
 

 

Abstract
1
— The aim of this study is first to present a set of 

tests for assessing the quality of a set of random and 

pseudorandom number sequences and second, to examine 

their suitability for image encryption. Seven different 

generators are considered: the pseudorandom generators of 

three programming languages, a chaotic random number 

generator, as well as, three truly random number generators. 

One of the truly random number generators produces poor-

quality results and is used for demonstration purposes. The 

random number sequences were used to encrypt a test image 

via the bitwise XOR function. The assessment criteria used 

are visual tests, entropy measurements, statistical tests, 

image auto-correlation and cross-correlation calculations and 

histogram analysis. Results indicate that all but the poor-

quality generators examined provide satisfactory 

performance.  

 

Keywords— Image encryption, random number generator, 

chaotic number generator, statistical tests, correlation, histogram. 

I. INTRODUCTION  

he evolution of portable devices carrying digital 

cameras along with the availability of Internet 

connection, as well as, the broad use of social 

networks, make the production and the communication of 

images an everyday practice. Cyber-crime incidents have 

raised the issue of confidentiality; hence, image encryption 

has gained significant importance today. Several image 

encryption techniques have been proposed recently. A 

common yet effective simple encryption practice is to apply 

the bitwise Exclusive OR (XOR) between the image pixels 

(represented as integers in the range [0, 255]) and random or 

pseudorandom numbers, also in [0, 255] [1], [2]. The 

decryption process is just the XOR between the cipher image 

and the same random or pseudo random sequence.  

It is the aim of this paper to compare various random and 

pseudo random number generators for use in image 

encryption, using a proposed set of tests.  

 

                                                           
1A. S. Andreatos is with the Div. of Computer Engineering & 

Information Science, Hellenic Air Force Academy, Dekeleia Air Force 

Base, Dekeleia, Attica, TGA-1010, GREECE (phone: +30-210-819-2360; 

e-mail: aandreatos. hafa@haf.gr, aandreatos@gmail.com). 

A. P. Leros is with the Department of Automation, School of 

Technological Applications, Technological Educational Institute of Sterea 

Hellas, 34400 Psachna, Evia, GREECE (e-mail: 

lerosapostolos@gmail.com). 

A. True RNGs vs. pseudo-RNGs 

A common classification of random number generators 

based on the source of randomness is the following [1]:  

• True Random Number Generators (TRNGs),  

• Pseudo-Random Number Generators (PRNGs) and  

• Hybrid Random Number Generators (HRNGs). 

TRNGs take advantage of unpredictable, nondeterministic 

sources such as natural processes or physical phenomena 

which can affect a sensor measuring some physical 

magnitude and converting the measurement into a sequence 

of statistically independent data. Physical phenomena 

commonly exploited in the generation of random numbers 

are radioactive decay, thermal noise and cosmic microwave 

background. However, the respective devices are not 

portable, hence unsuitable for use outside a laboratory. 

Therefore, good quality random numbers are often obtained 

by artificial sources such as the rotation of the hard disk in a 

computer [3], (im)properly connected diodes and transistors 

[4], noise collected by microphones [5], noise produced by 

analog radios [6] and TV sets [7], etc. 

Truly random numbers are unpredictable, in the sense that 

it is impossible to predict the next number, given the 

previous numbers. For this reason TRNGs are particularly 

useful in cryptography and especially in key production.  

PRNGs are algorithmic generators of numbers which have 

the appearance of randomness, but nevertheless, their results 

are predictable. Good random number generators produce 

very long sequences which look random, in the sense that no 

efficient algorithm can guess the next number given any 

prefix of the sequence. Usually, PRNGs use minimal 

randomness - a randomly chosen initial value called “seed”. 

For a specific seed, PRNGs produce a specific, repeatable as 

well as periodic pattern [8]. This feature is desirable in 

cryptographic and steganographic telecommunication 

systems because the pseudorandom sequence used in the 

transmitter for encryption/ steganography must be faithfully 

reproduced in the receiver [2].  

Both true random number generators and pseudorandom 

number generators, have their advantages and disadvantages. 

