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Abstract—Nonlinear time series analysis is a powerful method- others prediction methods based on ARIMA framework can
ology that permits to predict the temporal evolution of some pe ysed.
kinds of dynamical systems from characteristic quantities, such On the other hand, the Subspace Identification Methods

as the minimal embedding dimension or the maximal Lyapunov .
exponent. In fact, one of the most important goals of nonlinear (SIMs) [18], [19] provides a good framework to model a

analysis of experimental time series is the prediction. The System, both deterministic and stochastic, in a easily way. By
subspace identification methods provides a good framework to using the model obtained by means of a SIM it is possible to
model a system, both deterministic and stochastic, in a easily predict the future behavior of the system. In this case, only
way. In order to make predictions, we propose a method which one parameter is needed, that is, the order of the system.

combine the minimal embedding dimension obtained by the In thi h for th dicti
method of false nearest neighbors and a model estimated by N IS paper we propose a new approach for the prediction

means of a subspace identification method. The results, in terms Of air temperature by combining the method of the False
of predicted error, show the reliability of this new approach. Nearest Neighbors (FNN) [6] and a SIM. The FNN method

Index Terms—Nonlinear Time Series Analysis, False Nearest js ysed to calculate the minimal embedding dimension of a
Neighbors Method, Subspace Identification Methods, Prediction dynamical system.

This paper is organized as follows. Section Il introduces
the method of false nearest neighbors and the framework of
the subspace system identification, and then a method which

Since the discovery of chaos, a growing interest in thiombines both sources of information is proposed. Section 1l
field of research has risen rapidly. Nonlinear time seriggesents the case studies and the experimental results. Finally,
analysis is a powerful methodology that permits to predidbe conclusions and the future works are outlined in Section
the temporal evolution of some kinds of dynamical systeny.
from characteristic quantities, such as the minimal embeddin
dimension or the maximal Lyapunov exponent. These char!!- THE METHOD OFFALSE NEARESTNEIGHBORS AND
acteristic quantities are extracted from study of time series SUBSPACESYSTEM IDENTIFICATION
obtained by any variable of the dynamical system. Thus, This section introduces the method of false nearest neigh-
nonlinear time series analysis provides tools that bridge thers and the framework of subspace identification methods,
gap between experimentally observed irregular behavior aand then it proposes a method which combines both sources
deterministic chaos theory [5], [12], [14], [15]. of information.

Prediction is one of the main goals of the time series )
analysis. When a prediction of the behavior of the dynamicat The method of False Nearest Neighbors
system has to be given, local and global predictors as thos®ynamical systems are studied from two different view
which appears in TISEAN [4], Artificial Neural Networks orpoints. One is from an previously known model which explains

|I. INTRODUCTION
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its behavior while the other is from a time series carried qut laistance, we can evaluate the change in distance by adding one
means of successive data acquisition per constant time periodwe dimension and then we can look at the relative change
{y:}i=l. This becomes the basis of nonlinear time seriés the distance as a way to see if our points were not really
analysis. This methodology is based on the reconstructionadbse together but a projection from a higher phase space. The
state space in a dynamical system from theorem of Takesrgterion for falseness is thus

[16]. The basic idea is the dynamical states spatcef a dy-

namical system with dimensiom is able to be characterized [Yir1 =y | > R, (3)
uniquely bym independent quantities. One of these systems of g —g; |l ’

independent quantities are the own coordinates of the phaseghere R, is a threshold value. Using this criterion we can
space (more precisely, the coordinates related to the basis fiah test our sequence of points and, as dimension increases,
causes this phases spalth). find where the percentage of nearest neighbors goés to

Y (t) = (ya (), v2(t), -, mi(t), o ym ()T (1) B. Subspace System Identification

The most important phase space reconstruction techniquesubspace-based system identification is a branch that has
is the method of delay. This technique takesconsecutive P€€n recently deve_loped in system |dent|f|cat|on_(smce _begm—
elements from the time series as coordinates in the ph&4gd of 1990s), which has attracted much attention, owing to
space in order to find a vectorial space that contains the salffeCOmputational simplicity and effectiveness in identifying
information as the original states space [13]. This impli€d/namic state-space linear multivariable systems.
transforming a set of scalar data of dimension 1 (the time The three most well-known subspace algorithms are N4SID
series) into vectorial data of dimension (the reconstructed [17], MOESP [19] and CVA [7]. N4SID is one of the most
space phase). This phase space is the natural basis to formRUIar classes of subspace algorithms. N4SID are part of the
nonlinear time series algorithms from the chaos theory, ratrR&t of combined deterministic-stochastic subspace algorithms,
than the time or the frequency domain. Vectors in this nelpt our interest is in th_e stochastic part because it computgs
space, the embedding space, are formed from time dela)%@te space models using only output data. So that, N4SID is

values of the scalar measurements: the class of subspace algorithms that have been used for the
proposed scheme of modeling and predicting. Following is de-
Ui = [Yim(m—1)rs oo s Yi—rs yi]T scribed the N4SID class and then the stochastic identification.
i:1,2,3, ... N —=(m—1)T (2)

