

functions on HOSVD basis. The main aim of the paper is The;-mode tensor-matrix product is defined by the follow-
to numerically reconstruct these one-variable functions (ﬁ?g way. LetU be ak, x M,-matrix, thenA X, U is an
called eigenfunctions) using the HOSVD and to show that hoyy, . "« A7, _; x K, x M, 11 x ... x My-tensor for which

this approach can give support for certain image processipg relation
tasks and problems. First of all, it shows how the image

. . def
can be expressed in the HOSVD based domain and how the (AR, U)ml,...,mn71,/€n,mn,+l7--~7mN =
most characteristic tasks like the above mentioned resolution

: H 1 i Amy,...;mp,...,m Uk m
enhancement, edge detection, data compression and filtering Z R

can be performed using the proposed approach. Furthermore, 1sma<Mn

the comparison of the Fourier based representation domairh@ds. Detailed discussion of tensor notations and operations

the proposed HOSVD based one will be performed. is given in [16]. We also note that we use the sigp instead
The paper is organized as follows: Section Il gives #e signx, given in [16]. Using this definition the function

closer view on how to express a multidimensional functiof?) can be rewritten as a tensor product form

using polylinear functions on HOSVD basis, and how to

reconstruct these polylinear functions, Section Il shows how f@) = ARY_ ) @ (@), 3)

this representation can be applied in image processing {of.re (2n) = (@n1 (@), @pr, (za))T, 1 < n < N.

resolution enhancement, while in section IV the propos%sed on HOSVD it was proved in [17] and [18] that under
method is compared to the well known Fourier transformaticm”d conditions the (3) can be represented in the form
from the approximation error point of view. Section V shows

the experimental results and finally, conclusions are reported. F(z) = DN, wn (@), (4)

where
e D e R"XX"N js g special (so called core) tensor with

The approximation methods of mathematics are widely used the properties:

in theory and practice for several problems. If we consider an 1) VZl’n_: mnkkn(dlfl)this 'f,he n-mode rank of tgebtenmsor
vari : , i.e. rank of the linear space spanned by the
n-variable smooth function mode vectors ofd:

Il. THEORETICAL BACKGROUND

Waig, iy 1. i 10 ino
f), 2= (z1,....zn)T, Tn € [an,by], 1 <n <N, 1<ij <1In, 1<j <N
2) all-orthogonality of tensaP: two subtensor®; _,,
and D;, —g (the n-th indicesi,, = « andi,, =
of the elements of the tensdp keeping fix) or-

then we can approximate the functiofi(x) with a series

h In thogonal for all possible values of,«a and g8 :
F@) =" > kD1 (1) - PNy (). (D) (Di,—0a,Di,—5) = 0 whena # J3. Here the
ki=1 kn=1 scalar productD;, -, D;, =) denotes the sum of

products of the appropriate elements of subtensors

where the system of orthonormal functi can
y Op’s-,kn (In) D'Ln:a and Din:5,

be chosen in classical way by orthonormal polynomials or

trigonometric functions in separate variables and the numbers 3) ordering: ||D;,1|| = HDinﬂ”, z 2
of functionsI,, playing role in (1) are large enough. With the Di,=r,|l > 0 for all possible values of
y ' n (|Di,=all = (Di,—a,Di,—a) denotes the

help of Higher Order Singular Value Decomposition (HOSVD)
a new approximation method was developed in [17] and [18], .
[20], [19] in which a specially determined system of or- * Componentsu, ;(x,) of the vector valued functions

Kronecker-norm of the tensdp; _,).

