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Abstract— In the framework of the paper an improved method
for image resolution enhancement is introduced. The enhancement is
performed through another representation domain, where the image
function is expressed with the help of polylinear functions on higher
order singular value decomposition (HOSVD) basis. The paper gives
a detailed description on how to determine the polylinear functions
corresponding to an image and how to process them in order to obtain
a higher resolution image. Furthermore, the proposed approach and
the Fourier-based approach will be compared from the point of view
of their effectiveness.

Keywords— Image resolution, HOSVD, approximation, numerical
reconstruction.

I. I NTRODUCTION

Nowadays the importance of image processing and machine
vision-based applications is increasing significantly. In order
to perform the desired task more accurately and reliably, the
related algorithms should be developed[1]. An important factor
regarding the processing is the applied data representation
domain, in which the processing is performed. Numerous
tasks can be performed more efficiently in one domain then
in another one. Therefore, the investigation of new data
representation approaches or domains can be considered as
an important research topic. Representing an image in other
domain may give new possibilities regarding its processing.
In many cases these representations are related to expressing
the image intensity function as a combination of simpler
functions (components) having useful predefined properties.
Let us mention some applications and some concepts of
the related methods and algorithms from the field of image
processing, where the applied domain plays a significant role.

The image resolution enhancement, filtering [2]-[5], image
compression [6]–[9] etc. can be performed much more effec-
tively when working in another image representation domain
[11]. In the frequency domain for instance, the image compres-
sion is much more efficient than in the spatial one. There are
image processing approaches indirectly related to the image
representation domain, which aim, in case of compressed
images for example, to directly process the compressed image,
avoiding the compression and decompression prior and after
the processing [10]. On the other hand, to represent the image
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in frequency domain without meaningful quality decline, rel-
atively large number of trigonometric components is needed.

Another well known application is the resolution enhance-
ment of an image [12][13][14][15], investigated in the frame-
work of this paper in more details, focusing on its realization
and effectiveness in the proposed domain. Before going into
details, let us summarize the most frequently used methods
and concepts applicable for this purpose.

Numerical reconstruction or recovering of a continuous in-
tensity surface from discrete image data samples is considered,
for example, when the image is resized or remapped from one
pixel grid to another one. In case of image enlargement the
color components or in case of grayscale images the intensity
of missing pixels should be estimated. One common way for
estimating the color values of such pixels is interpolating the
discrete source image. There are several issues which affect
the perceived quality of the interpolated images: sharpness
of edges, freedom from artifacts and reconstruction of high
frequency details [24].

There are numerous methods approximating the image
intensity function based on the color and location of known
image points, such as the bilinear, bicubic or spline interpo-
lation all working in the spatial domain of the input image.
Depending on their complexity, these methods use anywhere
from 0 to 256 (or more) adjacent pixels when interpolating.
The more adjacent pixels they include, the more accurate they
can become, but this comes at the expense of much longer
processing time [26].

Bilinear Interpolation determines the value of a new pixel
based on a weighted average of the 4 pixels in the nearest
2 x 2 neighborhood of the pixel in the original image. The
averaging has an anti-aliasing effect and therefore produces
relatively smooth edges with hardly any jaggies [26].

The bicubic interpolation considers the closest 4x4 neigh-
borhood of known pixels. Since these are at various distances
from the unknown pixel, closer pixels are given a higher
weighting in the calculation. It produces noticeably sharper
images than the bilinear one, and is perhaps the ideal combina-
tion of processing time and output quality. This is the method
most commonly used by image editing software [26]. Because
of the spatial domain, the image in these cases is represented
as a set of discrete color values without any useful predefined
properties.

There are also image enlargement methods based on partial
differential equations [22], multiscale geometric representa-
tions [23], some are merging a set of low-resolution images
into a high-resolution image [21], and some methods are ex-
tending the above basic interpolation methods by considering
also the image local features [25].
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A new data representation domain is introduced in the paper,
connected to the higher order singular value decomposition
(HOSVD), which is a generalized form of the well known
singular value decomposition (SVD). As shown in upcoming
sections, any n-variable smooth function can be expressed
with the help of a system of orthonormal one-variable smooth
functions on HOSVD basis. The main aim of the paper is
to numerically reconstruct these one-variable functions (so
called eigenfunctions) using the HOSVD and to show that how
this approach can give support for certain image processing
tasks and problems. First of all, it shows how the image
can be expressed in the HOSVD based domain and how the
most characteristic tasks like the above mentioned resolution
enhancement, edge detection, data compression and filtering
can be performed using the proposed approach. Furthermore,
the comparison of the Fourier based representation domain to
the proposed HOSVD based one will be performed.

