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Abstract—In this work the nonlocal symmetries of a fam-
ily Benjamin-Bona-Mahony-Burgers equations are studied. The
partial differential equation written as a conservation law can
be transformed into an equivalent system by introducing a
suitable potential. The nonlocal symmetry group generators of
original partial differential equation can be obtained through
their equivalent system. We have proved that the nonclassical
method applied to this system leads to new symmetries, which are
not solutions arising from potential symmetries of the Benjamin-
Bona-Mahony-Burgers equations.

We also have derived traveling wave solutions for the
Benjamin-Bona-Mahony-Burgers equations by using a direct
method. Among them we find a solution which describes a kink
solution.

Index Terms—Nonlocal symmetries, Partial differential equa-
tions, Nonlinear equations, MAXIMA Software, kink solutions

I. INTRODUCTION

We consider the family of Benjamin-Bona-Mahony-Burgers
equations (GBBMB)

ut + bux + a (um)x + (un)xxt + c
(

uk
)

xx
= 0, (1)

where c,m, n, k are parameters different to zero and a, b

are arbitrary constants, which was introduced by Bruzón and
Gandarias in [18]. The authors in [18] made a complete Lie
group classification for the equation (1) and the corresponding
reduced equations were derived from the optimal system of
subalgebras. They considered the ordinary differential equa-
tions (ODE) y′′ + F (y) y′ + G(y) = 0 and they determined
the functional forms G(y) when F (y) is any arbitrary function
for which this equation admits solutions in terms of the Jacobi
elliptic functions. Due to the fact that a reduced equation of
(1) is of this form, equation (1) admits solutions in terms of
the Jacobi elliptic functions.

Conservation laws are important in the study of evolutionary
partial differential equations since they lead to constants of
motion for the time evolution of field variables. Nonlinear
partial differential equations (PDEs) that admit conservation
laws arise in many disciplines of the applied sciences including
physical chemistry, fluid mechanics, particle and quantum
physics, plasma physics, elasticity, gas dynamics, electromag-
netism, magneto-hydro-dynamics, nonlinear optics, and the
bio-sciences, [1], [25].

M. S. Bruzón and M.L. Gandarias are with Department of Math-
ematics, University of Cádiz, Spain. E-mails: m.bruzon@uca.es, mari-
aluz.gandarias@uca.es

Manuscript received March 23, 2011; revised, 2011.

Equation (1) includes important evolution equations em-
ployed in mathematical physics, engineering and fluid mechan-
ics. For instance, Benjamin-Bona-Mahony equation

ut + ux + uux − uxxt = 0,

was propused as an alternative model to the Korteweg–de
Vries equation for the long wave motion in nonlinear dis-
persive systems. Bruzón, Gandarias and Camacho [7] studied
similarity reductions of equation (1) for c = 0.

There is no existing general theory for solving nonlinear
PDEs. These solutions are obtained by using group invariants
to reduce the number of independent variables. Most of the
required theory and description of the method can be found
in for example [30], [31], [32]. Due to the great advance
in computation in the last years a great progress has been
made in the development of methods and their applications
to nonlinear PDEs for finding exact solutions. For instance,
classical Lie method [8], [21], nonclassical method [15],
simplest equation method [26], (G’/G)-expansion method [9],
[11], [14], extended simplest equation method [27], among
other.

An obvious limitation of group-theoretic methods based
in local symmetries, in their utility for particular PDEs, is
that there exists PDEs of physical interest possessing few
symmetries or none at all [30]. It turns out that PDEs can admit
nonlocal symmetries whose infinitesimal generators depend on
integrals of the dependent variables in some specific manner.

