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Abstract—Nonlinear time series analysis is a powerful method-
ology that permits to predict the temporal evolution of some
kinds of dynamical systems from characteristic quantities, such
as the minimal embedding dimension or the maximal Lyapunov
exponent. In fact, one of the most important goals of nonlinear
analysis of experimental time series is the prediction. The
subspace identification methods provides a good framework to
model a system, both deterministic and stochastic, in a easily
way. In order to make predictions, we propose a method which
combine the minimal embedding dimension obtained by the
method of false nearest neighbors and a model estimated by
means of a subspace identification method. The results, in terms
of predicted error, show the reliability of this new approach.

Index Terms—Nonlinear Time Series Analysis, False Nearest
Neighbors Method, Subspace Identification Methods, Prediction

I. I NTRODUCTION

Since the discovery of chaos, a growing interest in this
field of research has risen rapidly. Nonlinear time series
analysis is a powerful methodology that permits to predict
the temporal evolution of some kinds of dynamical systems
from characteristic quantities, such as the minimal embedding
dimension or the maximal Lyapunov exponent. These char-
acteristic quantities are extracted from study of time series
obtained by any variable of the dynamical system. Thus,
nonlinear time series analysis provides tools that bridge the
gap between experimentally observed irregular behavior and
deterministic chaos theory [5], [12], [14], [15].

Prediction is one of the main goals of the time series
analysis. When a prediction of the behavior of the dynamical
system has to be given, local and global predictors as those
which appears in TISEAN [4], Artificial Neural Networks or

others prediction methods based on ARIMA framework can
be used.

On the other hand, the Subspace Identification Methods
(SIMs) [18], [19] provides a good framework to model a
system, both deterministic and stochastic, in a easily way. By
using the model obtained by means of a SIM it is possible to
predict the future behavior of the system. In this case, only
one parameter is needed, that is, the order of the system.

In this paper we propose a new approach for the prediction
of air temperature by combining the method of the False
Nearest Neighbors (FNN) [6] and a SIM. The FNN method
is used to calculate the minimal embedding dimension of a
dynamical system.

This paper is organized as follows. Section II introduces
the method of false nearest neighbors and the framework of
the subspace system identification, and then a method which
combines both sources of information is proposed. Section III
presents the case studies and the experimental results. Finally,
the conclusions and the future works are outlined in Section
IV.

II. T HE METHOD OFFALSE NEARESTNEIGHBORS AND

SUBSPACESYSTEM IDENTIFICATION

This section introduces the method of false nearest neigh-
bors and the framework of subspace identification methods,
and then it proposes a method which combines both sources
of information.

A. The method of False Nearest Neighbors

Dynamical systems are studied from two different view
points. One is from an previously known model which explains
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its behavior while the other is from a time series carried out by
means of successive data acquisition per constant time periods
{yi}i=N

i=1 . This becomes the basis of nonlinear time series
analysis. This methodology is based on the reconstruction of
state space in a dynamical system from theorem of Takens
[16]. The basic idea is the dynamical states spaceM of a dy-
namical system with dimensionm is able to be characterized
uniquely bym independent quantities. One of these systems of
independent quantities are the own coordinates of the phases
space (more precisely, the coordinates related to the basis that
causes this phases spaceM ).

yρ(t) = (y1(t), y2(t), . . . , yi(t), . . . , ym(t))T (1)

The most important phase space reconstruction technique
is the method of delay. This technique takesm consecutive
elements from the time series as coordinates in the phase
space in order to find a vectorial space that contains the same
information as the original states space [13]. This implies
transforming a set of scalar data of dimension 1 (the time
series) into vectorial data of dimensionm (the reconstructed
space phase). This phase space is the natural basis to formulate
nonlinear time series algorithms from the chaos theory, rather
than the time or the frequency domain. Vectors in this new
space, the embedding space, are formed from time delayed
values of the scalar measurements:

~yi = [yi−(m−1)τ , ......., yi−τ , yi]
T

i : 1, 2, 3, ......., N − (m− 1)τ (2)

In Eq. (2), the numberm of elements is called the embed-
ding dimension, and the timeτ is generally referred to as the
delay.

In practice, the natural questions are what time delay and
what embedding dimension is the most appropriate for the
reconstruction in the phase space. There are several methods
to find out the minimal embedding dimension,m, i.e. global
embedding dimension. A noteworthy method is the afore-
mentioned method of false nearest neighbors. This method
identifies the number of “false nearest neighbors”, points that
appear to be nearest neighbors because the embedding space
is too small.

The FNN method supposes that the minimal embedding
dimension for a time series{yi} is m0. In this way, the recon-
structed system in am0−dimensional delay space is a one-
to-one image of the system in the original phase space. Thus,
the neighbors of a given point are mapped onto neighbors in
the delay space. If anm−dimensional space (m < m0) is
considered, then the topological structures are not preserved
and the points are projected into neighborhoods of other points
to which they would not belong in higher dimensions. In this
case, these points are calledfalse neighbors.