Fhonormal functions can be used depending on funcﬁ@r)_, Wa(20) = (Wat (Tn), oy W, (20)) T, 1< 0 < N,
instead of some other systems of orthonormal polynomials or ) . )
trigonometric functions. are orthonormal inL,-sense on the intervad,,, b,], i.e.
Assume that the functionf(z) can be given with some b
functions,_;(z,), &, € [an,by] in the form Vn : / Wi, (Tn )W, j, (Tn)dT = &i,, 4,
a

n

1 <, jn < a,

I In
flx) = Z Z Aoy oo e D1 ey (1) oo Wy (2. (2) whered; ; is a Kronecker-functiond; ; = 1, if i = j and

.....

ki=1 ky=1 51‘73‘ =0,if i #7)
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The form (4) was called in [17] and [18] HOSVD canonical Let us denote the elements of mati@x("™) by UZ.(,? and

form of the function (2). introduce the step functions,, ;(z),1 < ¢ < r, in the
following way
Let us decompose the intervals,, b,], n = 1..N into M, 1w
number of disjunct subintervald,, ., , 1 < m, < M, as Un,i(z) = —=U; /I(x € Ap ), 1 <k < M,
follows: o VPn

Theorem 2: If A — 0 then
571,0 =an < gn,l <...< gn,Mn = bna by,
(W i(x) — upi(2))?dz -0, 1<i<r,,1<n<N

An,mn = [gn,mnagn,mn—l)- /an "t " "
Assume that the functions, i, (z,), n € [an,bn], 1 < m
n < N in the equation (2) are piece-wise continuously q h . . he i luti b
differentiable and assume also that we can observe the valu §?se on the previous section the image resolution can be

; : ; efficiently increased as follows:
of the functionf(z) in the points Let f(x),x = (x1,72,23)7 represent the image function,

where z; and x5 correspond to the vertical and horizontal

. RESOLUTION ENHANCEMENT ONHOSVD BASIS

Yiroiin = (T1iys s TNy )y 1 < iy < My, (5) coordinates of the pixel, respectivelys is related to the
T ’ ’ color components of the pixel, i.e. the red, green and blue
where color components in case ®GB image. Functionf(z) can
be approximated (based on notes discussed in the previous
Tom, € Dnmny, 1<mn <M, 1<n<N section) in the following way:

Iy Iy I3

Based on the HOSVD a new method was developed in [17] s = kZﬂ kZﬁ1 kZﬂ% kg ks @1,k (€1) - Bg gy (€2) - By gy (@3). )
and [18] for numerical reconstruction of the canonical form e
of the functionf(x) using the values (y;,... ix), 1 <ip <

? . . - The red, green and blue color components of pixels can be
M,, 1 <4, < N. We discretize functionf(z) for all grid g P P

stored in am x n x 3 tensor, wherer andm correspond to the

points as: width and height of the image, respectively. Idenote this
bny,omn = F(Ymama)- tensor. The first step is to reconstruct the functions,,, 1 <
Then we constructV dimensional tensoB3 = (b,,,, n < 3,1 <k, < I, based on the HOSVD of tensdt as

yeeey 1T .
from the value$,,, .. .. Obviously, the size of this tensor isfollows:
M x ... x My. Further, we discretize vector valued functions
wy(z,) over the discretization points,, ,,,, and construct

C - . — 3 (n)
matricesW,, from the discretized values as: B=DKX,_; U (10)
vnient) pn2lEnn) v () whereD is the so called core tensor. Vectors corresponding
N e mEmE w2 @ to the columns of matrice&l(™) 1 < n < 3 as described in

the previous section are representing the discretized form of

] | functionsw,, 1, (z,,) corresponding to the appropriate dimen-
Then tensoi3 can simply be given by (4) and (6) as sionn, 1<n<3.