In [2], [3] Bluman introduced a method to find a new class
of symmetries for a PDE. By writing a given PDE, denoted
by R{x, t, u} in a conserved form a related system denoted by
S{x, t, u, v} as additional dependent variables is obtained. Any
Lie group of point transformations admitted by S{x, t, u, v}
induces a symmetry for R{x, t, u}; when at least one of the
generators of the group depends explicitly of the potential,
then the corresponding symmetry is neither a point nor a
Lie-Bäcklund symmetry. These symmetries of R{x, t, u} are
called potential symmetries. The existence of potential sym-
metries leads to the construction of corresponding invariant
solutions as well as to the linearization of nonlinear PDEs
by non-invertible mappings. In [22] Gandarias introduced a
new classes of symmetries for a PDE, which can be written
in the form of conservation laws. These symmetries, called
nonclassical potential symmetries, are obtained as nonclassical
symmetries of an associated system.

In this work we also show how the free software MAXIMA
program symmgrp2009.max, derived by W. Heremann, can be
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used to calculate the determining equations for the nonlocal
symmetries of the GBBMB equation (1).

The structure of the work is as follows: In Sec. II we analyze
the classical potential symmetries of the GBBMB equation. In
Sec. III we study the nonclassical potential symmetries of the
GBBMB equation. We apply a direct method and we obtain
travelling wave solutions in Sec. IV. Finally, in Sec. V we
give conclusions.

II. ANALYSIS

In order to find potential symmetries of (1) we write the
equation in a conserved form and the associated auxiliary
system is given by

{

vx = u,

vt = −bu− aum − (un)xt − c
(

uk
)

x
.

(2)

A Lie point symmetry admitted by S(x, t, u, v) is a symmetry
characterized by an infinitesimal transformation of the form

x∗ = xi + εξ(x, t, u, v) +O(ε2),
t∗ = t+ ετ(x, t, u, v) +O(ε2),
u∗ = u+ εψ(x, t, u, v) +O(ε2)
v∗ = v + εϕ(x, t, u, v) +O(ε2)

(3)

admitted by system (2). In the present work, we will study
if the point symmetries of (2) induce potential symmetries of
equation (1). These symmetries are such that

ξ2v + τ2v + ψ2
v 6= 0.

If the above relation does not hold, then the point symmetries
of (2) project into point symmetries of (1). System (2) admit
Lie symmetries if and only if

pr(2)X(vx − u) = 0,

pr(2)X
(

vt + bu+ aum + (un)xt + c(uk)x
)

= 0,

where pr(2)V is the second extended generator of vector field

X = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t
+ψ(x, t, u, v)∂u + ϕ(x, t, u, v)∂v .

(4)

In other words, we require that the infinitesimal generator
leaves invariant the set of solutions of (2) and we obtain
an overdetermined system of equations called determining
equations.

A. Symbolic manipulation programs

In this section we show how the free software MAX-
IMA program symmgrp2009.max derived by W. Heremann
can be used to calculate the determining equations for the
potential symmetries of the GBBMB equation (1). To use
symmgrp2009.max, we have to convert (1) into the appropriate
MAXIMA syntax: x[1] and x[2] represent the independent
variables x and t, respectively, u[1] and u[2] represent the de-
pendent variables u and v, respectively, u[1, [1, 0]] represents
ux, u[1, [1,1]] represents uxt, u[2, [1, 0]] represents vx, and
u[2, [0, 1]] represents vt. Hence (2) is rewritten as

u[2, [1, 0]]− u[1];
u[2, [0, 1]] + b ∗ u[1] + a ∗ u[1]m

+c ∗ k ∗ u[1](k−1) ∗ u[1, [1, 0]]
+c ∗ (n− 1) ∗ n ∗ u[1](n−2) ∗ (u[1, [0, 1]])

(u[1, [1, 0]]) + c ∗ n ∗ u[1](n−1) ∗ (u[1, [1, 1]]);

The infinitesimals ξ, τ , ψ and ϕ are represented by
eta1, eta2, phi1 and phi2, respectively. The program symm-
grp2009.max automatically computes the determining equa-
tions for the infinitesimals. The batchfile batch containing
the MAXIMA commands to implement the program symm-
grp2009.max, which we have called GBBMBPotcls.mac is

kill(all);

batchload("C:\\CLA\\symmgrp2009.max");