Generally, the limitation of one type is the merit of the other. 

The advantages and disadvantages of TRNGs are listed in 

Table 1. The table applies to true RNGs that are deemed to 

be completely random [9].  

 

TABLE 1. ADVANTAGES & DISADVANTAGES OF TRNGS 

Advantages Disadvantages 

T 

Random number sequences assessment for 

image encryption 

Antonios S. Andreatos and Apostolos P. Leros 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 14



 

 

Non periodical Slow and inefficient 

No predictability of random 

numbers based on knowledge of 

preceding sequences 

Cumbersome to install 

and use 

Certainty that there are no 

dependencies  present 

Random number 

sequences are not 

reproducible 

High level of security Relatively costly 

Based on a natural process – not 

based on algorithm 

Possibility of 

manipulation 

 

The disadvantages of the TRNGs constitute advantages of  

PRNGs (and vice-versa) are listed in Table 2:  

 

TABLE 2. ADVANTAGES & DISADVANTAGES OF PRNGS 

Advantages Disadvantages 

Fast Output is periodical 

Easy to install and use Output is predictable  

Reproducible output Output depends on seed  

Low Cost Low level of security 

Highly portable, easy to change Based on some algorithm  

 

In practice good TRNGs are hard to find, hard to proof, 

implemented in hardware, hence often expensive, and, most 

important for telecom applications, non-reproducible (in the 

receiver). Therefore, in most applications such as decision 

making, software testing, simulation and cryptography, 

PRNGs dominate.  

A special case of TRNGs takes advantage of the 

(computer) user behaviour to generate random numbers; the 

system generates values out of keyboard inputs, mouse 

movements, and/or other human actions. Linux provides 

/dev/random for this purpose. A very simple but effective 

way to obtain a seed is getting the time from the system's 

Real Time Clock, or a function of it [10]. In fact, one of the 

TRNGs implemented in this research employs exactly this 

methodology.  

Hybrid random number generators combine methods of  

TRNGs and PRNGs to calculate random numbers. For 

instance, they may use a true random number as an initial 

seed for an algorithm that generates pseudorandom numbers. 

This is the most commonly used method in Operating 

Systems because it is fast and flexible [10]. Linux provides 

/dev/urandom for this purpose.  

A special category of generators contains the chaotic 

random number generators (CRNGs) which are based on 

chaotic phenomena [1]. Physical implementations of chaotic 

generators (such as those based on electronic circuits) 

approach TRNGs because real device values have a 

tolerance and they are also affected by environmental 

reasons, aging, etc. Software simulations of chaotic 

phenomena resemble PRNGs, hence they share the same 

advantages and can be used in cryptography [2] and 

steganography [11]. The most famous as well as simple 

chaotic implementation is Chua's circuit [12]. Several 

cryptographic and steganographic telecommunication 

systems based on Chua's circuit and its variations have been 

proposed [1], [2], [11], [12]. Various methods for producing 

good quality random number sequences (abbreviated as RNS 

henceforth) based on Chua's circuit have been proposed [1], 

[14], [15].  

In this paper we compare seven sources of random 

numbers and their suitability in image encryption. For 

demonstration purposes, the first source produces poor 

quality RNS. 

 

1/ A poor quality RNS obtained from a physical source 

without post-processing. 

2/ The PRNG of C (rand() function).  

3/ The PRNG of PHP (rand() function).  

4/ The PRNG of Matlab (randi function).  

5/ A chaotic PRNG based on Chua's circuit, simulated in 

Matlab, abbreviated henceforth as CRNG [15].  

6/ A truly random generator called “haveged”, based on 

the HAVEGE algorithm [16], [17], [18] (see also Haveged 

manual pages).  

7/ A truly random RNS obtained from recorded digitised 

AM radio noise, after proper post-processing [6].  

 

The HAVEGE (HArdware Volatile Entropy Gathering 

and Expansion) algorithm harvests the indirect effects of 

hardware events on hidden processor state (caches, branch 

predictors, memory translation tables, etc.) to generate a 

random sequence. The effects of interrupt service on 

processor state are perceived as timing variations in program 

execution speed. Using a branch-rich calculation that fills the 

processor instruction and data cache, a high resolution timer 

source such as the processor time stamp counter can generate 

a random sequence even on an idle system.  