The idea of the FNN method is to measure the distances
between a point~yi and its nearest neighbor~yj; as this
dimension increases, this distance should not change if the
points are really nearest neighbors. If we define the distance
between a point and its nearest neighbor using Euclidean

distance, we can evaluate the change in distance by adding one
more dimension and then we can look at the relative change
in the distance as a way to see if our points were not really
close together but a projection from a higher phase space. The
criterion for falseness is thus

| yi+1 − yj+1 |
‖ ~yi − ~yj ‖

> Rt, (3)

whereRt is a threshold value. Using this criterion we can
then test our sequence of points and, as dimension increases,
find where the percentage of nearest neighbors goes to0.

B. Subspace System Identification

Subspace-based system identification is a branch that has
been recently developed in system identification (since begin-
ning of 1990’s), which has attracted much attention, owing to
its computational simplicity and effectiveness in identifying
dynamic state-space linear multivariable systems.

The three most well-known subspace algorithms are N4SID
[17], MOESP [19] and CVA [7]. N4SID is one of the most
popular classes of subspace algorithms. N4SID are part of the
set of combined deterministic-stochastic subspace algorithms,
but our interest is in the stochastic part because it computes
state space models using only output data. So that, N4SID is
the class of subspace algorithms that have been used for the
proposed scheme of modeling and predicting. Following is de-
scribed the N4SID class and then the stochastic identification.

Numerical algorithms for Subspace State Space System Iden-
tification

The greater part of the systems identification literature
is concerned with computing polynomial models, which are
however known to typically give rise to numerically ill-
conditioned mathematical problems, especially for Multi-Input
Multi-Output systems. Numerical algorithms for Subspace
State Space System Identification (N4SID) are then viewed
as the better alternatives [17]. This is especially true for high-
order multivariable systems, for which it is not trivial to find
a useful parameterization among all possible parametrizations.
This parametrization is needed to start up the classical identifi-
cation algorithms [8], which means that a priori knowledge of
the order and of the observability (or controllability) indices
is required.

With N4SID algorithms, most of this a priori parametriza-
tion can be avoided. Only the order of the system is needed
and it can be determined through inspection of the dominant
singular values of a matrix that is calculated during the
identification. The state space matrices are not calculated in
their canonical forms (with a minimal number of parameters),
but as full state space matrices in a certain, almost optimally
conditioned basis (this basis is uniquely determined, so that
there is no problem of identifiability). This implies that the
observability (or controllability) indices do not have to be
known in advance.

Another major advantage is that N4SID algorithms are non-
iterative, with no nonlinear optimization part involved. This
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is why they do not suffer from the typical disadvantages
of iterative algorithms, e.g. no guaranteed convergence, local
minima of the objective criterion and sensitivity to initial
estimates.

For classical identification, an extra parametrization of the
initial state is needed when estimating a state space system
from data measured on a plant with a non-zero initial condi-
tion.

Stochastic Identification

This subsection treats the subspace identification of purely
stochastic systems with no external input (uk ≡ 0). The
stochastic identification problem thus consists of computing
the stochastic system matrices from given output data only.

Stochastic subspace identification algorithms compute state
space models from given output data. Following it states the
stochastic (subspace) identification problem.

Given: s measurements of the outputyk ∈ R
l generated by

the unknown stochastic system of ordern:

xs
k+1 = Axs

k + wk, (4)

yk = Cxs
k + vk, (5)

with wk and vk zero mean, white vector sequences with
covariance matrix:

E[

(
wp

vp

)(
wT

q vTq
)
] =

(
Q S
ST R

)
δpq. (6)

Determine:

• The ordern of the unknown system
• The system matricesA ∈ R

n×n, C ∈ R
l×n up to within

a similarly transformation andQ ∈ R
n×n, S ∈ R

n×l,
R ∈ R

l×l so that the second order statistics of the output
of the model and of the given output are equal.

C. Combination of FNN and SIM methods

In the literature we can find three basic methods used to
choose the minimal embedding dimension.

1) Computing an invariant on the attractor [3].
2) Singular Value Decomposition (SVD) [1].
3) The FNN method [6], which has been previously intro-

duced.

The subspace identification methods provide a good frame-
work to model a system, both deterministic and stochastic,
in a easily way. By using the model obtained by means of
subspace identification methods, it is possible to predict the
behavior of the system. In this case, only one parameter is
needed, that is, the order of the system.