/*potential symmetries GBBMB eq.*/

batch("C:\\GBBMB\\GBBMBPotcls.dat");
symmetry(1,0,0);

printeqn(lode);

save("lodegnlh.lsp",lode);

for j thru q do (x[j]:=concat(x,j));

for j thru q do (u[j]:=concat(u,j));

ev(lode)$

gnlhode:ev(%,x1=x,x2=t,u1=u,u2=v);

grind:true$

stringout("gnlhode",gnlhode);

derivabbrev:true;

The first lines of this file are standard to symmgrp. max and
explained in [19]. The last lines are in order to create an output
suitable for solving the determining equations. This changes
x[1], x[2], u[1] and u[2] to x,t, u and v, respectively. The file
GBBMBPotcls.mac in turn batches the file GBBMBPotcls.dat
which contains the requisite data about (2).

p:2$
q:2$
m:2$

parameters:[a,b,c,n,k,s]$

warnings:true$

sublisteqs:[all]$

subst_deriv_of_vi:true$

info_given:true$

highest_derivatives:all$

depends([eta1,eta2,phi1,phi2],
[x[1],x[2],u[1],u[2]]);
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e1:u[2,[1,0]]-u[1];
e2:u[2,[0,1]]+b*u[1]+a*u[1]ˆs
+c*k*u[1]ˆ(k-1)*u[1,[1,0]]
+c*(n-1)*n*u[1]ˆ(n-2)*(u[1,[0,1]])
*(u[1,[1,0]])+c*n*u[1]ˆ(n-1)
*(u[1,[1,1]]);

v1:u[2,[1,0]];
v2:u[2,[0,1]];

The program symmgrp2009.max generates a system of
thirty determining equations which is given in Appendix 1.

B. Potential symmetries of GBBMB equation

Solving the system obtained using symmgrp2009.max and
converting MAXIMA syntax we obtain that ξ = ξ(x), τ =
τ(t), ϕ = ϕ(x, t, v) and

ψ = (ϕv − ξx) u+ ϕx

where ξ, τ and ϕ must satisfy the following equations

cnu2n+1 (nϕvvu+ nϕvx − ϕvx) = 0,
un+2

(

cnϕvvvu
n+2 + 2cnϕvvxu

n+1 + cnϕvxxu
n

−nϕvu+ ϕvu+ ξxnu+ ξxu− nϕx + ϕx) = 0,
c (n− 1)nun (nϕvvu+ nϕvx − ϕvx) = 0,

cknun+k (nϕvvu+ nϕvx − ϕvx) = 0,
cnun

(

nϕvvu
2 + ϕvvu

2 + 2nϕvxu− ξxxnu+ nϕxx

−ϕxx) = 0,
−
(

acnϕvvvu
m+n+2 + 2acnϕvvxu

m+n+1

+acnϕvxxu
m+n − aϕvmu

m+1 + aξxmu
m+1

+aϕvu
m+1 − aτtu

m+1 − aϕxmu
m + bcnϕvvvu

n+3

+2bcnϕvvxu
n+2 − cnϕtvvu

n+2 + bcnϕvxxu
n+1

−2cnϕtvxu
n+1 − cnϕtxxu

n − ckϕvvu
k+2

−2ckϕvxu
k+1 + cξxxku

k+1 − ckϕxxu
k − bτtu

2

+bξxu
2 − bϕxu− ϕtu

)

= 0,
an2ϕvvu

m+n+1 + an2ϕvxu
m+n

−anϕvxu
m+n + cknϕvvvu

n+k+2 + 2cknϕvvxu
n+k+1

+cknϕvxxu
n+k + bn2ϕvvu

n+2 + bn2ϕvxu
n+1

−bnϕvxu
n+1 − n2ϕtvu

n+1 − n2ϕtxu
n + nϕtxu

n

−k2ϕvu
k+1 + kϕvu

k+1 + ξxk
2uk+1 − τtku

k+1

+ξxku
k+1 − k2ϕxu

k + kϕxu
k = 0,

(n− 1)un+1
(

cnϕvvvu
n+2 + 2cnϕvvxu

n+1

+cnϕvxxu
n − nϕvu+ ϕvu+ ξxnu+ ξxu

−nϕx + 2ϕx) = 0.
(5)