The number sequences produced by the aforementioned 

sources 2 to 7 are uniformly distributed [19], i.e., they have 

equal probability of appearance, a fundamental property of 

true random numbers. 

The quality of random number sequences (RNSs) is 

critical in many security applications including cryptography 

and steganography. Therefore, many kinds of tests have been 

devised and are used to measure the quality of RN 

sequences, hence, the corresponding generators. Some of the 

most common tests are Entropy tests, Statistical Tests, etc. 

Some of the most common test suites are: the FIPS 140-2 

[20], the NIST suite [21], the AIS-31 [22], TestU01 [23], 

etc. 

 

The tests considered in this paper are the following: 

1/ Visual Tests checking distribution; 

2/ Entropy tests;     

3/ Statistical tests;   

4/ Image correlation tests;  

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 15



 

 

5/ Histogram analysis.  

 

The FIPS 140-2 Test suite was used for the Statistical 

Tests. The Federal Information Processing Standard (FIPS) 

Publication 140-2 (FIPS PUB 140-2) is a U.S. government 

computer security standard used to accredit cryptographic 

modules [20]. The official title is Security Requirements for 

Cryptographic Modules. Initial publication was on May 25, 

2001 and was last updated December 3, 2002.  

This standard provides increasing, qualitative levels of 

security intended to cover a wide range of potential 

applications and environments. The security requirements 

cover areas related to the secure design and implementation 

of a cryptographic module.  

This research was implemented on Linux platform.  

 

B. Test image 

The test image is a colour jpeg image with dimensions 

153x348x3 (colours) = 159732 bytes. It is shown in Fig. 1.  

 

 

Fig. 1 Test image 

 

A good encryption scheme should produce a cipher image 

that looks like rubbish, i.e. random bytes which produce a 

result like noise. Figure 2 presents a poorly encrypted image 

which fails to hide the original information.  

 

 

Fig. 2 Poorly encrypted image 

 

In order for these random sequences to be used for 

cryptography or steganography, it is desirable to be 

identically reproduced in the receiver. This can be easily 

achieved for algorithmic generators such as the PRNGs.  

So in this paper we present a framework for assessing the 

quality of image encryption; we also use this framework for 

comparing a set of random and pseudo-random sequences 

for image encryption.  

The tests considered here are the following: section II 

deals with the autocorrelation of the visual tests; section III 

deals with entropy tests; section IV deals with statistical 

tests; section V deals with image correlation tests; section VI 

deals with the assessment of the encrypted image (histogram 

analysis). We conclude in section VII. This is an evolution 

of our previous work [19] and fulfills most of the future 

research specified therein. 

II. VISUAL TESTS 

Visual tests constitute an easy and quick way for humans 

to check the characteristics of an image and the represented 

parameter or magnitude. In [19] we have examined two 

visual tests: a) Uniformity test of the produced RNSs and b) 

Cipher-image inspection. All generators examined there 

produced satisfactory results.  

Our generators should not be biased, i.e., they should 

produce random numbers with equal probability, or else, all 

possible numbers [0 - 255] should have the same frequency 

of appearance. Figures 3-9 of [19] demonstrate the 

histograms of the number sequences under test, obtained by 

means of the Binary Viewer software. All generators 

produce satisfactory results. Here we propose two additional 

visual tests.  

A. Scatter diagrams tests  

Scatter diagrams allow us to visualize the distribution of 

the produced random numbers in space [8]. This allows us to 

check the uniformity of the produced RNS. Under certain 

conditions we may observe artifacts [19] or even periodicity 

[24].  

 

 

Fig. 3 Scatter diagrams of poor quality random numbers  

 

 

 

Fig. 4 Scatter diagrams of C random numbers  

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 16



 

 

 

Fig. 5 Scatter diagrams of PHP random numbers  

 

 

Fig. 6  Scatter diagrams of Matlab random numbers  

 

 

Fig. 7 Scatter diagrams of CRNG random numbers  

 

 

Fig. 8 Scatter diagrams of Havege random numbers  

 

 

Fig. 9 Scatter diagrams of Radio noise random numbers  

 

Comparing the images we can conclude that all sequences 

are uniform, but the CRNG produces a coarser histogram. 