Numerical algorithms for Subspace State Space System Iden-

In Eq. (2), the numberm of elements is called the embegAification
ding dimension, and the time is generally referred to as the The greater part of the systems identification literature
delay. is concerned with computing polynomial models, which are
In practice, the natural questions are what time delay ahdwever known to typically give rise to numerically ill-
what embedding dimension is the most appropriate for tlkenditioned mathematical problems, especially for Multi-Input
reconstruction in the phase space. There are several methdd#i-Output systems. Numerical algorithms for Subspace
to find out the minimal embedding dimension, i.e. global State Space System lIdentification (N4SID) are then viewed
embedding dimension. A noteworthy method is the aforas the better alternatives [17]. This is especially true for high-
mentioned method of false nearest neighbors. This methodier multivariable systems, for which it is not trivial to find
identifies the number of “false nearest neighbors”, points thatuseful parameterization among all possible parametrizations.
appear to be nearest neighbors because the embedding spateparametrization is needed to start up the classical identifi-
is too small. cation algorithms [8], which means that a priori knowledge of
The FNN method supposes that the minimal embedditige order and of the observability (or controllability) indices
dimension for a time seriey; } is mo. In this way, the recon- is required.
structed system in ang—dimensional delay space is a one- With N4SID algorithms, most of this a priori parametriza-
to-one image of the system in the original phase space. Thtisn can be avoided. Only the order of the system is needed
the neighbors of a given point are mapped onto neighborsand it can be determined through inspection of the dominant
the delay space. If am—dimensional spacen{ < myg) is singular values of a matrix that is calculated during the
considered, then the topological structures are not presenigehtification. The state space matrices are not calculated in
and the points are projected into neighborhoods of other poititir canonical forms (with a minimal number of parameters),
to which they would not belong in higher dimensions. In thibut as full state space matrices in a certain, almost optimally
case, these points are callidse neighbors conditioned basis (this basis is uniquely determined, so that
The idea of the FNN method is to measure the distancieere is no problem of identifiability). This implies that the
between a pointy; and its nearest neighbog;; as this observability (or controllability) indices do not have to be
dimension increases, this distance should not change if theown in advance.
points are really nearest neighbors. If we define the distanceAnother major advantage is that N4SID algorithms are non-
between a point and its nearest neighbor using Euclidei#grative, with no nonlinear optimization part involved. This
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is why they do not suffer from the typical disadvantagesiethod is passed to the subspace identification method to
of iterative algorithms, e.g. no guaranteed convergence, loggnerate the model. This dimension is now considered the
minima of the objective criterion and sensitivity to initialorder of system.
estimates. A MATLAB program (called edn4sid) has been made
For classical identification, an extra parametrization of thesing the n4sid() and predict() functions of the System
initial state is needed when estimating a state space systeientification Toolbox of MATLAB. This program loads the
from data measured on a plant with a non-zero initial condime seriesy, estimate a model based on fifgtdata points
tion. using thendsid() function, and evaluate thé—step ahead
predictions on the second half gf The order used to estimate
the model is the minimal embedding dimensianof the time
This subsection treats the subspace identification of purglries, instead of using SVD.
stochastic systems with no external inpuf; (= 0). The  Prediction based on a model means forecasting the model
stochastic identification problem thus consists of computingsponse:—steps ahead into the future using the current and
the stochastic system matrices from given output data onlypast values of measured input and outpyibr k7's time units
Stochastic subspace identification algorithms compute statereT's is the sampling interval, is the prediction horizon.
space models from given output data. Following it states thie predict the model’s responge-steps into the future from
stochastic (subspace) identification problem. the current time, one needs to know inputs up to time- &
Given: s measurements of the outpyt € R’ generated by and outputs up to time:
the unknown stochastic system of order

Stochastic ldentification

gt +k)=flult+k),ult+k—1),..,
Thy1 = Azj + wp, (4) u(®),u(t — 1), ..., u(0),
Yk :sz+vk’ (5) y(t)vy(t_ 1)ay(t_2)a'“ay(0))

with w, and v, zero mean, white vector sequences with u(0)