If a, b, c and n, k,m are arbitrary constants,

ξ = k1, τ = k2, ψ = 0, ϕ = k3,

where k1, k2 and k3 are arbitrary constants. So the only
symmetries admitted by (1) are defined by the infinitesimal
generators

X1 = ∂x, X2 = ∂t, X3 = ∂v.

If a = b = 0 or a = 0 and n = 2k − 1 or b = 0 and
n = 2(k −m) + 1 we obtain new symmetries of the system

(2): From system (5) the infinitesimals are:

ξ =
(n− 1)k1

2
x+ k2,

τ = (n− k)k1 t+ k3,

ψ = k1u,

ϕ =
k1 (n+ 1) v

2
+ k4.

The previous generators do not correspond to a potential sym-
metry of the equation (1) because (ξv)

2
+ (τv)

2
+ (ψv)

2
= 0.

In this case we obtain a new symmetry which is given by the
infinitesimal generator

X4 =
(n− 1)

2
x∂x + (n− k)t∂t + u∂u +

(n+ 1)

2
v∂v .

We do not consider the case k = m = n = 1 because in this
case equation (1) is a linear PDE.

C. Reduction equations

As in the case of Lie point symmetries, potential symme-
tries may be used to derive similarity transformations. Such
transformations reduce the number of independent variables
of a system of PDEs. In order to find similarity solutions for
system (2) we need to solve the invariant surface conditions

ξux + τut = ψ, ξvx + τvt = ϕ,

where ξ, τ , ψ and ϕ are the infinitesimal of the transformation
(3). The similarity solutions can be found by solving the
corresponding characteristic equations

dx

ξ
=
dt

τ
=
du

ψ
=
dv

ϕ
. (6)

We present the similarity solutions which are produced by the
symmetries that were obtained in Section II.
Case 1. Substituting the generator X1 + X2 + X3 = λ∂x +
µ∂t + γ∂v into (6) we get

z = µx− λt, u(x, t) = h(z), v = γx− λw(z). (7)

Similarity transformation (7) reduces system (2) to the non-
linear system

hλ− γ + µw′ = 0,

hn−2 (h′)
2
µn2 λ+ hn−1 h′′ µnλ

−hn−2 (h′)2 µnλ− w′ − c hk−1 h′ k µ

−a hm − b h = 0.

(8)

System (8) can be transformed into the nonlinear ODE

hn−2 (h′)
2
µn2 λ+ hn−1 h′′ µnλ

−hn−2 (h′)
2
µnλ+ hλ

µ
− γ

µ
− c hk−1 h′ k µ

−a hm − b h = 0.

(9)

Equation (9) can be written in the form

h′′ + F (h)(h′)2 +G(h)h′ +H(h) = 0, (10)
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where F (h) =
n− 1

h
, G(h) = −

c hk−n k

nλ
and H(h) =

−
h1−n (γ + a hm µ+ b h µ)

µ2 nλ
.

Case 2. From X4 substituting the infinitesimals into equations
(6) we get

z =
x

2(n−k)
n−1

t
,

u(x, t) = x
2

n−1 h(z), v = x
n+1
n−1 w(z).

(11)

Similarity transformation (11) reduces system (2) with a =
b = 0 to the nonlinear system

2nw′z − 2kw′z + nw + w − hn+ h = 0,

2hn (h′)
2
n3z3 − 2hn (h′)

2
kn2z3 + 2hn+1h′′n2z3

−2hn (h′)
2
n2z3 − 2hn+1h′′knz3

+2hn (h′)
2
knz3 + h2nw′z2 − h2w′z2

+4hn+1h′n2z2 − 2hn+1h′knz2 − 2chk+1h′knz

+2chk+1h′k2z − 2chk+2k = 0.