This is also verified by the difference Max Frequency - Min 

Frequency in the above figures. CRNG random number 

sequence has the largest difference.  

B. Cipher-image inspection   

In this test (Figures 10-16) we observe the cipher-images 

produced by the bitwise XOR between the original (test) 

image and the random number sequences [19]. 
 

 

Fig. 10 Cipher-image produced by poor quality RNS  

 

Attentive readers will discern the figure of the airplane in 

this cipher image; moreover, the noise is coarser compared 

to the following cipher images.   

 

Fig. 11 Cipher-image produced by C RNS  

 

 

Fig. 12 Cipher-image produced by PHP RNS  

 

 

Fig. 13 Cipher-image produced by Matlab RNS 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 17



 

 

 

Fig. 14 Cipher-image produced by CRNG RNS 

 

 

Fig. 15 Cipher-images produced by Havege RNS 

 

 

 

Fig. 16 Cipher-images produced by Radio noise RNS 

 

From the presentation of the cipher-images we may 

conclude that all but the poor quality RNSs succeed to hide 

the information, since they all look like random noise. 

III.  ENTROPY TESTS 

In information theory, entropy is defined as the amount of 

information contained in a random variable [5].  

Shannon denoted the entropy H of a discrete random 

variable X with possible values {x1, ... , xn} as H(X) = 

E(I(X)). Here E is the expected value, and I is the 

information content of X. I(X) itself is a random variable. If 

p denotes the probability mass function of X then the entropy 

can explicitly be written as [25]: 

1

1 1

( ) ( ) ( )

1
( ) log ( ) log ( ) (1)

( )
....

n

i i

i

n n

i b i b i

i ii

H X p x I x

p x p x p x
p x

=

= =

=

= = −

∑

∑ ∑

 

Entropy tests were performed by means of the ent bash 

command, as well as, the Binary Viewer software. The 

higher the Entropy, the better the quality of random numbers. 

Results are as shown in Table 3 below in bits per byte. 

Entropy of a truly random bit sequence equals its size in bits; 

hence, a result of 8 bits per byte means perfect. In Binary 

Viewer (BV) the perfect entropy is represented by 1.  

 

TABLE 3. ENTROPY TESTS 

 

P
o

o
r Q

u
al R

N
S 

C
 

P
H

P
 

M
atlab

 

C
R

N
G

 

H
A

V
E

G
E

 

R
ad

io
 n

o
ise 

Entropy 

(BV) 

(best = 1) 

0.45

732

7 

0.999

850 

0.99

987 

0.999

849 

0.99

887

4 

0.99

9864 

0.9998

61 

Entropy 

(ent) 

(best = 8) 

6.94

232

9 

7.998

804 

7.99

8959 

7.998

791 

7.99

099

7 

7.99

8738 

7.9988

86 

Chi square 

distributio

n 

255

133 

265.0

4 

230.

47 

268.0

8 

205

3.5 

279.

93 

247.21 

Arithmetic 

mean 

127.

862

2 

127.2

457 

127.

5162 

127.4

706 

127.

526

7 

127.

6865 

127.57

13 

Monte 

Carlo value 

for Pi2 

3.87

754

488

8 

3.152

73082

4 

3.15

9942

9 

3.140

25993

5 

3.13

214

634

5 

3.13

3782

77 

3.1420

62955 

error % 23.4

3 

0.35 0.58 0.04 0.30 0.25 0.01 

Serial 

correlation 

coefficient 

0.64

644

4 

-

0.003

116 

-

0.00

2326 

-

0.000

464 

-

0.00

063

0 

0.00

2261 
0.0012 

IV. STATISTICAL TESTS 

In this work we deal with the most important statistical 

tests. Table 4 briefly explains each test. For a more detailed 

description and a step by step guide, the reader is referred to 

Appendix K of [9].  