The paper is organized as follows: Section II gives a
closer view on how to express a multidimensional function
using polylinear functions on HOSVD basis, and how to
reconstruct these polylinear functions, Section III shows how
this representation can be applied in image processing for
resolution enhancement, while in section IV the proposed
method is compared to the well known Fourier transformation
from the approximation error point of view. Section V shows
the experimental results and finally, conclusions are reported.

II. T HEORETICAL BACKGROUND

The approximation methods of mathematics are widely used
in theory and practice for several problems. If we consider an
n-variable smooth function

f(x), x = (x1, ..., xN )T , xn ∈ [an, bn] , 1 ≤ n ≤ N,

then we can approximate the functionf(x) with a series

f(x) =

I1∑

k1=1

...

IN∑

kN=1

αk1,...,kn
p1,k1(x1) · ... · pN,kN

(xN ). (1)

where the system of orthonormal functionspn,kn
(xn) can

be chosen in classical way by orthonormal polynomials or
trigonometric functions in separate variables and the numbers
of functionsIn playing role in (1) are large enough. With the
help of Higher Order Singular Value Decomposition (HOSVD)
a new approximation method was developed in [17] and [18],
[20], [19] in which a specially determined system of or-
thonormal functions can be used depending on functionf(x),
instead of some other systems of orthonormal polynomials or
trigonometric functions.

Assume that the functionf(x) can be given with some
functionsw̃n,i(xn), xn ∈ [an, bn] in the form

f(x) =

I1∑

k1=1

...

IN∑

kN=1

αk1,...,kn
w̃1,k1 (x1) · ... ·w̃N,kN

(xN ). (2)

Denote byA ∈ R
I1×...×IN the N -dimensional tensor de-

termined by the elementsαi1,...,iN , 1 ≤ in ≤ In, 1 ≤ n ≤ N
and let us use the following notations (see : [16]).

• A�n U: the n-mode tensor-matrix product,
• A�

N
n=1Un: the multiple product asA�1U1�2U2...�N

UN .
Then-mode tensor-matrix product is defined by the follow-

ing way. LetU be aKn × Mn-matrix, thenA �n U is an
M1 × ...×Mn−1 ×Kn ×Mn+1 × ...×MN -tensor for which
the relation

(A �n U)m1,...,mn−1,kn,mn+1,...,mN

def
=

∑

1≤mn≤Mn

am1,...,mn,...,mN
Ukn,mn

holds. Detailed discussion of tensor notations and operations
is given in [16]. We also note that we use the sign�n instead
the sign×n given in [16]. Using this definition the function
(2) can be rewritten as a tensor product form

f(x) = A�
N
n=1 w̃n(xn), (3)

where w̃n(xn) = (w̃n,1(xn), ..., w̃n,In(xn))
T , 1 ≤ n ≤ N .

Based on HOSVD it was proved in [17] and [18] that under
mild conditions the (3) can be represented in the form

f(x) = D �
N
n=1 wn(xn), (4)

where
• D ∈ R

r1×...×rN is a special (so called core) tensor with
the properties:

1) rn = rankn(A) is then-mode rank of the tensor
A, i.e. rank of the linear space spanned by then-
mode vectors ofA:
{(ai1,...,in−1,1,in+1,...,iN

, ..., ai1,...,in−1,In,in+1,...,iN
)
T

:

1 ≤ ij ≤ In, 1 ≤ j ≤ N},

2) all-orthogonality of tensorD: two subtensorsDin=α

and Din=β (the n-th indicesin = α and in = β
of the elements of the tensorD keeping fix) or-
thogonal for all possible values ofn, α and β :
〈Din=α,Din=β〉 = 0 when α 6= β. Here the
scalar product〈Din=α,Din=β〉 denotes the sum of
products of the appropriate elements of subtensors
Din=α andDin=β,

3) ordering: ‖Din=1‖ ≥ ‖Din=2‖ ≥ · · · ≥
‖Din=rn‖ > 0 for all possible values of
n (‖Din=α‖ = 〈Din=α,Din=α〉 denotes the
Kronecker-norm of the tensorDin=α).