(12)

Similarity transformation (11) reduces system (2) with a = 0
and n = 2k − 1 to the nonlinear system

2 (2k − 1)wzz − 2kwzz + (2k − 1)w + w

−h (2k − 1) + h = 0,

4h2k (h′)
2
k3z3 + 2h2k+1h′′k2z3

−3h2k+1h′′kz3 + 8h2k (h′)
2
kz3 + h2k+1h′′z3

−2h2k (h′)
2
z3 + h3kw′z2 − h3w′z2

+6h2k+1h′k2z2 − 7h2k+1h′kz2 + 2h2k+1h′z2

−chk+2h′k2z + chk+2h′kz − chk+3k

−bh4k + bh4 − 10h2k (h′)
2
k2z3 = 0.

(13)

Similarity transformation (11) reduces system (2) with b = 0
and n = 2(k −m) + 1 to the nonlinear system

2 (2 (k −m) + 1)w′z + (2 (k −m) + 1)w
+w − h (2 (k −m) + 1) + h− 2kw′z = 0,

4h2k (h′)
2
k3z3 + 2h2k+1h′′k2z3

8h2k (h′)
2
m3z3 − 20h2k (h′)

2
km2z3

−4h2k+1h′′m2z3 − 8h2k (h′)
2
m2z3

+16h2k (h′)
2
k2mz3 + 6h2k+1h′′kmz3

+14h2k (h′)
2
kmz3 + 4h2k+1h′′mz3

+2h2k (h′)
2
mz3 − 4h2k (h′)

2
k3z3

−2h2k+1h′′k2z3 − 6h2k (h′)
2
k2z3

−3h2k+1h′′kz3 − 2h2k (h′)
2
kz3

−h2k+1h′′z3 + h2m+1mw′z2

−h2m+1kw′z2 − 8h2k+1h′m2z2

+14h2k+1h′kmz2 + 8h2k+1h′mz2

−6h2k+1h′k2z2 − 7h2k+1h′kz2 − 2h2k+1h′z2

−2ch2m+kh′kmz + ch2m+kh′k2z + ch2m+kh′kz

−ah3m+1m+ ah3m+1k + ch2m+k+1k = 0.

(14)

III. NONCLASSICAL POTENTIAL SYMMETRIES

To obtain nonclassical potential symmetries of the GBBMB
equation, we apply the nonclassical method to system (2).
The basic idea is that the potential system S{x, t, u, v} is
augmented with the invariance surface conditions

ξux + τut − ψ = 0, (15)

ξvx + τvt − ϕ = 0, (16)

which is associated with the vector field (4)

X = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t
+ψ(x, t, u, v)∂u + ϕ(x, t, u, v)∂v .

In the case τ 6= 0, without loss of generality, we may
set τ(x, t, u) = 1. By requiring that both (2), (15) and
(16) are invariant under the transformations with infinitesimal
generator (4) one obtains overdetermined, nonlinear system
of equations for the infinitesimals ξ(x, t, u, v), τ(x, t, u, v),
ψ(x, t, u, v) and ϕ(x, t, u, v).

We use the program symmgrp2009.max. We implement
the program GBBMBPotNcls.mac of similar form to program
GBBMBPotcls.mac. We implement the program GBBMBPot-
Ncls.mac of the following form

p:2$
q:2$
m:2$
parameters:[a,b,c,n,k,s]$

warnings:true$

sublisteqs:[all]$

subst_deriv_of_vi:true$

info_given:true$

highest_derivatives:all$

depends([eta1,eta2,phi1,phi2],
[x[1],x[2],u[1],u[2]]);

ut:phi1-eta1*u[1,[1,0]];

vt:phi2-eta1*u[2,[1,0]];

uxt:diff(phi1,x[1])
+diff(phi1,u[1])*u[1,[1,0]]
-diff(eta1,x[1])*u[1,[1,0]]
-diff(eta1,u[1])*u[1,[1,0]]ˆ2
-eta1*u[1,[2,0]];

eta2:1;

e1:u[2,[1,0]]-u[1];
e2:vt+b*u[1]+a*u[1]ˆs
+c*k*u[1]ˆ(k-1)*u[1,[1,0]]
+c*(n-1)*n*u[1]ˆ(n-2)*(ut)*(u[1,[1,0]])
+c*n*u[1]ˆ(n-1)*(uxt);

v1:u[2,[1,0]];
v2:u[1,[2,0]];