 

TABLE 4. EXPLANATION OF COMMON TESTS 

Test Defect detected 

Monobit Too many zeroes or ones (over 50 ± 

0.0346%) 

Poker
3
  Check for certain sequences of five numbers 

Runs
4
 Oscillation of zeroes and ones is too fast or 

too slow (locally) 

Long runs  Oscillation of zeroes and ones is too fast or 

too slow (globally) 

                                                           
2http://en.wikipedia.org/wiki/Monte_Carlo_method#Monte_Carlo_and_

random_numbers. 
3 http://en.wikipedia.org/wiki/Statistical_randomness. 
4 See http://www.cs.indiana.edu/~kapadia/project2/node17.html. 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 18



 

 

 

 

The results of statistical tests, obtained by means of the 

rngtest bash shell script
5
, are presented in Table 5. 

Surprisingly enough, the C data set passes all tests, 

surpassing all other generators.  

 

TABLE  5. STATISTICAL TESTS 

 

P
o

o
r Q

u
al R

N
S

 

C
 

P
H

P
 

M
atlab

 

C
R

N
G

 

H
A

V
E

G
E

 

R
ad

io
 n

o
ise 

Successes  0 63 63 58 59 63 63 

Failures 63 0 0 5 4 0 0 

Monobit 21 0 0 0 0 0 0 

Poker 63 0 0 0 1 0 0 

Runs 63 0 0 0 0 0 0 

Long run  0 0 2 5 3 0 0 

Continuous 
run 

0 0 0 0 0 0 0 

 

We observe here that Matlab RNS and CRNS fail in some 

tests.  

V. IMAGE CORRELATION TESTS 

A. Auto-correlation Analysis 

In this section we compare the autocorrelation of the 

encrypted images. The autocorrelation of an image is defined 

here as the similarity of an image with itself, shifted by one 

pixel horizontally, vertically, diagonally and anti-diagonally. 

The autocorrelation was calculated in Matlab using the 

following formulae (2) and (3) [2]. In general the correlation 

coefficient γ for a pair of pixels is defined as described in 

formula (2): 

 

[ ][ ]
1

cov( , )
( , )                                                 (2) 

Where:

1
cov( , ) ( ) ( )                 (3)

x y

N

i i

i

x y
x y

x y x E x y E y
N

γ
σ σ

=

=

= − −∑

 

 

In eq. (3) "E" is the expected value operator and in eq.2 σx
2
 

represents the variance of variable x. The values of γ(x,y) lie 

in the range [−1, 1], with 1 indicating perfect correlation, −1 

indicating perfect anti-correlation and 0 indicating no 

correlation. The evaluation of these formulae in MΑTLAB 

was realised by the use of built-in functions. 

 

TABLE  6. AUTO-CORRELATION TESTS 

 Horizontal  Vertical Diagonal Anti-

diagonal 

                                                           
5 See http://www.linuxcommand.org/man_pages/rngtest1.html. 

Original 

image 

0.9882 0.9580 0.9485 0.9565 

Poor qual. 

RNS 

-0.0091 0.2871 0.0037 -0.0050 

C 0.0007 -0.0000 -0.0061 -0.0050 

PHP 0.0025 0.0008 0.0000 0.0033 

Matlab 0.0001 0.0002 0.0051 -0.0029 

CRNG -0.0017 -0.0039 0.0016 -0.0009 

Havege 0.0019 -0.0000 0.0014 0.0000 

Radio 

noise 

-0.0007 -0.0003 -0.0012 -0.0024 

 

As expected, the autocorrelation of the original image is 

close to 1. This practically means that image pixels (hence 

image rows and columns) have a great probability to be 

similar to adjacent pixels (or rows or columns). 

However, the autocorrelation of all the encrypted images 

is close to 0, fact that implies that they do not represent 

something meaningful but instead they look like nonsense or 

rubbish. This is in accordance to the visual tests of the 

cipher-images. Hence, all generators produce satisfactory 

results.  

 

B. Cross-correlation Analysis 

Another test that we can perform is to check the similarity 

of each cipher-image with the original image. 