The subspace identification methods are based on SVD
information asking for an order of the system, which is used
to generate a model of it. The SVD procedure and the FNN
method are used to choose the minimal embedding dimension
of a system. So that, it is possible to combine both information
sources in order to automatically generate a model of the
system. The minimal embedding dimension obtained by FNN

method is passed to the subspace identification method to
generate the model. This dimension is now considered the
order of system.

A MATLAB program (called edn4sid) has been made
using the n4sid() and predict() functions of the System
Identification Toolbox of MATLAB. This program loads the
time seriesy, estimate a model based on firstn

2 data points
using then4sid() function, and evaluate thek−step ahead
predictions on the second half ofy. The order used to estimate
the model is the minimal embedding dimensionm of the time
series, instead of using SVD.

Prediction based on a model means forecasting the model
responsek−steps ahead into the future using the current and
past values of measured input and output.k, or kTs time units
whereTs is the sampling interval, is the prediction horizon.
To predict the model’s responsek−steps into the future from
the current timet, one needs to know inputs up to timet+ k
and outputs up to timet:

ŷ(t+ k) = f(u(t+ k), u(t+ k − 1), ...,

u(t), u(t− 1), ..., u(0),

y(t), y(t− 1), y(t− 2), ..., y(0))

u(0) and y(0) are the initial states. f() represents the
predictor whose form depends on the model structure. How-
ever, edn4sid method is based on stochastic subspace system
identification, and therefore no inputs are considered.

The model is evaluated in state space form, and the state
equations are simulatedk−steps ahead with initial valuey(t−
k) = ŷ(t−k), whereŷ(t−k) is the Kalman filter state estimate.

Pseudocode 1 describes the proposed method edn4sid.

Algorithm 1 ed n4sid method

Program ed n4sid : (y,m, k)
Inputs: y is a time series ofn data points;m is the
minimal embedding dimension of the system (order of
the system); andk is the prediction horizon
Outputs: ŷ is the predicted output; and the Best Fit (BF)
metric

1: Loading time series ofn length
2: Estimating a state-space model using then4sid() function

with the first n
2 points of they. The order used is the

minimal embedding dimensionm
3: Predicting the output (̂y) k−steps ahead using the

predict() function. This function takes the estimated
model and the second half ofy

4: Plotting the second half ofy and ŷ
5: Computing the best fit of the predicted outputŷ

This method uses theBest Fit (BF) metric as prediction
error. The method displays the percentage of the output that
the model reproduces (best fit), computed using Eq. (7):

Best F it =

(
1− |y − ŷ|

y − ȳ

)
× 100 (7)
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Fig. 1. Time series of the Lorenz attractor.

In Eq. (7),y is the measured output,ŷ is the predicted model
output, and̄y is the mean ofy. 100% corresponds to a perfect
fit, and0% indicates that the fit is no better than guessing the
output to be a constant(ŷ = ȳ). Because of the definition of
best fit, it is possible for this value to be negative.

III. C ASE STUDIES AND EXPERIMENTAL RESULTS

This section describes the case studies selected, and the
results of appliying the proposed prediction method in each
case. The Lorenz attractor, which is a classical example
of continuous-time chaotic system, an ECG signal and a
temperature time series form the case studies.

A. The Lorenz Attractor

The Lorenz system [9] shows how the state of a dynamical
system (the three variables of a three-dimensional system)
evolves over time in a complex, non-repeating pattern, which
is often described as beautiful. The equations that describe the
system were introduced by E. Lorenz in 1963, who derived it
from the simplified equations of convection rolls arising in the
equations of the atmosphere. These equations are the following

dx

dt
= σ(y − x)

dy

dt
= x(r − z)− y (8)

dz

dt
= xy − bz,

whereσ, r andb are the parameters of the Lorenz system.σ
is called thePrandtl number, r is called theRayleigh number
andb is a geometric factor.

Fig. 1 shows a part of the Lorenz time series (the transitory
part has been removed).

The minimal embedding dimension of this case is3, which
has been computed by using the TISEAN routines. As it is
commented in Section II, this dimension is now considered the
order of system, which is passed to the subspace identification
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Best fit for the Lorenz attractor

Fig. 2. Best Fit for the Lorenz attractor.

method to generate the model and then to predictk steps
ahead.

Fig. 2 shows the prediction error in function ofk according
to best fit metric for the Lorenz attractor.

The accuracy of the method for the Lorenz attractor is
greater than50% for k ≤ 6, decreasing the accuracy until
k = 12.

Fig. 3 shows a part of the original and predicted output
using two different values ofk for the Lorenz case study.

The one−step ahead prediction for the Lorenz attractor (red)
and the original time series (blue) are practically equal, while
the5−steps ahead prediction shows a prediction quite similar
to the original time series with small differences. In fact, the
5−steps ahead prediction has aroundBF = 71%.