) : and y(0) are theinitial states f() represents the
covariance matrix:

predictor whose form depends on the model structure. How-
ever, edn4sid method is based on stochastic subspace system
w T T Q S . e . .
E[( Up > ( Wy Yg )] = ( S+ R >5pq- (6) identification, and therefore no inputs are considered.
P T The model is evaluated in state space form, and the state
Determine: equations are simulatéd-steps ahead with initial valug(t —
« The ordern of the unknown system k) = §(t—k), wherej(t—k) is the Kalman filter state estimate.
« The system matriced € R™*", C' € R*™ up to within Pseudocode 1 describes the proposed method4esit.
a similarly transformation and) € R"*", S € R"*!,
R € R¥*! so that the second order statistics of the outpigorithm 1 ed_n4sid method
of the model and of the given output are equal. Program ed_n4sid : (y,m, k)

Inputs: y is a time series ofn data points;m is the

C. Combination of FNN and SIM methods T . ) :
) i ) minimal embedding dimension of the system (order of
In the literature we can find three basic methods used to e system); and is the prediction horizon

choose the minimal embedding dimension. Outputs: 7 is the predicted output; and the Best Fit (BF)
1) Computing an invariant on the attractor [3]. metric
2) Singular Value Decomposition (SVD) [1]. 1: Loading time series of. length
3) The FNN method [6], which has been previously intro-2: Estimating a state-space model using:tHeid() function
duced. with the first 5 points of they. The order used is the

The subspace identification methods provide a good frame- minimal embedding dimensiom
work to model a system, both deterministic and stochastic3: Predicting the output ) k—steps ahead using the
in a easily way. By using the model obtained by means of predict() function. This function takes the estimated
subspace identification methods, it is possible to predict the model and the second half of
behavior of the system. In this case, only one parameter i Plotting the second half of andy
needed, that is, the order of the system. 5. Computing the best fit of the predicted outgut

The subspace identification methods are based on SVD

information asking for an order of the system, which is used This method uses thBest Fit (BF) metric as prediction

to generate a model of it. The SVD procedure and the FNlyor The method displays the percentage of the output that

method are used to choose the minimal embedding dimensjaa model reproduces (best fit), computed using Eq. (7):
of a system. So that, it is possible to combine both information

sources in order to automatically generate a model of the
system. The minimal embedding dimension obtained by FNN

Best Fit = (1 - u) % 100 @)
y—7
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Fig. 2. Best Fit for the Lorenz attractor.

Fig. 1. Time series of the Lorenz attractor.

In Eq. (7),y is the measured output,s the predicted model )
output, andy is the mean of;. 100% corresponds to a perfectMethod to generate the model and then to prediciteps
fit, and 0% indicates that the fit is no better than guessing ttead.
output to be a constarfj = ). Because of the definition of Fig. 2 shows the prediction error in function bfaccording

best fit, it is possible for this value to be negative. to best fit metric for the Lorenz attractor.
The accuracy of the method for the Lorenz attractor is
I1l. CASE STUDIES AND EXPERIMENTAL RESULTS greater than50% for k& < 6, decreasing the accuracy until

This section describes the case studies selected, and /?th.lz'g h ¢ of th iginal and dicted output
results of appliying the proposed prediction method in each. 'g. > shows a part of the orginal and predicted outpu

case. The Lorenz attractor, which is a classical examﬁ"g'ng two different values % lfor the Lorenz case study.
of continuous-time chaotic system, an ECG signal and aThe one-step ahead prediction for the Lorenz attractor (red)

temperature time series form the case studies and the original time series (blue) are practically equal, while
' the 5—steps ahead prediction shows a prediction quite similar

A. The Lorenz Attractor to the original time series with small differences. In fact, the

. 5—steps ahead prediction has arouBd’ = 71%.
The Lorenz system [9] shows how the state of a dynamical

system (the three variables of a three-dimensional syste%}) ECG Signal
evolves over time in a complex, non-repeating pattern, whic

is often described as beautiful. The equations that describe th&lectroCardioGraphy(ECG) is a transthoracic interpreta-
system were introduced by E. Lorenz in 1963, who derivedtipn of the electrical activity of the heart over time captured
from the simplified equations of convection rolls arising in thand externally recorded by skin electrodes. It is a noninvasive
equations of the atmosphere. These equations are the followifigording produced by an electrocardiographic device.
Electrical impulses in the heart originate in the sinoatrial

dz = o(y—=) node and travel through the intimate conducting system to the
gt heart muscle. The impulses stimulate the myocardial muscle
L z(r—z)—vy (8) fibers to contract and thus induce systole. The electrical waves
flli can be measured at electrodes placed at specific points on the
i bz, skin. Electrodes on different sides of the heart measure the

activity of different parts of the heart muscle. An ECG displays
the voltage between pairs of these electrodes, and the muscle
whereo, r andb are the parameters of the Lorenz system. activity that they measure, from different directions, can also
is called thePrandtl numbeyr is called theRayleigh number be understood as vectors. This display indicates the overall

andb is ageometric factor rhythm of the heart and any weaknesses in different parts of
Fig. 1 shows a part of the Lorenz time series (the transitoifye heart muscle.
part has been removed). The ECG time series has been simulated by ECGSYN [2],