Mathematically this is expressed by the cross-correlation 

coefficient [26]. The cross-correlation coefficients were 

computed by means of MΑTLAB built-in functions. The 

results obtained are presented in Table 7, where the original 

image has been included for comparison purposes.  

 

TABLE  7. CROSS-CORRELATION TESTS 

RNG Cross-correlation coefficient 

Original image 1.0000 

Poor quality RNS 0.0530 

C 0.0030 

PHP  0.0005 

Matlab   -0.0002 

CRNG -0.0018 

Havege 0.0026 

Radio noise 0.0042 

 

As we can see from Table 7, the original image is 100% 

correlated with itself whereas the poorly encrypted image is 

5.3% correlated with the original image. The rest cross-

correlation coefficients are close to zero, hence indicate 

good encryption since 0 indicates no correlation.   

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 19



 

 

VI. HISTOGRAM ANALYSIS 

An important characteristic of an image is its histogram. 

The histogram uniquely characterises the corresponding 

image, so a robust encryption scheme should produce a 

completely different histogram. An ideal image encryption 

scheme should produce an output image totally uncorrelated 

from the original image with a histogram totally independent 

from the input image. In other words, the histogram of the 

output image should be invariant, independent from the input 

image, and a flat histogram satisfies these requirements.  

Figure 17 presents the histogram of the original (Red 

colour only) image. 

 

 

Fig. 17  Histogram of the original image 

 

In this section the histograms of the cipher-images will be 

analysed. Since the images used here are colour, there are 

three distinct histograms for each image, one for each colour 

component (R, G, B). For brevity purposes, only the red 

histograms will be presented; however, similar results are 

obtained for the green and blue histograms as well.  
 

 

Fig. 18 Histogram of image encrypted by poor quality RNS  

 

Figure 18 presents the histogram of the poorly encrypted 

image. Observe that this histogram is not flat. 

 

 

Fig. 19 Histogram of image encrypted by C RNS 

 

 

Fig. 20 Histogram of image encrypted by PHP RNS 

 

 

Fig. 21 Histogram of image encrypted by Matlab RNS 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 20



 

 

 

Fig. 22 Histogram of image encrypted by CRNG  

 

 

Fig. 23 Histogram of  image encrypted by Havege RNS 

 

 

Fig. 24 Histogram of image encrypted by Radio noise  

 

From the presentation of the various histograms we can 

see that all RNSs satisfy the requirement for a flat 

distribution regardless the input image, hence they produce 

good cipher-images.  

VII. CONCLUSION 

In this paper (and partially in [19]) we have presented a 

series of tests for assessing random number sequences for 

image encryption. These tests are: 

 

1/ Visual tests; 

 1a) Uniformity tests (see [19]); 

 1b)  Cipher-image inspection tests (see [19]); 

 1b) Scatter diagrams tests; 

 1c) Cipher-image inspection;  

2/ Entropy tests; 

3/ Statistical tests; 

4/ Image correlation tests; 

 4a) Auto-correlation tests (see [19]); 

 4b) Cross-correlation tests; 

5/ Histogram analysis.  

 

The specific set of tests comprises a universal and multi-

dimensional framework for evaluating image encryption 

algorithms. Using this test set we have assessed a series of 

random number sequences produced by three pseudo-

random number generators, two truly random number 

generators set, plus a chaotic RNG. We have also included a 

poor-quality RNS for demonstration purposes. From the 

comparison it is concluded that all sources except the poor-

quality one, produce acceptable, high quality results, for the 

selected test image.  

All generators produce satisfactory and comparable 

results, which means that the specific generators are of good 

quality (except the poor-quality one). In fact, PHP and 

Matlab use the Mersenne twister generator which is, by far, 

the best and most widely used PRNG [27]. Mersenne twister 

is used by many programming languages, including PHP and 

Matlab; hence the good results. The most commonly used 

version of Mersenne Twister is “MT19937”, which has a 

very long period of 2^19937−1 ≈ 4.3154248×10^6001.  