B. ECG Signal

ElectroCardioGraphy(ECG) is a transthoracic interpreta-
tion of the electrical activity of the heart over time captured
and externally recorded by skin electrodes. It is a noninvasive
recording produced by an electrocardiographic device.

Electrical impulses in the heart originate in the sinoatrial
node and travel through the intimate conducting system to the
heart muscle. The impulses stimulate the myocardial muscle
fibers to contract and thus induce systole. The electrical waves
can be measured at electrodes placed at specific points on the
skin. Electrodes on different sides of the heart measure the
activity of different parts of the heart muscle. An ECG displays
the voltage between pairs of these electrodes, and the muscle
activity that they measure, from different directions, can also
be understood as vectors. This display indicates the overall
rhythm of the heart and any weaknesses in different parts of
the heart muscle.

The ECG time series has been simulated by ECGSYN [2],
[10], [11]. The ECG sampling frequency is256Hz. Simulation
is 60bpm of heart rate mean for a healthy person. Standard
deviation of heart rate is1bpm.

Fig. 4 shows the ECG time series.
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Fig. 3. Original and predicted output for the Lorenz attractor. (a)k = 1. (b)
k = 5.
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Fig. 4. Time series of the ECG.
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Fig. 5. Best Fit for the ECG signal.

The value of the embedding dimension is3, according to
the output of the FNN method.

Fig. 5 shows the prediction error in function ofk according
to best fit metric for the ECG signal.

The accuracy of the method for the ECG signal is greater
than50% for k ≤ 5, decreasing untilk = 9.

Fig. 6 shows a part of the original and predicted output
using two different values ofk for the ECG signal.

As in the previous case, the prediction for the ECG signal
is quite similar to the original time series. Using the3−steps
ahead prediction, with aroundBF = 78%, the QRS complex
and P- and T-waves of the ECG signal can be seen.

C. Air Temperature Data

We have also considered a one-year time series of air
temperature data. The weather data have been recorded by
means of a meteorological station (see Fig. 7) located on the
top of theEscuela Polit́ecnica Superior de Albacetebuilding,
University of Castilla-La Mancha. This building is placed
in the urban area of Albacete (Spain). The meteorological
station is property of the “Interdisciplinary Research Group
in Dynamical Systems” (IRGDS). This case study has special
relevance in Castilla-La Mancha due to the fact that the
importance of the meteorology/climatology in the economy
of this region, in the sense that one of the most important
economic sectors in Castilla-La Mancha consist on agriculture.

Fig. 7 shows a picture of the meteorological station (left)
and a picture of the temperature sensor (right).

Fig. 8 shows the time series of temperature data.
The minimal embedding dimension of this case is3. Then,

this is passed to the subspace identification method to generate
the model and then to predictk steps ahead.

Fig. 9 shows the prediction error in function ofk according
to best fit metric for the time series of temperature.

The time series of temperature shows a good accuracy for
k ≤ 30 with aroundBF = 55%, decreasing rapidly until
k = 40.
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Fig. 6. Original and predicted output for the ECG signal. (a)k = 1. (b)
k = 3.

Moreover, Fig. 10 shows a part of the original and predicted
output using two different values ofk for the temperature time
series. It shows that the prediction follows the maximum and
minimum of temperature data during the presented interval of
time, using a15−ahead predictions (aroundBF = 88). The
one−step ahead prediction shows a fit really similar to the
original time series.

IV. CONCLUSIONS ANDFUTURE WORK

This paper has proposed a method for modeling and predict-
ing with time series data, which is based on subspace system
identification. N4SID is the class of subspace algorithms
chosen for this work. The subspace identification methods
are based on SVD information asking for an order of the
system, which is used to generate a model of it. The SVD
procedure and the FNN method are used to choose the minimal

(a)

(b)

Fig. 7. Picture of meteorological station. (a) General view of the meteoro-
logical station. (b) View of the temperature sensor.
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Fig. 8. Time series of the temperature data.
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Fig. 9. Best Fit for the temperature time series.
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Fig. 10. Original and predicted output for the temperature time series. (a)
k = 1. (b) k = 15.

embedding dimension of a system, which unfolds the attractor
in the projected state space with no overlaps. So that, it is
possible to combine both information sources in order to
automatically generate a model of the system. The minimal
embedding dimension obtained by FNN method is passed to
the subspace identification method to generate the model. This
dimension is now considered the order of system. The model
is evaluated in state-space form, and the state equations are
simulatedk steps ahead. The paper presents some results that
corroborates the goodness of the proposed method.

Although the edn4sid method has achieved good results,
it is interesting to carry out an more exhaustive analysis of
the method and make an comparative study of other relevant
methods in this area. Moreover, it is expected to asses the
accuracy of the method for hole filling of time series.

Finally, it can be extended to other time series models, such
as ARIMA framework.
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