The program symmgrp2009.max generates a system of six
determining equations which is given in Appendix 2. From
this system, if we require that ξu = ϕu = 0, we obtain that

ψ = −ξvu
2 + (ϕv − ξx)u+ ϕx

and

ξv(n+ 2) = 0 and (n− 1)ϕx = 0.
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If ξ = ξ(x, t) and n = 1 the nonclassical method applied to
(2) does not yield any new symmetry different from the ones
obtained by the Lie classical method in Sec. II.

If n = −2 and ϕ = ϕ(t, v), ξ and ϕ must satisfy the
equation

−2
(

2ξ2ξxx + ϕξvξx + ξtξx − ϕξξvx − 2ϕϕvξv − ξξtx
−2ϕvξt + 2ϕϕvvξ + 2ϕtvξ)− kuk+2 (−kξξx − 2ξξx
−ϕξv − ξt + kϕvξ + 2ϕvξ) + 2u

(

ϕξξvv − 2ξ2ξvx

−ϕ (ξv)
2
− ξtξv − ϕvξξv + ξξtv + 3ϕvvξ

2
)

+k (k + 1)uk+3ξξv = 0
(17)

From equation (17) if k is an arbitrary constant the nonclas-
sical method applied to (2) does not yield any new symmetry
different from the ones obtained by the Lie classical method
in Sec. II. The same result we obtain if m is an arbitrary
constant. But if n = −2, k = −1, c 6= 0 and m = 1, ξ and ϕ
must verify the following two equations

−4cξ2ξxx + ϕ (2cξξvx − 2cξvξx)

+u
(

−cξξx + ϕ
(

2cξξvv − 2c (ξv)
2 − cξv

)

− 4cξ2ξvx

+ϕv (cξ − 2cξξv)− 2cξtξv + 2cξξtv − cξt + 6cϕvvξ
2
)

−2cξtξx + ϕv (4cϕξv + 4cξt) + 2cξξtx − 4cϕϕvvξ

−4cϕtvξ = 0,

u ((8cξξv + cξ) ξxx + ϕvv (4cϕvξ − 2cξξx) + 4cξξvxξx
+ϕ (2cξξvvx − 2cξvξvx)− 4cξ2ξvxx − 2cξtξvx − 6cϕvξξvx
+2cξξtvx) + ϕ (2cξξvxx − 2cξvξxx) + (4cξξx − 2cξt) ξxx
−4cϕvξξxx + u2

(

ϕ (−ξξx − ξt) + 2cξξvvξx − 6cξ2ξvvx
+ϕv (3ϕξ − 4cξξvv) + (8cξξv + 2cξ) ξvx
+ϕvv (−2cξξv − cξ)− ϕ2ξv + 2cϕvvvξ

2 + ϕtξ
)

+u3
((

ξ2 + (−2b− 2a) ξ
)

ξx − 2cξ2ξvvv + (2cξξv + cξ) ξvv
+ϕ (ξ − b− a) ξv + (−b− a) ξt + ϕv

(

(3b+ 3a) ξ − 3ξ2
))

+2cξξtxx = 0.
(18)

Although equation (18) is too complicated to be solved in
general, we deduce the infinitesimal generators

ξ = k2 exp(k1v) +
1

2k1
, τ = 1,

ψ = −k2k1u
2 exp(k1v), ϕ = 0.