 

As stated in the Introduction, true random number 

sequences are not reproducible; hence, it will be impossible 

to reproduce a given RNS used at the transmitting side for 

encryption, to decode the cipher-image at the receiver.  

 On the other hand, nor pseudo-random numbers are 

suitable for cryptography, for a number of reasons. Pseudo-

random numbers are in fact deterministic, periodic sequences 

[8], [24], hence, easier to guess/ break. Moreover, they are 

subject to a number of potential problems such as shorter 

periods for some seed values, correlation of successive 

values, etc. [28].  

Observing a sufficient number of past iterations allows us 

to predict all future iterations [27]. Hence, they are less 

suitable for cryptography. Another disadvantage is that their 

output is a function of a single parameter, i.e., the seed [9].  

 

The CRNG produces satisfactory results, comparable with 

the PRNGs and the TRNG; moreover, it has some additional 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 21



 

 

advantages:  

 

• They are periodic but by applying spatiotemporal 

techniques, their period may become some years 

long, hence practically unreachable [29]; 

• Under proper design of the generator, they can use 

multi-parametric keys rather than a single seed (see 

for instance [2], [11];  

• The CRNG is multi-parametric system and must be 

fine-tuned in order to improve its performance. A 

method for tuning Chua-based CRNGs has been 

proposed in [30].  

 

In conclusion, in this paper we have demonstrated a 

simple yet effective method for image encryption, based on 

the bitwise XOR function. The proposed method is powerful, 

fast and easy to implement, and may employ a variety of 

random as well as pseudo-random generators. We have also 

proposed a framework for testing the RNSs and the cipher-

images. Using this framework we have verified that all 

generators under test (except the poor-quality one) produce 

satisfactory cipher-images from a security viewpoint.  

REFERENCES   

[1] C. K. Volos, “Image Encryption scheme based on coupled Chaotic 

systems”, in JAMB, 3, 1, 2013, pp. 123-149.  

[2] A. Andreatos and A. Leros, “Secure image encryption based on a 

Chua chaotic noise generator. Journal of Engineering Science and 

Technology Review”. JESTR Special Issue on Nonlinear Circuits: 

Theory and Applications, 6 (4) (2013) 90-103.  Available: 

http://jestr.org/index.php?option=com_content&view=article&id=31

&Itemid=71. 

[3] D. Davis, R. Ihaka and P. Fenstermacher, "Cryptographic randomness 

from air turbulence in disk drives",  Proc. CRYPTO' 94,  pp. 114 -

120. Available: theworld.com/~dtd/random/forward.ps.  

[4] Leon's Mini Random Number Generator [Online]. Available: 

http://www.physics.wisc.edu/~lmaurer/projects/minirng/minirng.html  

[5] S. Theodoulou, “Improving the Reliability of Cryptographic Services 

in Personal Computers using Truly Random Numbers and Advanced 

Coding Techniques”, Diploma Thesis, Hellenic Air Force Academy, 

June 2010 (in Greek).  

[6] “It did not succeed, it just happened”, Delta Haker magazine, no. 33, 

pp. 68-82, June 2014 (in Greek).  

[7] “Randomness generators”, Delta Haker magazine, no. 31, pp. 62-68, 

Apr. 2014 (in Greek).  

[8] A.N. Veneti, G.C. Meletiou and M.N. Vrahatis, “Fractal Dimension 

As An Assessment Metric for Pseudorandom Number Generators”. 

Presented at the 2nd International Conference on Cryptography, 

Network Security and Applications in the Armed Forces. Hellenic 

Military Academy, April 2, 2014.  

[9] Charmaine Kenny, “Random Number Generators: An evaluation and 

comparison of Random.org and some commonly used generators”. 

Project Report, supervised by Krzysztof Mosurski. Trinity College 

Dublin, April 2005.  
[10] http://wiki.osdev.org/Random_Number_Generator.  
[11] A. P. Leros and A. S. Andreatos, “Α Video Steganography System for 

Secure Data Communication”, Chapter 4.3 in New Research Trends 

in Nonlinear Circuits: Design, Chaotic Phenomena and 

Applications. Nova Science Publishers, Inc.  2014.  