Wi 1(®n My)  wn2@n My) 0 Wnirn (T My,

B=DRN_, W,. @ . Ourgoalisto demonstrate_ the effectiveness of image scaling
in the HOSVD based domain.
Consider the HOSVD decomposition of the discretization Let s € {1,2,...} denote the number of pixels having to be
tensor injected between each neighbouring pixel pair in horizontal
B=Dp!xN_ U™ (8) and vertical directions. First, let us consider the first column
Ul(l) of matrix U(Y). Based on the previous sections, it can be

d _
where D is the so-called core tensor, and(™ = seen, that the valu@, ;(1) corresponds to the 1st element

u™ufm U](\;)) is an M,, x M,,-size orthogonal
matrix (1 <n < N).
Let us introduce the notatiom,? = rank,B, 1 <n <N

. b —d. < pxrs
and consider the;? x - - - x rNd—S|ze reduced versiop? =

(D mnr 1 <my <1, 1 <n < N) of the My x -+ x UB)
My -size tensorD?. The following theorems were proved in
[17] and [18]. Denote s
mxry
A= ma, me, Gum, — 1) and _ Core U@
= U
N Tensor
= ny Pn — bn — Un Mn
p nl;[lp p ( an)/ pm— -

Theorem 1: If A is sufficiently small, then,* = r,,, 1 < Fig. 1.

g ) lllustration of the core tensor and the correspondirthonormal
n < N and the convergenc\efﬁDd — D, A — 0 is true. matrices.
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of Ul(l), w1,1(2) to the 2nd element,..401,1(M,,) to the smaller in order to achieve the same quality than in case
M, th element ofUl(l), To scale the image in the HOSVD-of applying trigonometric functions. Vectors corresponding to
based domain, th&/(? i = 1..2 matrices should be updatedthe columns of matrice®¥J™,1 < n < 3 as described in
depending ors, as follows: The number of columns remainghe previous section contain the control points of functions
the same, the number of lines will be extended according. x,(z») corresponding to the appropriate dimension

to the factors. Let us denote the such obtained matrix ak < n < 3. It means, that there will be as many one-variable
V), For example let consider the colurTiV‘ll(l) of UM, functions for a dimension as many columns there are in the
The elements 01/1(1) are determined as f0||OW§;_’1(1)(1) .— orthonormal matrix corresponding to that dimension (see Fig.
U(l)(l), 1(1)(S+2> — U1(1)(2)1 Vl(l)(28+3) — U1(1)(3):---v ). The number of these functions can be further decreased
‘/1](1)((Mn )5+ M) = Ul(l)(Mn)- The missing elements by d_ismissing some columns _from the orthonormal matrices
of Vl(l) can be determined by interpolation. In the paper thoebtalned by HOSVD (see. Fig.). Lat,, 0 < Cy < I,

. R . . - n = 1..N stand for the number of dismissed columns in
cubic spline interpolation was applied. The remaining column

L . »ih dimension. Dismissing some of the columns is equivalent
should be processed similarly. After every matrix element h?s L S .
) . . inotth dismissing some of the frequencies in case of Fourier
been determined the enlarged image can be obtained using_ the
) approach.
equation (10).
I1—Cq I3—Cq I3—C3
IV. FOURIER VS. HOSVD f2) = kzl kzl kzl Vg ke yleg T1, kg (B1) © Ta oy (22) - B3 g (23). (A1)
1= 2= 3=
The proposed approach introduced in the previous sections

uses orthonormal functionsn,;(zn ), on € [an,bn] (€€ The below examples clearly show that the proposed ap-

Section Il) for approximating am-variable smooth function. . o .
We saw how these functions,.;(x,) can numerically be proach has good compression capabilities, which further ex-
N y nds its applicability also in the field of image processing.

reconstructed and what properties they have. Comparing e

. . . .~ .The only disadvantage of the HOSVD based approches is
proposed approach to the Fourier transformation S|m|Iar|t|~E-:nseir relatively high computing complexity, comparing to other
can be observed in their behaviour. As it is well known '

the Fourier Transformation is connected to trigonometrlr:':mthoc}lS aimed for similar purposes.

functions, while in case of HOSVD approach the functions
wn,i(x,) are considered, which are specific to the approx-
imated n-variable function. In both cases the functions are
forming an orthonormal basis. Since in case of HOSVD theart-1 (HOSVD vs. Fourier)

functions are specific ones, much fewer number of components ) ) o

is needed then in case of Fourier based approach to achievi¥ this section some approximations can be observed per-
the same approximation accuracy. formed by the proposed and by the Fourier-based approach.