If n = k = −2 and m = 1, ξ = ξ(v) and ϕ = ϕ(v), ξ and
ϕ must satisfy

u
(

2cϕξξvv − 2cϕ (ξv)
2
+ (2c− 2cϕv) ξξv + 6cϕvvξ

2
)

+(4cϕϕv − 2cϕ) ξv − 4cϕϕvvξ = 0,

u3
(

−2cξ2ξvvv + 2cξξvξvv + (ϕξ + (−b− a)ϕ) ξv
−3ϕvξ

2 + (3b+ 3a)ϕvξ
)

+ u2 ((2c− 4cϕv) ξξvv
+
(

−2cϕvvξ − ϕ2
)

ξv + 2cϕvvvξ
2 + 3ϕϕvξ

)

+u (4cϕv − 2c)ϕvvξ = 0.
(19)

From (19) for c = 0 we get the infinitesimal generators:

ξ = c0(k1v + k2)
3, τ = 1,

ψ = −k1u
(

3c0k1
2uv2 + 6c0k1k2uv + 3c0k2

2u− 1
)

,

ϕ = k1v + k2.

IV. SOME EXACT SOLUTIONS

In this section we consider ODE (9) and look exact solutions
of this equation in the form

h(z) =
a1 exp(z)

1 + a2 exp(z)
. (20)

Substituting (20) into (9), we get

C1 + C2

(

a1e
z

a2ez+1

)m

+ C3

(

a1e
z

a2ez+1

)k

+C4

(

a1e
z

a2ez+1

)n

= 0
(21)

where

C1 = −a1 (a2e
z + 1) [ez(a1λ− a2γ − a1bµ)− γ]

C2 = aµ (a2e
z + 1)

2

C3 = ckµ2 (a2e
z + 1)

C4 = nnµ2 (a2e
z − n)

From C1 = 0 we obtain that γ = 0 and λ = bµ.
If m = n = k equation (21) becomes

C2 + C3 + C4 = 0. (22)

By equating to zero the coefficients of exp(z), exp(2z) and
the independent term, we get the following system

aa22 = 0, (23)

a2
(

b k µ2 + c k µ+ 2 a
)

= 0, (24)

−
(

b k2 µ2 − c k µ− a
)

= 0. (25)

From (23-25) we obtain

a = 0, m = n = k = −1, c = −bµ

which yields for these values of constants to the following
exact solution

h(z) =
a1 exp(z)

1 + a2 exp(z)
. (26)

Back to the function u we have that

u(x, t) =
a1 exp(µx− b µ t)

1 + a2 exp(µx − b µ t)
(27)

is an exact solution for (1). For a1 = a2 = 1, µ = 1
4 and

b = 1
2 and t = 0, 5, 10 we plot the solution

u(x, t) =
exp

(

1
4 (x − 1

2 t)
)

1 + exp
(

1
4 (x− 1

2 t)
) . (28)

We can observe that solution (27) describes a kink solution
(see Figure 1).
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Fig. 1. Solution (28) for t = 0, 5, 10

V. CONCLUSIONS

In this paper we have studied the Lie symmetries of system
(2), depending on the values of the constants a, b, c, n, k and
m. By making use of the theory of symmetry reductions in
differential equations. We have constructed all the invariant
solutions with regard to the one-dimensional system of sub-
algebras. Besides the travelling wave solution, we find new
similarity reductions for this system of equations. This system
is a conservation law for the Generalized BBGB equation (1).
We have proved that the symmetries of system (2) does not
yield classical potential symmetries of equation (1). The ansatz
to generate nonclassical solutions of the associated system (2)
yields solutions of (1) which are not solutions arising from
classical potential symmetries of (1).
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APPENDIX A
DETERMINING EQUATIONS

In Figure 2 we show the determining equations obtained
from the program symmgrp2009.max by applying the classical
potential symmetries

In Figure 3 we show the determining equations obtained
from the program symmgrp2009.max by applying the non-
classical potential symmetries
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Fig. 2. Determining equations obtained by applying the classical potential
symmetries
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Fig. 3. Determining equations obtained by applying the nonclassical potential
symmetries
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