[12] L. O. Chua, “Chua's circuit: ten years later”, IEICE Trans. 

Fundamentals E77-A, 11, pp. 1811-1822 (1994).  

[13] L. Gámez-Guzmán, C. Cruz-Hernández, R.M. López-Gutiérrez, E.E. 

García-Guerrero, Synchronization of Chua’s circuits with multi-scroll 

attractors: Application to communication, Commun. Nonlinear Sci. 

Numer. Simulat. 14, 2765–2775 (2009).  

[14] M. E. Yalçın, J. A. K. Suykens and J.Vandewalle, “True Random Bit 

Generation From a Double-Scroll Attractor”, IEEE Transactions on 

Circuits and Systems —I: Regular Papers, 51, 7, pp. 1395-1404 

(2004). 

[15] A. S. Andreatos and C. K. Volos, “Secure Text Encryption Based on 

Hardware Chaotic Noise Generator”. Presented at the 2nd 

International Conference on Cryptography, Network Security and 

Applications in the Armed Forces, Hellenic Military Academy, April 

2, 2014.  

[16] A. Seznec and N. Sendrier, “HArdware Volatile Entropy Gathering 

and Expansion:  generating unpredictable  random numbers at user 

level”, INRIA Research Report, RR-4592, October 2002. 

[17] Haveged - A simple entropy daemon [Online]. Available: 

http://www.issihosts.com/haveged/index.html. 

[18] http://www.issihosts.com/haveged/faq.html. 
[19] A. S. Andreatos  and  A. P. Leros, “A comparison of random number 

sequences for image encryption”, in Proceedings of MMCTSE, 

Mathematical Methods & Computational Techniques in Science & 

Engineering.  Athens, Greece, November 28-30, 2014, pp. 146-151.   

[20] Security Requirements For Cryptographic Modules, 2001 [Online].  

Available: http://csrc.nist.gov/publications/fips/fips140-

2/fips1402.pdf.  

[21] NIST Special Publication 800-22, “A Statistical Test Suite for 

Random and Pseudorandom Number Generators for Cryptographic 

Applications”. Available: 

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-

22rev1a.pdf. 

[22] AIS 31, “Functionality Classes and Evaluation Methodology for 

Physical Random Number Generators”, Version 1 (25.09.2001) 

[Online].  Available: www.bsi.bund.de/zertifiz/zert/interpr/ais31e.pdf.  

[23] TestU01, [Online].  Available: 

http://www.iro.umontreal.ca/~simardr/testu01/tu01.html.  

[24] A. Divyanjali and V. Pareek, “An Overview of Cryptographically 

Secure Pseudorandom Number generators and BBS”, International 

Journal of Computer Applications (IJCA) (0975 – 8887), pp. 19-28, 

2014.  

[25] T. M. Cover and J. A. Thomas, “Elements of Information Theory”, 2nd 

edition.  Wiley, 2006.   
[26] A. Belmeguenaï, K. Mansouri and L. Grouche, “Implementation of 

Blum Blum Shub Generator for Message Encryption”, in Proceedings 

of International Conference on Control, Engineering & Information 

Technology (CEIT’14), pp. 118-123.  

[27] Mersenne twister, http://en.wikipedia.org/wiki/Mersenne_twister.  

[28] http://en.wikipedia.org/wiki/Pseudorandom_number_generator#Poten

tial_problems_with_deterministic_generators. 

[29] S. Wang, W. Liu, H. Lu, J. Kuang and G. Hu, “Periodicity of chaotic 

trajectories in realizations of finite computer precisions and its 

implication in chaos communications”, International Journal of 

Modern Physics B, Vol. 18, Issue 17, no. 19, 30 July 2004, pp. 2617-

2622. 

[30] A. Leros  and A. Andreatos, “On the optimisation of Chua chaotic 

attractors”, in Proceedings of  ICACM '13, 2nd WSEAS International 

Conference on Applied and Computational Mathematics, 

Vouliagmeni, Athens, Greece, May 14-16, 2013. Available: 

http://www.wseas.org/wseas/cms.action?id=2574.  

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 22