• Componentswn,i(xn) of the vector valued functions

wn(xn) = (wn,1(xn), ..., wn,rn(xn))
T , 1 ≤ n ≤ N,

are orthonormal inL2-sense on the interval[an, bn], i.e.

∀n :

∫ bn

an

wn,in(xn)wn,jn(xn)dx = δin,jn ,

1 ≤ in, jn ≤ rn,

whereδi,j is a Kronecker-function (δi,j = 1, if i = j and
δi,j = 0, if i 6= j)
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The form (4) was called in [17] and [18] HOSVD canonical
form of the function (2).

Let us decompose the intervals[an, bn], n = 1..N into Mn

number of disjunct subintervals4n,mn
, 1 ≤ mn ≤ Mn as

follows:

ξn,0 = an < ξn,1 < . . . < ξn,Mn
= bn,

4n,mn
= [ξn,mn

, ξn,mn−1).

Assume that the functionswn,kn
(xn), xn ∈ [an, bn] , 1 ≤

n ≤ N in the equation (2) are piece-wise continuously
differentiable and assume also that we can observe the values
of the functionf(x) in the points

yi1,...,iN = (x1,i1 , ..., xN,iN ), 1 ≤ in ≤ Mn. (5)

where

xn,mn
∈ 4n,mn

, 1 ≤ mn ≤ Mn, 1 ≤ n ≤ N

Based on the HOSVD a new method was developed in [17]
and [18] for numerical reconstruction of the canonical form
of the functionf(x) using the valuesf(yi1,...,iN ), 1 ≤ in ≤
Mn, 1 ≤ in ≤ N. We discretize functionf(x) for all grid
points as:

bm1,..,mN
= f(ym1,..,mN

).

Then we constructN dimensional tensorB = (bm1,...,mN
)

from the valuesbm1,..,mN
. Obviously, the size of this tensor is

M1× ...×MN . Further, we discretize vector valued functions
wn(xn) over the discretization pointsxn,mn

and construct
matricesWn from the discretized values as:

Wn =




wn,1(xn,1) wn,2(xn,1) · · · wn,rn (xn,1)

wn,1(xn,2) wn,2(xn,2) · · · wn,rn (xn,2)

.

.

.
. . .

.

.

.
wn,1(xn,Mn

) wn,2(xn,Mn
) · · · wn,rn (xn,Mn

)




(6)

Then tensorB can simply be given by (4) and (6) as

B = D �
N
n=1 Wn. (7)

Consider the HOSVD decomposition of the discretization
tensor

B = Dd
�

N
n=1 U

(n) (8)

where Dd is the so-called core tensor, andU(n) =(
U

(n)
1 U

(n)
2 . . . U

(n)
Mn

)
is anMn × Mn-size orthogonal

matrix (1 ≤ n ≤ N ).
Let us introduce the notation:̃rnd = ranknB, 1 ≤ n ≤ N

and consider thẽr1d × · · · × r̃N
d-size reduced versioñDd =

(Dd
m1,...,mN

, 1 ≤ mn ≤ rn, 1 ≤ n ≤ N) of the M1 × · · · ×
MN -size tensorDd. The following theorems were proved in
[17] and [18]. Denote

∆ = max
1≤n≤N

max
1≤in≤Mn

(ξn,mn
− ξn,mn−1) and

ρ =
N∏

n=1

ρn, ρn = (bn − an)/Mn.

Theorem 1: If ∆ is sufficiently small, thenr̃nd = rn, 1 ≤
n ≤ N and the convergence√ρD̃d → D, ∆ −→ 0 is true.

Let us denote the elements of matrixU(n) by U
(n)
i,k and

introduce the step functionsun,i(x), 1 ≤ i ≤ rn in the
following way

un,i(x) =
1√
ρn

U
(n)
i,k I(x ∈ ∆n,k), 1 ≤ k ≤ Mn

Theorem 2: If ∆ −→ 0 then
∫ bn

an

(wn,i(x) − un,i(x))
2dx → 0, 1 ≤ i ≤ rn, 1 ≤ n ≤ N

III. R ESOLUTION ENHANCEMENT ON HOSVD BASIS

Based on the previous section the image resolution can be
efficiently increased as follows:

Let f(x), x = (x1, x2, x3)
T represent the image function,

where x1 and x2 correspond to the vertical and horizontal
coordinates of the pixel, respectively.x3 is related to the
color components of the pixel, i.e. the red, green and blue
color components in case ofRGB image. Functionf(x) can
be approximated (based on notes discussed in the previous
section) in the following way:

f(x) =

I1∑

k1=1

I2∑

k2=1

I3∑

k3=1

αk1,k2,k3
w̃1,k1

(x1) · w̃2,k2
(x2) · w̃3,k3

(x3). (9)

The red, green and blue color components of pixels can be
stored in am×n×3 tensor, wheren andm correspond to the
width and height of the image, respectively. LetB denote this
tensor. The first step is to reconstruct the functionsw̃n,kn

, 1 ≤
n ≤ 3, 1 ≤ kn ≤ In based on the HOSVD of tensorB as
follows:

B = D �
3
n=1 U

(n) (10)

whereD is the so called core tensor. Vectors corresponding
to the columns of matricesU(n), 1 ≤ n ≤ 3 as described in
the previous section are representing the discretized form of
functionsw̃n,kn

(xn) corresponding to the appropriate dimen-
sionn, 1 ≤ n ≤ 3.

Our goal is to demonstrate the effectiveness of image scaling
in the HOSVD based domain.

Let s ∈ {1, 2, ...} denote the number of pixels having to be
injected between each neighbouring pixel pair in horizontal
and vertical directions. First, let us consider the first column
U

(1)
1 of matrixU(1). Based on the previous sections, it can be

seen, that the valuẽw1,1(1) corresponds to the 1st element

Fig. 1. Illustration of the core tensor and the correspondingorthonormal
matrices.
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of U
(1)
1 , w̃1,1(2) to the 2nd element,...,̃w1,1(Mn) to the

Mnth element ofU (1)
1 . To scale the image in the HOSVD-

based domain, theU(i), i = 1..2 matrices should be updated,
depending ons, as follows: The number of columns remains
the same, the number of lines will be extended according
to the factors. Let us denote the such obtained matrix as
V(1). For example let consider the columnU (1)

1 of U(1).
The elements ofV (1)

1 are determined as follows:V (1)
1 (1) :=

U
(1)
1 (1), V (1)

1 (s+ 2) := U
(1)
1 (2), V (1)

1 (2s+ 3) := U
(1)
1 (3),...,

V
(1)
1 ((Mn − 1)s+Mn) := U

(1)
1 (Mn). The missing elements

of V (1)
1 can be determined by interpolation. In the paper the

cubic spline interpolation was applied. The remaining columns
should be processed similarly. After every matrix element has
been determined the enlarged image can be obtained using the
equation (10).

IV. FOURIER VS. HOSVD
The proposed approach introduced in the previous sections

uses orthonormal functions̃wn,i(xn), xn ∈ [an, bn] (see
Section II) for approximating ann-variable smooth function.
We saw how these functions̃wn,i(xn) can numerically be
reconstructed and what properties they have. Comparing the
proposed approach to the Fourier transformation similarities
can be observed in their behaviour. As it is well known,
the Fourier Transformation is connected to trigonometric
functions, while in case of HOSVD approach the functions
w̃n,i(xn) are considered, which are specific to the approx-
imated n-variable function. In both cases the functions are
forming an orthonormal basis. Since in case of HOSVD the
functions are specific ones, much fewer number of components
is needed then in case of Fourier based approach to achieve
the same approximation accuracy.

Let us mention some common, widely used applications of
both approaches.

In case of Fourier based smoothing, some of higher frequen-
cies from the frequency domain are dismissed, which results
eliminated singularities, i.e. smoothed image.

In case of HOSVD, considering only polylinear functions
corresponding to the larger singular values for certain dimen-
sions, will have similar effect then the above mentioned low
pass frequency filtering. The same concept can be used also
for data compression.

In the opposite case, i.e. when maintaining only the func-
tions corresponding to the smaller singular values, an edge
detector is obtained. In case of Fourier approach detecting
edges in an image is equivalent to dismissing the smaller
frequency components (high pass filtering).