Let us mention some common, widely used applications 4 the number of the used components decreases, the observ-
both approaches. able differences in quality become more significant. In the
In case of Fourier based smoothing, some of higher frequéi@mples below in both the HOSVD-based and Fourier-based

cies from the frequency domain are dismissed, which resuf@S€s the same number of components have been used in order
eliminated singularities, i.e. smoothed image. to show how the form of determined functions influences the

In case of HOSVD, considering only polylinear functionguality-
corresponding to the larger singular values for certain dimen-
sions, will have similar effect then the above mentioned low
pass frequency filtering. The same concept can be used als¢Es
for data compression. .

In the opposite case, i.e. when maintaining only the func-
tions corresponding to the smaller singular values, an edge fi&
detector is obtained. In case of Fourier approach detectingfig
edges in an image is equivalent to dismissing the smaller
frequency components (high pass filtering).

The examples show that in case of HOSVD much smaller
number of basis functions are enough to represent the image
without significant information loss. In case of Fourier based
approach a much larger number of trigonometric functions are
needed in order to maintain the same quality. When dismissing
high frequency components, there is a frequency threshold
depending on the concrete image, below which by dismissing
further frequencies some kind of waves can be observed in the
image as noise. In case of the proposed approach the ratiq.of

e L the ralix-0l, - original image (24bit RGB)
maintained and dismissed components may be significantly

V. EXAMPLES

i

-
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Fig. 3. HOSVD-based approximation using 7500 components oseth Fig. 6. Enlarged segment of Fig.4. Occurence of waves can bereus
from polylinear functions on HOSVD basis

¥
-

Fig. 7. HOSVD-based approximation using 2700 components osath
Fig. 4. Fourier-based approximation using 7500 componentgposed from from polylinear functions on HOSVD basis
trigonometric functions

Fig. 8. Fourier-based approximation using 2700 componeartgosed from
Fig. 5. Enlarged segment of Fig.3 trigonometric functions
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. . Fig. 11. The original image.
Fig. 9. Enlarged segment of Fig.7

Fig. 10. Enlarged segment of Fig.8. Occurence of waves can dena.

Fig. 12. The 10x enlarged rectangular area using bilinearpalation.

Part-2 (Resolution Enhancement)

The pictures are illustrating the effectiveness of the image
zooming with the proposed approach. The resulting images are
compared to the results obtained by the bilinear and bicubic
image interpolation methods. Fig. 11 and 15 represent the
original low resolution images. In figs. 12 — 14 the enlarged
versions of the indicated rectangular area (see Fig. 11) can
be followed, obtained by the above mentioned interpolation
techniques and by the proposed one. Figs. 16 — 19 stand for
the same sequence, but regarding the indicated rectangular are
depicted in Fig. 15.

VI. CONCLUSION

In the present paper a new image representation domain
and reconstruction technique has been introduced. The result:
show that how the efficiency of the certain tasks depends on
the applied domain. Image zooming has been performed using
the proposed jcechnlque. and has been ?ompamd to cher \'A_lle!|13. The 10x enlarged rectangular area using bicubicpiotation.
known image interpolation methods. Using this technique the
resulted image maintains the edges more accurately than the
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Fig. 14. The 10x enlarged rectangular area using the propo&&MB-based Fig. 17. The 10x enlarged rectangular area using bilinearpalation.
method. Smoother edges can be observed.

i

Fig. 18. The 10x enlarged rectangular area using bicubicpalation.

Fig. 15. The original image.

Fig. 19. The 10x enlarged rectangular area using the progd&8¥/D-based

Fig. 16. The 10x enlarged rectangular area using Nearegitai interpo- method. Smoother edges can be observed.

lation method.
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