The minimal embedding dimension of this casé,svhich [10], [11]. The ECG sampling frequency28§6Hz. Simulation
has been computed by using the TISEAN routines. As it is 60bpm of heart rate mean for a healthy person. Standard
commented in Section Il, this dimension is now considered thleviation of heart rate isbpm.
order of system, which is passed to the subspace identificatiorrig. 4 shows the ECG time series.
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Fig. 3. Original and predicted output for the Lorenz attractor.k(a} 1. (b)
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Fig. 5. Best Fit for the ECG signal.

The value of the embedding dimension3isaccording to
the output of the FNN method.

Fig. 5 shows the prediction error in function bfaccording
to best fit metric for the ECG signal.

The accuracy of the method for the ECG signal is greater
than50% for k < 5, decreasing untik = 9.

Fig. 6 shows a part of the original and predicted output
using two different values of for the ECG signal.

As in the previous case, the prediction for the ECG signal
is quite similar to the original time series. Using thesteps
ahead prediction, with arounBF' = 78%, the QRS complex
and P- and T-waves of the ECG signal can be seen.

C. Air Temperature Data

We have also considered a one-year time series of air
temperature data. The weather data have been recorded by
means of a meteorological station (see Fig. 7) located on the
top of theEscuela Poliécnica Superior de Albacetwuilding,
University of Castilla-La Mancha. This building is placed
in the urban area of Albacete (Spain). The meteorological
station is property of the “Interdisciplinary Research Group
in Dynamical Systems” (IRGDS). This case study has special
relevance in Castilla-La Mancha due to the fact that the
importance of the meteorology/climatology in the economy
of this region, in the sense that one of the most important
economic sectors in Castilla-La Mancha consist on agriculture.

Fig. 7 shows a picture of the meteorological station (left)
and a picture of the temperature sensor (right).

Fig. 8 shows the time series of temperature data.

The minimal embedding dimension of this case.isThen,
this is passed to the subspace identification method to generate
the model and then to predi¢tsteps ahead.

Fig. 9 shows the prediction error in function bfaccording
to best fit metric for the time series of temperature.

The time series of temperature shows a good accuracy for
k < 30 with around BF = 55%, decreasing rapidly until
k = 40.
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k=3.

. o . Time series of the temperature data
Moreover, Fig. 10 shows a part of the original and predicted 40 ,

output using two different values é@ffor the temperature time 35 u
series. It shows that the prediction follows the maximum and 4,
minimum of temperature data during the presented interval of

5 1

time, using al5—ahead predictions (aroundF" = 88). The 20 | ‘ |
one-step ahead prediction shows a fit really similar to theg n 1
original time series. o B
10 " I 7
IV. CONCLUSIONS ANDFUTURE WORK 5 ! | 4

This paper has proposed a method for modeling and predict- o P i .
ing with time series data, which is based on subspace system _g ‘
identification. N4SID is the class of subspace algorithms _, |
chosen for this work. The subspace identification methods 0 100000 200000 300000 400000 500000 600000
are based on SVD information asking for an order of the t
system, which is used to generate a model of it. The SVD Fig. 8. Time series of the temperature data.
procedure and the FNN method are used to choose the minimal
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embedding dimension of a system, which unfolds the attractor
in the projected state space with no overlaps. So that, it is
possible to combine both information sources in order to
automatically generate a model of the system. The minimal
embedding dimension obtained by FNN method is passed to
the subspace identification method to generate the model. This
dimension is now considered the order of system. The model
is evaluated in state-space form, and the state equations are
simulatedk steps ahead. The paper presents some results that
corroborates the goodness of the proposed method.

Although the edn4sid method has achieved good results,
it is interesting to carry out an more exhaustive analysis of
the method and make an comparative study of other relevant
methods in this area. Moreover, it is expected to asses the
accuracy of the method for hole filling of time series.

Finally, it can be extended to other time series models, such
as ARIMA framework.
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