The examples show that in case of HOSVD much smaller
number of basis functions are enough to represent the image
without significant information loss. In case of Fourier based
approach a much larger number of trigonometric functions are
needed in order to maintain the same quality. When dismissing
high frequency components, there is a frequency threshold
depending on the concrete image, below which by dismissing
further frequencies some kind of waves can be observed in the
image as noise. In case of the proposed approach the ratio of
maintained and dismissed components may be significantly

smaller in order to achieve the same quality than in case
of applying trigonometric functions. Vectors corresponding to
the columns of matricesU(n), 1 ≤ n ≤ 3 as described in
the previous section contain the control points of functions
w̃n,kn

(xn) corresponding to the appropriate dimensionn,
1 ≤ n ≤ 3. It means, that there will be as many one-variable
functions for a dimension as many columns there are in the
orthonormal matrix corresponding to that dimension (see Fig.
). The number of these functions can be further decreased
by dismissing some columns from the orthonormal matrices
obtained by HOSVD (see. Fig.). LetCn, 0 ≤ Cn ≤ In,
n = 1..N stand for the number of dismissed columns in
nth dimension. Dismissing some of the columns is equivalent
to dismissing some of the frequencies in case of Fourier
approach.

f(x) =

I1−C1∑

k1=1

I2−C2∑

k2=1

I3−C3∑

k3=1

αk1,k2,k3
w̃1,k1

(x1) · w̃2,k2
(x2) · w̃3,k3

(x3). (11)

The below examples clearly show that the proposed ap-
proach has good compression capabilities, which further ex-
tends its applicability also in the field of image processing.
The only disadvantage of the HOSVD based approches is
their relatively high computing complexity, comparing to other
methods aimed for similar purposes.

V. EXAMPLES

Part-1 (HOSVD vs. Fourier)

In this section some approximations can be observed per-
formed by the proposed and by the Fourier-based approach.
As the number of the used components decreases, the observ-
able differences in quality become more significant. In the
examples below in both the HOSVD-based and Fourier-based
cases the same number of components have been used in order
to show how the form of determined functions influences the
quality.

Fig. 2. Original image (24bit RGB)
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Fig. 3. HOSVD-based approximation using 7500 components composed
from polylinear functions on HOSVD basis

Fig. 4. Fourier-based approximation using 7500 components composed from
trigonometric functions

Fig. 5. Enlarged segment of Fig.3

Fig. 6. Enlarged segment of Fig.4. Occurence of waves can be observed.

Fig. 7. HOSVD-based approximation using 2700 components composed
from polylinear functions on HOSVD basis

Fig. 8. Fourier-based approximation using 2700 components composed from
trigonometric functions
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Fig. 9. Enlarged segment of Fig.7

Fig. 10. Enlarged segment of Fig.8. Occurence of waves can be observed.

Part-2 (Resolution Enhancement)

The pictures are illustrating the effectiveness of the image
zooming with the proposed approach. The resulting images are
compared to the results obtained by the bilinear and bicubic
image interpolation methods. Fig. 11 and 15 represent the
original low resolution images. In figs. 12 – 14 the enlarged
versions of the indicated rectangular area (see Fig. 11) can
be followed, obtained by the above mentioned interpolation
techniques and by the proposed one. Figs. 16 – 19 stand for
the same sequence, but regarding the indicated rectangular area
depicted in Fig. 15.

VI. CONCLUSION

In the present paper a new image representation domain
and reconstruction technique has been introduced. The results
show that how the efficiency of the certain tasks depends on
the applied domain. Image zooming has been performed using
the proposed technique and has been compared to other well
known image interpolation methods. Using this technique the
resulted image maintains the edges more accurately than the

Fig. 11. The original image.

Fig. 12. The 10x enlarged rectangular area using bilinear interpolation.

Fig. 13. The 10x enlarged rectangular area using bicubic interpolation.
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Fig. 14. The 10x enlarged rectangular area using the proposed HOSVD-based
method. Smoother edges can be observed.

Fig. 15. The original image.

Fig. 16. The 10x enlarged rectangular area using Nearest-neighbor interpo-
lation method.

Fig. 17. The 10x enlarged rectangular area using bilinear interpolation.

Fig. 18. The 10x enlarged rectangular area using bicubic interpolation.

Fig. 19. The 10x enlarged rectangular area using the proposedHOSVD-based
method. Smoother edges can be observed.
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other well-known image interpolation methods. Furthermore,
some properties of the proposed representation domain have
been compared to the corresponding properties of the Fourier-
based approximation. The results show that in the proposed
domain some tasks can be performed more efficiently then in
other domains. The proposed form of image representation can
efficiently be applied also for image compression and noise
filtering.
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